首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Posttranslational protein arginylation mediated by Ate1 is essential for cardiovascular development, actin cytoskeleton functioning, and cell migration. Ate1 plays a role in the regulation of cytoskeleton and is essential for cardiovascular development and angiogenesis—capillary remodeling driven by in-tissue migration of endothelial cells. To address the role of Ate1 in cytoskeleton-dependent processes and endothelial cell function during development, we produced a conditional mouse knockout with Ate1 deletion driven by Tek endothelial receptor tyrosine kinase promoter expressed in the endothelium and in the germ line. Contrary to expectations, Tek-Ate1 mice were viable and had no visible angiogenesis-related phenotypes; however, these mice showed reproductive defects, with high rates of embryonic lethality in the second generation, at stages much earlier than the complete Ate1 knockout strain. While some of the early lethality originated from the subpopulation of embryos with homozygous Tek-Cre transgene—a problem that has not previously been reported for this commercial mouse strain—a distinct subpopulation of embryos had lethality at early post-implantation stages that could be explained only by a previously unknown defect in gametogenesis originating from Tek-driven Ate1 deletion in premeiotic germs cells. These results demonstrate a novel role of Ate1 in germ cell development.  相似文献   

2.
Coordinated cell migration during development is crucial for morphogenesis and largely relies on cells of the neural crest lineage that migrate over long distances to give rise to organs and tissues throughout the body. Recent studies of protein arginylation implicated this poorly understood posttranslational modification in the functioning of actin cytoskeleton and in cell migration in culture. Knockout of arginyltransferase (Ate1) in mice leads to embryonic lethality and severe heart defects that are reminiscent of cell migration–dependent phenotypes seen in other mouse models. To test the hypothesis that arginylation regulates cell migration during morphogenesis, we produced Wnt1-Cre Ate1 conditional knockout mice (Wnt1-Ate1), with Ate1 deletion in the neural crest cells driven by Wnt1 promoter. Wnt1-Ate1 mice die at birth and in the first 2–3 weeks after birth with severe breathing problems and with growth and behavioral retardation. Wnt1-Ate1 pups have prominent defects, including short palate and altered opening to the nasopharynx, and cranial defects that likely contribute to the abnormal breathing and early death. Analysis of neural crest cell movement patterns in situ and cell motility in culture shows an overall delay in the migration of Ate1 knockout cells that is likely regulated by intracellular mechanisms rather than extracellular signaling events. Taken together, our data suggest that arginylation plays a general role in the migration of the neural crest cells in development by regulating the molecular machinery that underlies cell migration through tissues and organs during morphogenesis.  相似文献   

3.
Tropomodulin1 (Tmod1) caps thin filament pointed ends in striated muscle, where it controls filament lengths by regulating actin dynamics. Here, we investigated myofibril assembly and heart development in a Tmod1 knockout mouse. In the absence of Tmod1, embryonic development appeared normal up to embryonic day (E) 8.5. By E9.5, heart defects were evident, including aborted development of the myocardium and inability to pump, leading to embryonic lethality by E10.5. Confocal microscopy of hearts of E8-8.5 Tmod1 null embryos revealed structures resembling nascent myofibrils with continuous F-actin staining and periodic dots of alpha-actinin, indicating that I-Z-I complexes assembled in the absence of Tmod1. Myomesin, a thick filament component, was also assembled normally along these structures, indicating that thick filament assembly is independent of Tmod1. However, myofibrils did not become striated, and gaps in F-actin staining (H zones) were never observed. We conclude that Tmod1 is required for regulation of actin filament lengths and myofibril maturation; this is critical for heart morphogenesis during embryonic development.  相似文献   

4.
In the N-end rule pathway of protein degradation, the destabilizing activity of N-terminal Asp, Glu or (oxidized) Cys residues requires their conjugation to Arg, which is recognized directly by pathway''s ubiquitin ligases. N-terminal arginylation is mediated by the Ate1 arginyltransferase, whose physiological substrates include the Rgs4, Rgs5 and Rgs16 regulators of G proteins. Here, we employed the Cre-lox technique to uncover new physiological functions of N-terminal arginylation in adult mice. We show that postnatal deletion of mouse Ate1 (its unconditional deletion is embryonic lethal) causes a rapid decrease of body weight and results in early death of ∼15% of Ate1-deficient mice. Despite being hyperphagic, the surviving Ate1-deficient mice contain little visceral fat. They also exhibit an increased metabolic rate, ectopic induction of the Ucp1 uncoupling protein in white fat, and are resistant to diet-induced obesity. In addition, Ate1-deficient mice have enlarged brains, an enhanced startle response, are strikingly hyperkinetic, and are prone to seizures and kyphosis. Ate1-deficient males are also infertile, owing to defects in Ate1−/− spermatocytes. The remarkably broad range of specific biological processes that are shown here to be perturbed by the loss of N-terminal arginylation will make possible the dissection of regulatory circuits that involve Ate1 and either its known substrates, such as Rgs4, Rgs5 and Rgs16, or those currently unknown.  相似文献   

