首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
1. Allochthonous detritus is the major source of energy in forested streams, but less is known of the importance of terrestrial subsidies to open‐canopy streams. Here, we used stable isotope analysis to assess the importance of allochthonous versus autochthonous energy sources to invertebrate shredders in four open‐canopy streams in Sweden. Shredders and potential food sources were analysed at both open sites and those with deciduous trees in the riparian zone. 2. Mixing models showed that allochthonous coarse particulate organic matter was the most important energy source to shredders at both the open and wooded sites, suggesting that terrestrial subsidies may be an important process in open‐canopy streams, just as they are in forested streams. 3. However, shredders at open sites had a larger proportion of biofilm in their diet than at wooded sites, indicating an ability of shredders to adjust their diet with food availability. 4. We also used the carbon and nitrogen stable isotope signatures to assess the size of the feeding niche of shredders. Feeding on both allochthonous and autochthonous sources at open sites was reflected in a larger feeding niche than at wooded sites for one of the three species analysed. There was substantial overlap of the feeding niche among shredder species, indicating a high functional redundancy within this guild.  相似文献   

3.
4.
We analyzed the food source of riparian spiders in a middle reach of the Chikuma River, Japan, by using stable isotope ratios of carbon and nitrogen. The carbon and nitrogen isotope ratios of attached algae were higher than those of terrestrial plants, reflecting a large carbon isotope fractionation in terrestrial plants and a difference in nitrogen sources. The carbon isotope ratios of terrestrial insects were similar to those of the terrestrial plants, and the ratios of aquatic insects were scattered between those of the terrestrial plants and the attached algae. The carbon and nitrogen isotope ratios of spiders were intermediate between those of the terrestrial and aquatic insects. The two-source mixing model using the carbon isotope ratio showed that the web-building spiders utilized both the terrestrial and aquatic insects, with large contribution by the aquatic insects (54% on average with a maximum of 92% among spiders taxa collected in each zone), in the riparian area in a middle reach of the Chikuma River. The large contribution of the aquatic insects was often observed for the spiders collected near river channel (<5m) and for the horizontal web-building spiders collected across the riparian area. The relative contribution of the aquatic insects might be related with food availability (distance from river channel) and spiders food preference reflected in their web types (horizontal vs. vertical). Our results showed that organic materials produced in the river channel, in the riparian area, and in the terrestrial area surrounding the riparian area were mixed at the carnivorous trophic level of riparian spiders.  相似文献   

5.
6.
The diets and trophic interactions among Weddell, crabeater, Ross, and leopard seals in the eastern Ross Sea, Antarctica, were investigated by the use of stable isotope techniques during the 1999–2000 summer seasons. The 13C and 15N values in seal serum clearly distinguished the three Antarctic pack-ice seal species at different trophic positions (Weddell>Ross>crabeater). These patterns appeared to reflect a close linkage to their known foraging ecology and diving behaviors, and agreed well with their presumed dietary diversity. The more enriched 13C and 15N values in male Weddell seals than those in females suggested differences in foraging preferences between them. Significant differences in 15N were also found among different age groups of Weddell seals. A strong correlation between the C:N ratios and serum cholesterol was probably due to extremely high cholesterol levels in phocids. Comparisons of isotope data with harbor seals revealed distinct differences between Antarctic phocids and the northern seal species.  相似文献   

7.
Antarctic soil ecosystems are amongst the most simplified on Earth and include only few soil arthropod species, generally believed to be opportunistic omnivorous feeders. Using stable isotopic analyses, we investigated the food choice of two common and widely distributed Antarctic soil arthropod species using natural abundances of 13C and 15N and an isotope labelling study. In the laboratory we fed the isotomid springtail Cryptopygus antarcticus six potential food sources (one algal species, two lichens and three mosses). Our results showed a clear preference for algae and lichens rather than mosses. These results were corroborated by field data comparing stable isotope signatures from the most dominant cryptogams and soil arthropods (C. antarcticus and the oribatid mite Alaskozetes antarcticus). Thus, for the first time in an Antarctic study, we present clear evidence that these soil arthropods show selectivity in their choice of food and have a preference for algae and lichens above mosses.  相似文献   

