首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is developed to isolate lysyl-tRNA-synthetase from 93-95%-purity postribosomal supernatant fraction of skeletal muscle homogenate in rabbit. Novelty of the method is the ATP usage for muscle homogenization, which permits shortening the number of operations during the enzyme isolation. The molecular weight of protein is 68 +/- 10 kDa, the monomer unit consists of 540 amino acids and contains a carbohydrate component.  相似文献   

2.
An electophoretic study of changes in composition of titin isoforms in human and rat skeletal and cardiac muscles is carried out. A more considerable decrease in the content of intact titin isoforms was observed than in the content of N2A-titin in the dorsal muscle of patients with the “stiff-person syndrome” and in m. soleus of humans and rats during development of “muscle hypogravity syndrome” and than in the content of N2BA- and N2B-titins in hypertrophic heart of spontaneously hypertensive rats. The relation between reduction of titin content in m. soleus and the increase of time the rats were in conditions of simulated microgravity is revealed. On electrophoregrams of left ventricle myocardium of patients with terminal stage of dilated cardiomyopathy the intact titin and N2BA-titin were absent and a considerable decrease in the content of N2B-titin was observed. This could be the consequence of the terminal stage of pathology. It follows that development of the diseases is accompanied by a greater destruction of intact titin than of its other forms which may be important for diagnostics of pathological processes.  相似文献   

3.
Myosin subfragment 1 (S1) forms dimers in the presence of Mg(2+) or MgADP or MgATP. The entire myosin molecule forms head-head dimers in the presence of MgATP. The angle between the two subunits in the S1 dimer is 95 degrees. Assuming that the length of the globular part of S1 is approximately 12 nm and that the S1/S2 joint (lever arm approximately 7 nm) is clearly bent, the cylinder tangent to this dimer should have a diameter of approximately 18 nm, close to the approximately 16-20 nm suggested by many studies for the diameter of thick filaments in situ. These conclusions led us to re-examine our previous model, according to which two heads from two opposite myosin molecules are inserted into the filament core and interact as dimers. We studied synthetic filaments by electron microscopy, enzyme activity assays, controlled digestion and filament-filament interaction analysis. Synthetic filaments formed by rapid dilution in the presence of 1 mM EDTA at room temperature ( approximately 22 degrees C) had all their myosin heads outside the backbone. These filaments are called superfilaments (SF). Synthetic filaments formed by slow dilution, in the presence of either 2 mM Mg(2+) or 0.5 mM MgATP and at low temperature ( approximately 0 degrees C) had one myosin head outside the backbone and one head inside. These filaments are called filaments (F). Synthetic filaments formed by slow dilution, in the presence of 4 mM MgATP at low temperature ( approximately 0 degrees C) had most of their heads inserted in the filament core. These filaments are called antifilaments (AF). These experimental results provide important new information about myosin synthetic filaments. In particular, we found that myosin heads were involved in filament assembly and that filament-filament interactions can occur via the external heads. Native filaments (NF) from rabbit psoas muscle were also studied by enzyme assays. Their structure depended on the age of the rabbit. NF from 4-month-old rabbits were three-stranded, i.e. six myosin heads per crown, two of which were inside the core and four outside. NF from 18-month-old rabbits were two-stranded (similar to F).  相似文献   

4.
1.5-Gluconolactone was shown to inhibit in a competitive manner the activity of both I- and D-forms of rabbit skeletal muscle glycogen synthase. Unlike other known inhibitors (UDP and adenyl nucleotides) the affinity of the enzyme D-form for 1.5-gluconolactone is lower than that of the I-form. The joint inhibition of glycogen synthase by UDP and 1.5-gluconolactone is characterized by positive cooperativity. It was supposed that the binding of the nucleotide part of the substrate molecule is preceded by the UDPglucose glucosyl residue interaction with the enzyme and induces a closer resemblance to the transient state. The effect of the allosteric inhibitor, ADP, on the enzyme activity is conditioned by its effect on the conformational state of UDP-glucose glucosyl residue binding site. Phosphorylation of glycogen synthase results in conformational changes in the same active site region, although the pyrimidine base binding site also seems to be involved in this process.  相似文献   