5.
Talin is a large scaffolding molecule that plays a major role in integrin-dependent cell-matrix adhesion. A role for talin in cell-cell attachment through cadherin has never been demonstrated, however. Here, we identify a novel calpain-dependent proteolytic cleavage of talin that results in the release of a 70-kD C-terminal fragment, which serves as a substrate of posttranslational arginylation. The intracellular levels of this fragment closely correlated with the formation of cell-cell adhesions, and this fragment localized to cadherin-containing cell-cell contacts. Moreover, reintroduction of this fragment rescued the cell-cell adhesion defects in arginyltransferase (Ate1) knockout cells, which normally have a very low level of this fragment. Arginylation of this fragment further enhanced its ability to rescue cell-cell adhesion formation. In addition, arginylation facilitated its turnover, suggesting a dual role of arginylation in its intracellular regulation. Thus, our work identifies a novel proteolytic product of talin that is regulated by arginylation and a new role of talin in cadherin-dependent cell-cell adhesion.  相似文献   

6.
7.
The two major proteins in the I-bands of skeletal muscle, actin and tropomyosin, were each labeled with fluorescent dyes and microinjected into cultured cardiac myocytes and skeletal muscle myotubes. Actin was incorporated along the entire length of the I-band in both types of muscle cells. In the myotubes, the incorporation was uniform, whereas in cardiac myocytes twice as much actin was incorporated in the Z-bands as in any other area of the I-band. Labeled tropomyosin that had been prepared from skeletal or smooth muscle was incorporated in a doublet in the I-band with an absence of incorporation in the Z-band. Tropomyosin prepared from brain was incorporated in a similar pattern in the I-bands of cardiac myocytes but was not incorporated in myotubes. These results in living muscle cells contrast with the patterns obtained when labeled actin and tropomyosin are added to isolated myofibrils. Labeled tropomyosins do not bind to any region of the isolated myofibrils, and labeled actin binds to A-bands. Thus, only living skeletal and cardiac muscle cells incorporate exogenous actin and tropomyosin in patterns expected from their known myofibrillar localization. These experiments demonstrate that in contrast to the isolated myofibrils, myofibrils in living cells are dynamic structures that are able to exchange actin and tropomyosin molecules for corresponding labeled molecules. The known overlap of actin filaments in cardiac Z-bands but not in skeletal muscle Z-bands accounts for the different patterns of actin incorporation in these cells. The ability of cardiac myocytes and non-muscle cells but not skeletal myotubes to incorporate brain tropomyosin may reflect differences in the relative actin-binding affinities of non-muscle tropomyosin and the respective native tropomyosins. The implications of these results for myofibrillogenesis are presented.  相似文献   

8.
Post-translational protein arginylation is essential for cardiovascular development and angiogenesis in mice and is mediated by arginyl-transfer RNA-protein transferases Ate1-a functionally conserved but poorly understood class of enzymes. Here, we used sequence analysis to detect the evolutionary relationship between the Ate1 family and bacterial FemABX family of aminoacyl-tRNA-peptide transferases, and to predict the functionally important residues in arginyltransferases, which were then used to construct a panel of mutants for further molecular dissection of mouse Ate1. Point mutations of the residues in the predicted regions of functional importance resulted in changes in enzymatic activity, including complete inactivation of mouse Ate1; other mutations altered its substrate specificity. Our results provide the first insights into the mechanisms of Ate1-mediated arginyl transfer reaction and substrate recognition, and define a new protein superfamily called Dupli-GNAT to reflect its origin by the duplication of the GNAT acetyltransferase domain.  相似文献   

9.
The N-cadherin (N-cad) complex plays a crucial role in cardiac cell structure and function. Cadherins are adhesion proteins linking adjacent cardiac cells and, like integrin adhesions, are sensitive to force transmission. Forces through these adhesions are capable of eliciting structural and functional changes in myocytes. Compared to integrins, the mechanisms of force transduction through cadherins are less explored. α-catenin is a major component of the cadherin-catenin complex, thought to provide a link to the cell actin cytoskeleton. Using N-cad micropatterned substrates in an adhesion constrainment model, the results from this study show that α-catenin localizes to regions of highest internal stress in myocytes. This localization suggests that α-catenin acts as an adaptor protein associated with the cadherin mechanosensory apparatus, which is distinct from mechanosensing through integrins. Myosin inhibition in cells bound by integrins to fibronectin-coated patterns disrupts myofibiril organization, whereas on N-cad coated patterns, myosin inhibition leads to better organized myofibrils. This result indicates that the two adhesion systems provide independent mechanisms for regulating myocyte structural organization.  相似文献   