8.
9.
Structure of tropical river food webs revealed by stable isotope ratios   总被引:7,自引:0,他引:7  
Fish assemblages in tropical river food webs are characterized by high taxonomic diversity, diverse foraging modes, omnivory, and an abundance of detritivores. Feeding links are complex and modified by hydrologic seasonality and system productivity. These properties make it difficult to generalize about feeding relationships and to identify dominant linkages of energy flow. We analyzed the stable carbon and nitrogen isotope ratios of 276 fishes and other food web components living in four Venezuelan rivers that differed in basal food resources to determine 1) whether fish trophic guilds integrated food resources in a predictable fashion, thereby providing similar trophic resolution as individual species, 2) whether food chain length differed with system productivity, and 3) how omnivory and detritivory influenced trophic structure within these food webs. Fishes were grouped into four trophic guilds (herbivores, detritivores/algivores, omnivores, piscivores) based on literature reports and external morphological characteristics. Results of discriminant function analyses showed that isotope data were effective at reclassifying individual fish into their pre-identified trophic category. Nutrient-poor, black-water rivers showed greater compartmentalization in isotope values than more productive rivers, leading to greater reclassification success. In three out of four food webs, omnivores were more often misclassified than other trophic groups, reflecting the diverse food sources they assimilated. When fish δ15N values were used to estimate species position in the trophic hierarchy, top piscivores in nutrient-poor rivers had higher trophic positions than those in more productive rivers. This was in contrast to our expectation that productive systems would promote longer food chains. Although isotope ratios could not resolve species-level feeding pathways, they did reveal how top consumers integrate isotopic variability occurring lower in the food web. Top piscivores, regardless of species, had carbon and nitrogen profiles less variable than other trophic groups.  相似文献   

10.
《Acta Oecologica》1999,20(4):463-469
The aim of this study is to assess the major sources of organic matter for macroconsumers in the Ria Formosa tidal lagoon. The C, S and N isotopic natural abundances of abundant primary producers of particulate organic matter (POM) and Mytilus galloprovincialis muscle and digestive gland were analysed. The chlorophyll a (Chl a), the suspended particulate matter (SPM) and the POM were measured along the Faro-Olhão channel. The range of variation of stable isotope values among primary producers in Ria Formosa was low suggesting difficulties in the assessment of their relative contribution to higher levels of the food web. Chl a values decreased from outer station to inner station, while SPM and POM values increased. The multiple isotope approach illustrates that POM values along the Faro-Olhão channel, may result from a mixture of upland plants, benthic plants and phytoplankton. Mussel values indicate a selective diet of benthic macrophytes and phytoplankton, with the relative proportions of each determined by the location in the channel. During winters, the upland plants may be an important source of organic matter in the inner lagoon while phytoplankton was an important source of organic matter in the outer lagoon.  相似文献   

11.
1.  The detrimental impacts of invasive, non-native species on islands are widely acknowledged and it is often best to act rapidly against such species, even where uncertainty exists over the best way to proceed. If management actions are evaluated and refined, using information learnt from the biology of culled animals, this uncertainty can be gradually reduced, increasing the likelihood of a successful outcome.
2.  American mink Neovison vison carcasses were collected as part of an eradication campaign on several islands of the Outer Hebrides, Scotland, and stable isotope analysis was used to describe ecological variation in this invasive non-native predator.
3.  Isotope profiles from individual mink whiskers demonstrated how behaviour at a population level changed markedly over time. As the eradication campaign progressed, mink increased their reliance on marine food sources and focused their activity on the coastline. Stable isotope analyses also demonstrated sex-related changes in foraging and ranging behaviour in relation to food resource availability on the two main island complexes.
4.   Synthesis and applications. Our findings contribute to the refinement of a campaign to extend the successful eradication of mink from Uist and Harris, to the whole of the Outer Hebrides archipelago, UK. They also highlight the potential for stable isotope approaches to provide more detailed postmortem information that can inform adaptive management of wildlife populations for conservation objectives.  相似文献   

12.
Fungi are ubiquitous in the ocean and hypothesized to be important members of marine ecosystems, but their roles in the marine carbon cycle are poorly understood. Here, we use 13C DNA stable isotope probing coupled with phylogenetic analyses to investigate carbon assimilation within diverse communities of planktonic and benthic fungi in the Benguela Upwelling System (Namibia). Across the redox stratified water column and in the underlying sediments, assimilation of 13C-labeled carbon from diatom extracellular polymeric substances (13C-dEPS) by fungi correlated with the expression of fungal genes encoding carbohydrate-active enzymes. Phylogenetic analysis of genes from 13C-labeled metagenomes revealed saprotrophic lineages related to the facultative yeast Malassezia were the main fungal foragers of pelagic dEPS. In contrast, fungi living in the underlying sulfidic sediments assimilated more 13C-labeled carbon from chemosynthetic bacteria compared to dEPS. This coincided with a unique seafloor fungal community and dissolved organic matter composition compared to the water column, and a 100-fold increased fungal abundance within the subseafloor sulfide-nitrate transition zone. The subseafloor fungi feeding on 13C-labeled chemolithoautotrophs under anoxic conditions were affiliated with Chytridiomycota and Mucoromycota that encode cellulolytic and proteolytic enzymes, revealing polysaccharide and protein-degrading fungi that can anaerobically decompose chemosynthetic necromass. These subseafloor fungi, therefore, appear to be specialized in organic matter that is produced in the sediments. Our findings reveal that the phylogenetic diversity of fungi across redox stratified marine ecosystems translates into functionally relevant mechanisms helping to structure carbon flow from primary producers in marine microbiomes from the surface ocean to the subseafloor.Subject terms: Microbial ecology, Fungal ecology, Microbiome, Biogeochemistry  相似文献   