5.
Nitrous bases were shown to play an essential role in the specificity of active and adenyl nucleotide binding sites. Pyrimidine base determines the substrate specificity of rabbit skeletal muscle glycogen synthase; a crucial role in this process is ascribed to the lactam fragment of the pyrimidine cycle. The 2-oxo group was also shown to be involved in substrate binding. The adenyl nucleotide binding site interacts only with 6-aminopurine derivatives. A negative interaction was found between the enzyme active center and the adenyl nucleotide binding site.  相似文献   

6.
Electrophoretic heterogeneity of glycosynthetase I from rabbit skeletal muscles is observed. Multiple glycosynthetase forms are separated in sucrose density gradient, their molecular weights are estimated. The existence of the enzyme as an equilibrium system of oligomeric forms, capable of reversible association-dissociation, is demonstrated. Dissociating effect of ATP, high pH values (11--12) and high ionic strength (2 M KCl) on oligomers of glycogen synthetase I is found to take place. Different activity of oligomers of different association degree is observed.  相似文献   

7.
8.
Up to 80% of the dihydropyridine receptor is solubilized from transverse tubules of rabbit skeletal muscle by 3-[(3-cholamidopropyl)-dimethylammonium]-2-oxy-1-propane sulfonate (CHAPSO). The DHP receptor is an oligomeric complex made up of two subunits with molecular masses of 160 and 53 kD as shown by DHP-Sepharose affinity chromatography and SDS gel electrophoresis of specifically eluted proteins. The reduction of disulfide bridges of the 160 kD subunit is accompanied by a decrease in its apparent molecular mass up to 125 kD. A method is proposed for preparative isolation of the DHP receptor which is based on ion-exchange chromatography and WGA-Sepharose chromatography. Individual subunits of DHP receptor were isolated by Sepharose 4B gel filtration in SDS; their amino acid composition was determined. Both the 160 and 53 kD subunits are N-glycosylated, and the oligosaccharide portions make up to 7.5% and 6.6%, respectively.  相似文献   

9.
Glycogen synthetase I from rabbit skeletal muscles was studied by electrophoresis in polyacrylamide gel in the presence of sodium dodecyl sulfate. The presence of glycogen in the preparation prevented the destruction of the quaternary structure of the enzyme. In order to separate glycogen synthetase I from glycogen, alpha-amylase from saliva, pig pancrease and bacterial amyloglucosidase were used. The subunit composition of the total preparation and that of the individual glycogen synthetase forms separated ultracentrifugally in the sucrose density gradient, were shown to be identical. The molecular weight of the minimal subunit of glycogen synthetase I from rabbit skeletal muscles was shown to be 36,000. A comparison of the subunit composition of the enzyme preparations stored in the presence and in the absence of phenylmethylsulfanylfluoride did not show that the preparation possesses proteolytic activity.  相似文献   

10.
It is shown that myosin of human skeletal muscles is more difficult for purification from the actin and nucleic acids admixtures. It is also characterized by a less yield and a pronounced lability to denaturant effects as compared to rabbit myosin. The ATPase activity of human myosin is 1.5-2 times as low and the cholinesterase one--tens of times as high as those of rabbit myosin. A relative content of LC3 (LC--light chains) is approximately twice as low and that of LC1--as high as in rabbit myosin. It is supposed that the found differences in the properties may be explained to a considerable extent by a different ratio of certain light chains contained in the investigated proteins.  相似文献   

