首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cell-mediated immune response of mice against various enveloped RNA and DNA viruses expressed by immune lymphocytes from the spleen and the peripheral blood (PBL) were compared. PBL from mice of various strains infected with vaccinia virus, vesicular stomatitis virus (VSV), or lymphocytic choriomeningitis virus (LCMV) were tested on histocompatible or incompatible target cells infected with the homologous virus. PBL from immune mice showed clear H-2 restriction, but additionally, they expressed high natural killing (NK) activity on YAC-1 cells. The high NK-cytolytic activity of PBL on YAC-1 differed significantly from that expressed by splenic lymphocytes. In both lymphocyte populations lysis was detected as early as 1 day after infection; NK activity decreased in the spleen after day 4 post infection, whereas that of PBL persisted at high levels for up to 10 days after infection. Treatment of mice with anti-asialo GM1 in vivo abrogated NK activity in PBL effector cells tested in vitro. These results may explain some of the difficulties to observe MHC-restricted cytotoxic T cells in PBL from humans or primates during primary infections with virus.  相似文献   

2.
The modified vaccinia virus Ankara (MVA) strain is a candidate vector for vaccination against pathogens and tumors, due to safety concerns and the proven ability of recombinants based on this vector to trigger protection against pathogens in animals. In this study we addressed the fate of the MVA vector in BALB/c mice after intraperitoneal inoculation in comparison with that of the replication-competent Western Reserve (WR) strain by measuring levels of expression of the reporter luciferase gene, the capability to infect target tissues from the site of inoculation, and the length of time of virus persistence. We evaluated the extent of humoral and cellular immune responses induced against the virus antigens and a recombinant product (beta-galactosidase). We found that MVA infects the same target tissues as the WR strain; surprisingly, within 6 h postinoculation the levels of expression of antigens were higher in tissues from MVA-infected mice than in tissues from mice infected with wild-type virus but at later times postinoculation were 2 to 4 log units higher in tissues from WR-infected mice. In spite of this, antibodies and cellular immune responses to viral vector antigens were considerably lower in MVA-inoculated mice than in WR virus-inoculated mice. In contrast, the cellular immune response to a foreign antigen expressed from MVA was similar to and even higher than that triggered by the recombinant WR virus. MVA elicited a Th1 type of immune response, and the main proinflammatory cytokines induced were interleukin-6 and tumor necrosis factor alpha. Our findings have defined the biological characteristics of MVA infection in tissues and the immune parameters activated in the course of virus infection. These results are of significance with respect to optimal use of MVA as a vaccine.  相似文献   

3.

Background

A subset of the virus-specific CD8+ cytotoxic T lymphocytes (CTL) isolated from the lungs of mice infected with human respiratory syncytial virus (RSV) is impaired in the ability to secrete interferon γ (IFNγ), a measure of functionality. It was suggested that the impairment specifically suppressed the host cellular immune response, a finding that could help explain the ability of RSV to re-infect throughout life.

Results

To determine whether this effect is dependent on the virus, the route of infection, or the type of infection (respiratory, disseminated, or localized dermal), we compared the CTL responses in mice following intranasal (IN) infection with RSV or influenza virus or IN or intradermal (ID) infection with vaccinia virus expressing an RSV CTL antigen. The impairment was observed in the lungs after IN infection with RSV, influenza or vaccinia virus, and after a localized ID infection with vaccinia virus. In contrast, we observed a much higher percentage of IFNγ secreting CD8+ lymphocytes in the spleens of infected mice in every case.

Conclusion

The decreased functionality of CD8+ CTL is specific to the lungs and is not dependent on the specific virus, viral antigen, or route of infection.  相似文献   

4.
The feasibility of using viral constructs expressing cytokine genes to influence the course of bacterial infection was tested in mice. The mice were first infected with vaccinia or fowlpox viruses expressing the cytokine of interest, then challenged with the facultative intracellular bacterial pathogen Listeria monocytogenes. The course of infection was assessed by subsequent bacterial counts. Expression of IFN-gamma or TNF was protective. Vaccinia virus was more efficient at delivering IFN-gamma-mediated protection than was fowlpox virus, which is unable to proliferate in mammalian cells. The effect of vaccinia-IFN-gamma was more apparent in the liver, where vaccinia proliferates to high titres (> 109), than in the spleen, where only 103 vaccinia were isolated. Vaccinia virus expressing IL-4 exacerbated infection. Interleukin-4 exacerbation was T cell independent and was reflected in the failure of macrophage activation, possibly due to suppression of NK cells, which are a source of IFN-gamma early in infection. The clear indication of protection by some cytokines in this prophylactic model appears to justify further study of the therapeutic effects of cytokine-expressing viruses in chronic bacterial infections, especially where a cytokine defect is suspected.  相似文献   