10.
During heart development, the generation of myocardial-specific structural and functional units including sarcomeres, contractile myofibrils, intercalated discs, and costameres requires the coordinated assembly of multiple components in time and space. Disruption in assembly of these components leads to developmental heart defects. Immunofluorescent staining techniques are used commonly in cultured cardiomyocytes to probe myofibril maturation, but this ex vivo approach is limited by the extent to which myocytes will fully differentiate in culture, lack of normal in vivo mechanical inputs, and absence of endocardial cues. Application of immunofluorescence techniques to the study of developing mouse heart is desirable but more technically challenging, and methods often lack sufficient sensitivity and resolution to visualize sarcomeres in the early stages of heart development. Here, we describe a robust and reproducible method to co-immunostain multiple proteins or to co-visualize a fluorescent protein with immunofluorescent staining in the embryonic mouse heart and use this method to analyze developing myofibrils, intercalated discs, and costameres. This method can be further applied to assess cardiomyocyte structural changes caused by mutations that lead to developmental heart defects.  相似文献   

11.
Tropomodulins are a family of proteins that cap the slow-growing end of actin filaments. Erythrocyte tropomodulin (E-Tmod) stabilizes short actin protofilaments in erythrocytes and caps longer sarcomeric actin filaments in striated muscles. We report the knockin of the beta-galactosidase gene (LacZ) under the control of the endogenous E-Tmod promoter and the knockout of E-Tmod in mouse embryonic stem cells. E-Tmod(-/-) embryos die around embryonic day 10 and exhibit a noncontractile heart tube with disorganized myofibrils and underdevelopment of the right ventricle, accumulation of mechanically weakened primitive erythroid cells in the yolk sac, and failure of primary capillary plexuses to remodel into vitelline vessels, all required to establish blood circulation between the yolk sac and the embryo proper. We propose a hemodynamic "plexus channel selection" mechanism as the basis for vitelline vascular remodeling. The defects in cardiac contractility, vitelline circulation, and hematopoiesis reflect an essential role for E-Tmod capping of the actin filaments in both assembly of cardiac sarcomeres and of the membrane skeleton in erythroid cells that is not compensated for by other proteins.  相似文献   

12.
The cytoskeleton plays an important role in many aspects of cardiac cell function, including protein trafficking. However, the role of the cytoskeleton in determining Ca channel location in cardiac myocytes is unknown. In the present study we therefore investigated the effect of the cytoskeletal disruptors cytochalasin D, latrunculin, nocadazole and colchicine on the distribution of Ca channels in rat ventricular myocytes during culture for up to 96 h. During culture in the absence of these agents, cell edges became rounded, t-tubule density decreased, and the normal transverse distribution of the alpha1 (pore-forming) subunit of the L-type Ca channel became more punctate and peri-nuclear; these changes were associated with loss of synchronous Ca release in response to electrical stimulation. Disruption of tubulin using nocadazole or colchicine or sequestration of monomeric actin by latrunculin had no effect on these changes. In contrast, cytochalasin D inhibited these changes: cell shape, t-tubule density, transverse Ca channel staining and synchronous Ca release were maintained during culture. The protein synthesis inhibitor cycloheximide had similar effects to cytochalasin. These data suggest that cytochalasin stabilizes actin in adult ventricular myocytes in culture, thus stabilizing cell structure and function, and that actin is important in trafficking L-type Ca channels from the peri-nuclear region to the t-tubules, where they are normally located and provide the trigger for Ca release.  相似文献   

13.
14.
alpha(2A)-Adrenergic receptors (ARs) in the midbrain regulate sympathetic nervous system activity, and both alpha(2A)-ARs and alpha(2C)-ARs regulate catecholamine release from sympathetic nerve terminals in cardiac tissue. Disruption of both alpha(2A)- and alpha(2C)-ARs in mice leads to chronically elevated sympathetic tone and decreased cardiac function by 4 mo of age. These knockout mice have increased mortality, reduced exercise capacity, decreased peak oxygen uptake, and decreased cardiac contractility relative to wild-type controls. Moreover, we observed significant abnormalities in the ultrastructure of cardiac myocytes from alpha(2A)/alpha(2C)-AR knockout mice by electron microscopy. Our results demonstrate that chronic elevation of sympathetic tone can lead to abnormal cardiac function in the absence of prior myocardial injury or genetically induced alterations in myocardial structural or functional proteins. These mice provide a physiologically relevant animal model for investigating the role of the sympathetic nervous system in the development and progression of heart failure.  相似文献   