11.
Using x-rays from synchrotron radiation, we studied diffuse scattering, sometimes together with the myosin layer lines. With an area detector, sartorius muscles and a time resolution of 150 ms, earlier results from semitendinosus muscles contracting isometrically at 6 degrees C (Lowy, J., and F. R. Poulsen. 1987. J. Mol. Biol. 194:595-600) were confirmed and extended. Evidence from intensity changes both in the diffuse scattering and in the myosin layer lines showed that the majority of the heads become disordered at peak tetanic tension. With a linear detector and a time resolution of 5 ms, it was found that during tension rise the intensity increase of the diffuse scattering (which amounted maximally to 12% recorded near the meridian) runs approximately 20 ms ahead of the mechanical change, comparing half-completion times. This suggests that an appreciable number of heads change orientation before peak tension is reached. In quick release experiments the diffuse scattering intensity showed very little change. Recorded near the meridian during rapid shortening, however, it decreased progressively with a half-time of approximately 40 ms. This change amounted to approximately 35% of that observed during the initial tension rise. We interpret this to indicate that during rapid shortening a certain number of heads assume an orientation characteristic of the relaxed state. Viewed in the context of the behavior of the first myosin layer line and the (1, 1) equatorial reflection in similar experiments (Huxley, H. E., M. Kress, A. R. Faruqi, and R. M. Simmons. 1988.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The release of Ca2+ from vesicles of heavy sarcoplasmic reticulum after its accumulation due to hydrolysis of ATP, GTP, CTP, UTP or ITP has been studied using Antipyrylazo III, a metal-chromic Ca-indicator. All the studied substrates of the Ca-pump provide Ca2+ accumulation inside the heavy sarcoplasmic reticulum vesicles, the spontaneous Ca2+ outflux rate being different for different nucleoside triphosphates. It is only ATP that provides Ca-(caffeine)-induced Ca2+ release, however AMP, ADP, beta, gamma-methylene-ATP induce Ca2+ ejection in the presence of nonadenylic nucleotides. The ruthenium red (10(-7M) inhibits the induced ejection of Ca2+ from vesicles of the heavy sarcoplasmic reticulum, but does not prevent the spontaneous release of Ca2+ in the same concentrations. A conclusion is drawn that besides Ca-channels sensitive to Ca2+ and caffeine in the presence of ATP (or to AMP, ADP, beta, gamma-methylene-ATP in the presence of nonadenylic nucleotides) and possessing high sensitivity to the ruthenium red there is another pathway for Ca2+ in the heavy reticulum membranes along which its spontaneous release occurs after the substrate exhaustion. It is supposed that this release is provided by the presence of the Ca-ATPase protein.  相似文献   

13.
The effect of flavin mononucleotide (FMN) on the activity of the I- and D-forms of rabbit skeletal muscle glycogen synthase has been studied for the first time. FMN has been shown to inhibit in a noncompetitive fashion the both forms of the enzyme, the D-form being more sensitive to the effect of the inhibitor. It has been shown also that glycogen synthase has three different sites involved in the interaction with inhibitors, namely, and active site, an adenyl nucleotide binding site and a FMN binding site. FMN binding has been shown to occur mostly via the isoalloxasine ring.  相似文献   

14.
By the use of modified SDS electrophoresis in agarose-strengthened 2% polyacrylamide gels, the adaptive behavior of titin isoforms in skeletal and cardiac muscles of ground squirrels (Citellus undulatus) during hibernation was studied. The presence of two titin isoforms (short and long) with molecular weights approximately 3700 and approximately 3800 kDa in m. soleus, approximately 3400 and approximately 3600 kDa in m. psoas, approximately 3000 and approximately 3400 kDa in the left ventricle of myocardium was found. It was found that the content of the short titin isoform in the above muscles of hibernating and arousing ground squirrels is considerably lower than that of the long titin isoform. The preservation of the long titin isoform in skeletal and cardiac muscles of hibernating and arousing ground squirrels can be regarded as an evolutionarily determined adaptive mechanism favoring the survival of animal under extreme conditions without pathological consequences.  相似文献   