5.
Live recombinants based on attenuated modified vaccinia virus Ankara (MVA) are potential vaccine candidates against a broad spectrum of diseases and tumors. To better understand the efficacy of MVA as a human vaccine, we analyzed by confocal and electron microscopy approaches MVA-induced morphological changes and morphogenetic stages during infection of human HeLa cells in comparison to other strains of vaccinia virus (VV): the wild-type Western Reserve (WR), Ankara, and the New York City Board of Health (NYCBH) strains. Confocal microscopy studies revealed that MVA infection alters the cytoskeleton producing elongated cells (bipolar), which do not form the characteristic actin tails. Few virions are detected in the projections connecting neighboring cells. In contrast, cells infected with the WR, Ankara, and NYCBH strains exhibit a stellated (multipolar) or rounded morphology with actin tails. A detailed transmission electron microscopy analysis of HeLa cells infected with MVA showed important differences in fine ultrastructure and amounts of the viral intermediates compared to cells infected with the other VV strains. In HeLa cells infected with MVA, the most abundant viral forms are intracellular immature virus, with few intermediates reaching the intracellular mature virus (IMV) form, at various stages of maturation, which exhibit a more rounded shape than IMVs from cells infected with the other VV strains. The "IMVs" from MVA-infected cells have an abnormal internal structure ("atypical" viruses) with potential alterations in the core-envelope interactions and are unable to significantly acquire the additional double envelope to render intracellular envelope virus. The presence of potential cell-associated envelope virus is very scarce. Our findings revealed that MVA in human cells promotes characteristic morphological changes to the cells and is able to reach the IMV stage, but these virions were not structurally normal and the subsequent steps in the morphogenetic pathway are blocked.  相似文献   

6.
Human T-cell leukemia virus type I (HTLV-I) can infect a variety of human cell types, but only T lymphocytes are efficiently immortalized after HTLV-I infection. This study reports an attempt to infect and to immortalize NK cells with HTLV-I. Co-cultivation of freshly isolated NK cells with a HTLV-I-producing T cell line did not result in NK cell infection. However, NK cells activated with an anti-CD16 mAb and co-cultivated with a HTLV-I-producing T cell line were reproducibly infected by HTLV-I. HTLV-I infection was documented in NK cell lines and clones by the detection of defective integrated provirus by both Southern blot and polymerase chain reaction analysis. Although HTLV-I-infected NK cells produced viral proteins, they did not produce infectious viral particles. HTLV-I-infected NK cells were phenotypically indistinguishable from their uninfected counterparts (CD16+, CD2+, CD56+, CD3-). They also retained the ability to mediate both natural and antibody-dependent cell cytotoxicity. The IL-2-dependent proliferation of HTLV-I-infected NK cells was significantly greater than that of uninfected NK cells. The doubling time of this infected population was reduced from 9 days to 3 days, and the overall survival of the culture in the absence of restimulation was extended from 5 wk to 18 wk. Unlike T lymphocytes, HTLV-I-infected NK cells were not immortal, implying a fundamental difference between these two lymphocyte populations.  相似文献   

7.

Introduction

XMRV is a gammaretrovirus that was thought to be associated with prostate cancer (PC) and chronic fatigue syndrome (CFS) in humans until recently. The virus is culturable in various cells of human origin like the lymphocytes, NK cells, neuronal cells, and prostate cell lines. MicroRNAs (miRNA), which regulate gene expression, were so far not identified in cells infected with XMRV in culture.

Methods

Two prostate cell lines (LNCaP and DU145) and two primary cells, Peripheral Blood Lymphocytes [PBL] and Monocyte-derived Macrophages [MDM] were infected with XMRV. Total mRNA was extracted from mock- and virus-infected cells at 6, 24 and 48 hours post infection and evaluated for microRNA profile in a microarray.

Results

MicroRNA expression profiles of XMRV-infected continuous prostate cancer cell lines differ from that of virus-infected primary cells (PBL and MDMs). miR-193a-3p and miRPlus-E1245 observed to be specific to XMRV infection in all 4 cell types. While miR-193a-3p levels were down regulated miRPlus-E1245 on the other hand exhibited varied expression profile between the 4 cell types.