13.
1. We made an empirical test of a recent proposal that feeding niche widths might be determined as variance of stable isotope values. We determined δ 13C and δ 15N values of perch ( Perca fluviatilis ), roach ( Rutilus rutilus ) and their prey from a biomanipulated lake, when the mass removal of fish led to reduced inter- and intra-specific competition and increases in zooplankton abundance and body size.
2. After the first fish removals, both perch and roach mean δ 13C values decreased and mean δ 15N values increased, indicating a greater diet contribution from pelagic sources.
3. Variances of both δ 13C and δ 15N values first increased in both fish populations, indicating a wider food spectrum and expanded feeding niche width following reduced fish abundances. Observed changes were greater for the perch population than for roach.
4. In 2006, the perch population abruptly changed its diet so that most individuals were primarily consuming the abundant young-of-the-year fish, and this was reflected in significantly reduced variances of both δ 13C and δ 15N values.
5. We conclude that isotopic variance can indeed reflect changes in feeding niche width and offers a promising way to study such general ecological concepts.  相似文献   

14.
A forest-stream trophic link was examined by stable carbon isotope analyses which evaluated the relationship of aquatic insects emerging from a stream to the diets of web-building spiders. Spiders, aquatic and terrestrial prey, and basal resources of forest and stream food webs were collected in a deciduous forest along a Japanese headwater stream during May and July 2001. The 13C analyses suggested that riparian tetragnathid spiders relied on aquatic insects and that the monthly variation of such dependence is partly associated with the seasonal dynamics of aquatic insect abundance in the riparian forest. Similarly, linyphiid spiders in the riparian forest exhibited 13C values similar to aquatic prey in May. However, their 13C values were close to terrestrial prey in both riparian and upland (150m away from the stream) forests during June to July, suggesting the seasonal incorporation of stream-derived carbon into their tissue. In contrast, araneid spiders relied on terrestrial prey in both riparian and upland forests throughout the study period. These isotopic results were consistent with a previous study that reported seasonal variation in the aquatic prey contribution to total web contents for each spider group in this forest, implying that spiders assimilate trapped prey and that aquatic insect flux indeed contributes to the energetics of riparian tetragnathid and linyphiid spiders.  相似文献   

15.
16.
1. In the current ecological classification of termites, four feeding groups (I–IV) are recognised, corresponding to a gradient of decomposition from sound wood to highly mineralised organic matter in the soil. 2. Nitrogen stable isotopes (hereafter δ15N) were used to place termites from French Guiana rainforests along a wood‐soil decomposition gradient, to test (i) whether feeding group assignation based on morphological characters was accurate and actually represented diet specialisation thresholds, and (ii) to what extent the dietary specialization of species is explained by phylogeny (phylogenetic autocorrelation). 3. δ15N values vary over a range of 13‰, suggesting that diet diversification contributes to the high species diversity in French Guiana. δ15N values span a similar interval in all Termitidae subfamilies. Ranges of different subfamilies broadly overlap, although each of them diversified preferentially on one side of the wood‐soil decomposition gradient. Congeneric species share similar feeding habits, whereas distant species tend to feed on distinct substrates. 4. Feeding groups did not completely match stable isotope data: there was no discontinuity between Groups III and IV, and no correlation between anatomical criteria used to distinguish these groups and δ15N values. Nor was there any consistent difference in δ15N values between wood feeders of the families Rhinotermitidae (Group I) and Termitidae (Group II). We also suggest that species feeding outside the wood‐soil gradient should be distinguished for their peculiar feeding requirements.  相似文献   