15.
The effect of 1.5-gluconolactone on the activity of rabbit skeletal muscle glycogen synthase I was investigated. Using statistic methods (pair regressive analysis) and computer analysis on a Robotron EC 1834 personal computer, it was found that 1.5-gluconolactone is a true competitive inhibitor of the enzyme in respect of UDP-glucose. Similar to UDP, 1.5-gluconolactone increases the Km value for UDP-glucose without affecting the V value. The Ki value for 1.5-gluconolactone is equal to 123 + 8 microM and it coincides with the Km value for UDP-glucose.  相似文献   

16.
The binding of phosphorylase kinase to thin filaments and their effects on the enzyme activity as well as the contribution of the enzyme to contractile protein phosphorylation have been studied. The data obtained suggest that the kinase binding to thin filaments is controlled by the regulatory proteins, troponin and tropomyosin. The bulk of the enzyme is bound to the F-actin-tropomyosin-troponin complex which activates the enzyme in a far greater degree than each of its constituent components. Ca2+ and ATP control the kinase binding to F-actin. ATP increases the enzyme binding 6-fold; Ca2+ decrease the S0.5 value for F-actin 5-fold. In acetone powder extracts phosphorylase kinase phosphorylates thin filament-bound phosphorylase b, troponin T and troponin I as well as 51-58 kDa and 114 kDa proteins. These results suggest that phosphorylase kinase plays a role in the mechanism of synchronization of glycogenolysis and muscle contraction rates.  相似文献   

17.
The experimental conditions favouring the association of Sepharose-bound D-glyceraldehyde-3-phosphate dehydrogenase with soluble 3-phosphoglycerate kinase were studied. Acylation of D-glyceraldehyde-3-phosphate dehydrogenase by 1.3-bisphosphoglycerate was found to be a prerequisite for the complex formation.  相似文献   

18.
The structural and functional properties of skeletal and cardiac titin are described according to the recent experimental evidence and suppositions.  相似文献   

19.
In rabbit skeletal muscle extracts the activity of phosphodiesterase practically insensitive to the increase of Ca2+ concentration from 10(-8) M up to 10(-5) M. The Ca2+-dependent protein regulator is separated from phosphodiesterase at the stage of isolation and purification. The activity of phosphodiesterase devoid of the protein regulator is inhibited by Ca2+ (10(-5)--10(-3) M). An addition of Ca2+-dependent regulator protects the enzyme against inhibition by Ca2+. The Km values for 3',5'-AMP (5 mkM) and 3',5'-GMP (13 mkM) appear to be close; however, the maximal hydrolysis rates for these nucleotides differ considerably (14,0 and 0,25--0,50 nmoles/min/mg of protein). The hydrolysis of 3',5'-AMP is increased 1,6--3,2-fold under the effect of 3',5'-GMP and that of 3',5'-GMP is increased 1,8--2,7-fold under the effect of 3',5'-AMP. Using ion-exchange chromatography it was shown that only 1% of the total activity of skeletal muscle phosphodieterase belongs to the phosphodiesterase sensitive to the activating effect of Ca2+-dependent regulator the activity of this enzymic form is increased 4--5 fold. The Ca2+-dependent regulator of skeletal muscles is inactivated under the effects of trypsin and during gel-filtration is eluted together with the Ca2+-dependent regulator from the heart. The amount of Ca2+-dependent regulator in skeletal muscles is 30 times as low as that in brain and 3 times as low as that in the heart of the rabbit.  相似文献   

20.
Phosphorylase kinase isolated from rabbit skeletal muscle contains a protein whose molecular mass as determined by polyacrylamide gel electrophoresis is 571 000 Da. The protein was found to possess a higher affinity for glycogen as compared to phosphorylase kinase and phosphorylase. The protein separated from kinase by chromatography on a DEAE-cellulose column produced during SDS electrophoresis one protein band corresponding to Mr of 95 200 Da. The above properties of the protein and the glycogen synthetase activity revealed in the presence of glucose-6-phosphate suggest that phosphorylase kinase preparations contain a hexameric form of glycogen synthetase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号