15.
Tropomodulins (Tmods) comprise a family of capping proteins for actin filament pointed ends. To decipher the significance of Tmod1 functions during de novo myofibrillogenesis, we generated Tmod1 null embryonic stem (ES) cells and studied their differentiation into cardiomyocytes. Strikingly, in vitro cardiomyocyte differentiation of wild type (WT) ES cells faithfully recapitulates in vivo cardiomyocyte differentiation, allowing us to evaluate the phenotypes of Tmod1 knockout (KO) myofibrils irrespective of embryonic lethality of Tmod1 KO mice. Immunofluorescence and electron microscopy studies revealed that Tmod1 null cardiac myocytes were round, morphologically immature, and contained underdeveloped myofibrils that were shorter, narrower, and had fewer thin filaments than those in WT cells. Unexpectedly, clear gaps in the staining pattern for F-actin at the H-zone were detected in most KO cells, indicating the presence of filaments at uniform lengths. This indicates that additional mechanisms other than capping proteins are responsible for thin filament length maintenance in cardiac myocytes. Also unexpectedly, approximately 40% of the KO cardiac myocytes exhibited contractile activity. Our data indicate that differentiating ES cells are a powerful system to investigate the functional properties of contractile proteins and that Tmod1 functions are critical for late stages of myofibrillogenesis, and for the maturation of myofibrils.  相似文献   

16.
Vinculin is a ubiquitously expressed multiliganded protein that links the actin cytoskeleton to the cell membrane. In myocytes, it is localized in protein complexes which anchor the contractile apparatus to the sarcolemma. Its function in the myocardium remains poorly understood. Therefore, we developed a mouse model with cardiac-myocyte-specific inactivation of the vinculin (Vcl) gene by using Cre-loxP technology. Sudden death was found in 49% of the knockout (cVclKO) mice younger than 3 months of age despite preservation of contractile function. Conscious telemetry documented ventricular tachycardia as the cause of sudden death, while defective myocardial conduction was detected by optical mapping. cVclKO mice that survived through the vulnerable period of sudden death developed dilated cardiomyopathy and died before 6 months of age. Prior to the onset of cardiac dysfunction, ultrastructural analysis of cVclKO heart tissue showed abnormal adherens junctions with dissolution of the intercalated disc structure, expression of the junctional proteins cadherin and beta1D integrin were reduced, and the gap junction protein connexin 43 was mislocalized to the lateral myocyte border. This is the first report of tissue-specific inactivation of the Vcl gene and shows that it is required for preservation of normal cell-cell and cell-matrix adhesive structures.  相似文献   

17.
The cardiac myocyte has an intracellular scaffold, the cytoskeleton, which has been implicated in several cardiac pathologies including hypertrophy and failure. In this review we describe the role that the cytoskeleton plays in modulating both the electrical activity (through ion channels and exchangers) and mechanical (or contractile) activity of the adult heart. We focus on the 3 components of the cytoskeleton, actin microfilaments, microtubules, and desmin filaments. The limited visual data available suggest that the subsarcolemmal actin cytoskeleton is sparse in the adult myocyte. Selective disruption of cytoskeletal actin by pharmacological tools has yet to be verified in the adult cell, yet evidence exists for modulation of several ionic currents, including I(CaL), I(Na), I(KATP), I(SAC) by actin microfilaments. Microtubules exist as a dense network throughout the adult cardiac cell, and their structure, architecture, kinetics and pharmacological manipulation are well described. Both polymerised and free tubulin are functionally significant. Microtubule proliferation reduces contraction by impeding sarcomeric motion; modulation of sarcoplasmic reticulum Ca(2+) release may also be involved in this effect. The lack of effect of microtubule disruption on cardiac contractility in adult myocytes, and the concentration-dependent modulation of the rate of contraction by the disruptor nocodazole in neonatal myocytes, support the existence of functionally distinct microtubule populations. We address the controversy regarding the stimulation of the beta-adrenergic signalling pathway by free tubulin. Work with mice lacking desmin has demonstrated the importance of intermediate filaments to normal cardiac function, but the precise role that desmin plays in the electrical and mechanical activity of cardiac muscle has yet to be determined.  相似文献   