17.
Methanogenic processes can be quantified by stable carbon isotopes, if necessary modeling parameters, especially fractionation factors, are known. Anoxically incubated rice roots are a model system with a dynamic microbial community and thus suitable to investigate principal geochemical processes in anoxic natural systems. Here we applied an inhibitor of acetoclastic methanogenesis (methyl fluoride), calculated the thermodynamics of the involved processes, and analyzed the carbon stable isotope signatures of CO2, CH4, propionate, acetate and the methyl carbon of acetate to characterize the carbon flow during anaerobic degradation of rice roots to the final products CO2 and CH4. Methyl fluoride inhibited acetoclastic methanogenesis and thus allowed to quantify the fractionation factor of CH4 production from H2/CO2. Since our model system was not affected by H2 gradients, the fractionation factor could alternatively be determined from the Gibbs free energies of hydrogenotrophic methanogenesis. The fractionation factor of acetoclastic methanogenesis was also experimentally determined. The data were used for successfully modeling the carbon flow. The model results were in agreement with the measured process data, but were sensitive to even small changes in the fractionation factor of hydrogenotrophic methanogenesis. Our study demonstrates that stable carbon isotope signatures are a proper tool to quantify carbon flow, if fractionation factors are determined precisely.  相似文献   

18.
The possibility of ecosystem boundary changes in northern Brazilian Amazonia during the Holocene period was investigated using soil organic carbon isotope ratios. Determination of past and present fluctuations of the forest-savanna boundary involved the measurement of natural 13C isotope abundance, expressed as 13C, in soil organic matter (SOM). SOM 13C analyses and radiocarbon dating of charcoal fragments were carried out on samples derived from soil profiles taken along transects perpendicular to the ecotonal boundary. SOM 13C values in the upper soil horizons appeared to be in equilibrium with the overlying vegetation types and did not point to a movement of the boundary during the last decades. However, 13C values obtained from deeper savanna and forest soil layers indicated that the vegetation type has changed in the past. In current savanna soil profiles, we observed the presence of mid-Holocene charcoals derived from forest species: fire frequency at that time was probably greater, and more extensive savanna may have resulted. Isotope data and the presence of these charcoals thus suggest that the forest-savanna boundary has shifted significantly in the recent Holocene period, forest being more extensive during the early Holocene than today. During the middle Holocene, the forest could have strongly regressed, and fires appeared, with a maximum development of the savanna vegetation. At the beginning of the late Holocene, the forest may have invaded a part of this savanna, and fires occurred again.  相似文献   

19.
The calanoid copepod Temora longicornis occurs year-round inthe southern North Sea. Owing to its limited ability to storeenergy, this species relies on a constant food supply. Thus,when the phytoplankton stock as the primary food source is lowin winter and early spring, T. longicornis needs to utilizeother food items. In this study, the feeding strategy of T.longicornis females is elucidated using a broad methodologicalapproach. From March to May 2005 we conducted weekly grazingexperiments using natural plankton (<70 µm) as foodsource. In addition, gut contents, stable isotopes (15N, 13C)and fatty acid composition of the females were analysed, aswas the natural plankton composition. Our data suggest thatfemales were omnivorous during late winter and early spring,switching to a more herbivorous feeding mode with increasingphytoplankton stock in spring. The 15N values in March/Aprilare the highest reported so far for this species, and we suggestthat they mirror the copepods' trophic level throughout ontogenesisrather than reflecting the feeding history of only the females.T. longicornis adjusted its feeding mode to ambient food conditions,utilizing a broad range of food sources. Experiments, however,revealed strong selection for cells >12.5 µm. Feedingon dinoflagellates was generally intense; diatoms were ingestedmainly in March. Thus, the grazing impact of T. longicorniscan be substantial on those taxa, which are selected for.  相似文献   

20.
During secondary succession on abandoned agricultural fields the diversity and abundance of insect communities often increases, whereas the performance and nutritional quality of early successional plants often declines. As the diversity and abundance of insects on a single plant are determined by characteristics of the environment as well as of the host plant, it is difficult to predict how insects associated with a single plant species will change during succession. We examined how plant characteristics of the early successional plant species ragwort (Jacobaea vulgaris), and the herbivores and parasitoids associated with these plants change during secondary succession. In ten grasslands that differed in time since abandonment (3–26 years), we measured the size and primary and secondary chemistry of individual ragwort plants. For each plant we also recorded the presence of herbivores in flowers, leaves and stems, and reared parasitoids from these plant parts. Ragwort plants were significantly larger but had lower nitrogen concentrations in recently abandoned sites than in older sites. Pyrrolizidine alkaloid (PA) composition varied among plants within sites but also differed significantly among sites. However, there was no relationship between the age of a site and PA composition. Even though plant size decreased with time since abandonment, the abundance of stem-boring insects and parasitoids emerging from stems significantly increased with site age. The proportion of plants with flower and leaf herbivory and the number of parasitoids emerging from flowers and leaves was not related to site age. Parasitoid diversity significantly increased with site age. The results of our study show that ragwort and insect characteristics both change during secondary succession, but that insect herbivore and parasitoid abundances are not directly related to plant size or nutritional quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号