18.
Angiotensin II plays an important role in the development of cardiac hypertrophy and fibrosis, but the underlying cellular and molecular mechanisms are not completely understood. Recent studies have shown that bone marrow-derived fibroblast precursors are involved in the pathogenesis of cardiac fibrosis. Since bone marrow-derived fibroblast precursors express chemokine receptor, CCR2, we tested the hypothesis that CCR2 mediates the recruitment of fibroblast precursors into the heart, causing angiotensin II-induced cardiac fibrosis. Wild-type and CCR2 knockout mice were infused with angiotensin II at 1,500 ng·kg(-1)·min(-1). Angiotensin II treatment resulted in elevated blood pressure and cardiac hypertrophy that were not significantly different between wild-type and CCR2 knockout mice. Angiotensin II treatment of wild-type mice caused prominent cardiac fibrosis and accumulation of bone marrow-derived fibroblast precursors expressing the hematopoietic markers, CD34 and CD45, and the mesenchymal marker, collagen I. However, angiotensin II-induced cardiac fibrosis and accumulation of bone marrow-derived fibroblast precursors in the heart were abrogated in CCR2 knockout mice. Furthermore, angiotensin II treatment of wild-type mice increased the levels of collagen I, fibronectin, and α-smooth muscle actin in the heart, whereas these changes were not observed in the heart of angiotensin II-treated CCR2 knockout mice. Functional studies revealed that the reduction of cardiac fibrosis led to an impairment of cardiac systolic function and left ventricular dilatation in angiotensin II-treated CCR2 knockout mice. Our data demonstrate that CCR2 plays a pivotal role in the pathogenesis of angiotensin II-induced cardiac fibrosis through regulation of bone marrow-derived fibroblast precursors.  相似文献   

19.
Fan J  Dong L  Mishra S  Chen Y  FitzGerald P  Wistow G 《The FEBS journal》2012,279(16):2892-2904
γS-crystallin (γS) is a highly conserved component of the eye lens. To gain insights into the functional role(s) of this protein, the mouse gene (Crygs) was deleted. Although mutations in γS can cause severe cataracts, loss of function of γS in knockout (KO) mice produced no obvious lens opacity, but was associated with focusing defects. Electron microscopy showed no major differences in lens cell organization, suggesting that the optical defects are primarily cytoplasmic in origin. KO lenses were also grossly normal by light microscopy but showed evidence of incomplete clearance of cellular organelles in maturing fiber cells. Phalloidin labeling showed an unusual distribution of F-actin in a band of mature fiber cells in KO lenses, suggesting a defect in the organization or processing of the actin cytoskeleton. Indeed, in wild-type lenses, γS and F-actin colocalize along the fiber cell plasma membrane. Relative levels of F-actin and G-actin in wild-type and KO lenses were estimated from fluorescent staining profiles and from isolation of actin fractions from whole lenses. Both methods showed a two-fold reduction in the F-actin/G-actin ratio in KO lenses, whereas no difference in tubulin organization was detected. In vitro experiments showed that recombinant mouse γS can directly stabilize F-actin. This suggests that γS may have a functional role related to actin, perhaps in 'shepherding' filaments to maintain the optical properties of the lens cytoplasm and normal fiber cell maturation.  相似文献   

20.
Dishevelled-associated activator of morphogenesis 1 (Daam1), a member of the formin protein family, plays an important role in regulating the actin cytoskeleton via mediation of linear actin assembly. Previous functional studies of Daam1 in lower species suggest its essential role in Drosophila trachea formation and Xenopus gastrulation. However, its in vivo physiological function in mammalian systems is largely unknown. We have generated Daam1-deficient mice via gene-trap technology and found that Daam1 is highly expressed in developing murine organs, including the heart. Daam1-deficient mice exhibit embryonic and neonatal lethality and suffer multiple cardiac defects, including ventricular noncompaction, double outlet right ventricles and ventricular septal defects. In vivo genetic rescue experiments further confirm that the lethality of Daam1-deficient mice results from the inherent cardiac abnormalities. In-depth analyses have revealed that Daam1 is important for regulating filamentous actin assembly and organization, and consequently for cytoskeletal function in cardiomyocytes, which contributes to proper heart morphogenesis. Daam1 is also found to be important for proper cytoskeletal architecture and functionalities in embryonic fibroblasts. Biochemical analyses indicate that Daam1 does not regulate cytoskeletal organization through RhoA, Rac1 or Cdc42. Our study highlights a crucial role for Daam1 in regulating the actin cytoskeleton and tissue morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号