Discussion

The present study clearly demonstrates that cellular microRNAs are expressed during XMRV infection of human cells and this is the first report demonstrating the regulation of miR193a-3p and miRPlus-E1245 during XMRV infection in four different human cell types.  相似文献   

8.

Background

Highly pathogenic avian influenza (HPAI) H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease.

Aim

To study influenza A (H5N1) virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease.

Methods

We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces.

Results

We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our data suggests that viremia, secondary to, for example, gastro-intestinal infection, can potentially lead to infection of the lung. HPAI H5N1 virus was a more potent inducer of cytokines (e.g. IP-10, RANTES, IL-6) in comparison to H1N1 virus in alveolar epithelial cells, and these virus-induced chemokines were secreted onto both the apical and basolateral aspects of the polarized alveolar epithelium.

Conclusion

The predilection of viruses for different routes of entry and egress from the infected cell is important in understanding the pathogenesis of influenza H5N1 infection and may help unravel the pathogenesis of human H5N1 disease.  相似文献   

9.
Natural Killer (NK) cells are important in the immune response to a number of viruses; however, the mechanisms used by NK cells to discriminate between healthy and virus-infected cells are only beginning to be understood. Infection with vaccinia virus provokes a marked increase in the susceptibility of target cells to lysis by NK cells, and we show that recognition of the changes in the target cell induced by vaccinia virus infection depends on the natural cytotoxicity receptors NKp30, NKp44, and NKp46. Vaccinia virus infection does not induce expression of ligands for the activating NKG2D receptor, nor does downregulation of major histocompatibility complex class I molecules appear to be of critical importance for altered target cell susceptibility to NK cell lysis. The increased susceptibility to lysis by NK cells triggered upon poxvirus infection depends on a viral gene, or genes, transcribed early in the viral life cycle and present in multiple distinct orthopoxviruses. The more general implications of these data for the processes of innate immune recognition are discussed.  相似文献   

10.
11.
Langerhans cells (LCs) are antigen-presenting cells in the skin that play sentinel roles in host immune defense by secreting proinflammatory molecules and activating T cells. Here we studied the interaction of vaccinia virus with XS52 cells, a murine epidermis-derived dendritic cell line that serves as a surrogate model for LCs. We found that vaccinia virus productively infects XS52 cells, yet this infection displays an atypical response to anti-poxvirus agents. Whereas adenosine N1-oxide blocked virus production and viral protein synthesis during a synchronous infection, cytosine arabinoside had no effect at concentrations sufficient to prevent virus replication in BSC40 monkey kidney cells. Vaccinia virus infection of XS52 cells not only failed to elicit the production of various cytokines, including tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta), IL-6, IL-10, IL-12 p40, alpha interferon (IFN-alpha), and IFN-gamma, it actively inhibited the production of proinflammatory cytokines TNF-alpha and IL-6 by XS52 cells in response to exogenous lipopolysaccharide (LPS) or poly(I:C). Infection with a vaccinia virus mutant lacking the E3L gene resulted in TNF-alpha secretion in the absence of applied stimuli. Infection of XS52 cells or BSC40 cells with the DeltaE3L virus, but not wild-type vaccinia virus, triggered proteolytic decay of IkappaBalpha. These results suggest a novel role for the E3L protein as an antagonist of the NF-kappaB signaling pathway. DeltaE3L-infected XS52 cells secreted higher levels of TNF-alpha and IL-6 in response to LPS and poly(I:C) than did cells infected with the wild-type virus. XS52 cells were productively infected by a vaccinia virus mutant lacking the K1L gene. DeltaK1L-infected cells secreted higher levels of TNF-alpha and IL-6 in response to LPS than wild-type virus-infected cells. Vaccinia virus infection of primary LCs harvested from mouse epidermis was nonpermissive, although a viral reporter protein was expressed in the infected LCs. Vaccinia virus infection of primary LCs strongly inhibited their capacity for antigen-specific activation of T cells. Our results highlight suppression of the skin immune response as a feature of orthopoxvirus infection.  相似文献   

12.
为了构建改良型痘苗病毒安卡拉株表达系统可删除筛选标记的双表达穿梭载体,利用Cre/LoxP DNA重组系统以及本实验室表达Cre酶的BHK-21细胞系 (BHK-Cre),以大肠杆菌黄嘌呤-鸟嘌呤磷酸核糖转移酶 (Eco gpt) 为筛选标记构建可删除筛选标记的双表达穿梭载体pLR-gpt。将Eco gpt 基因以及调控其表达的启动子基因置于2个同向的LoxP位点之间,2个独立的多克隆位点位于2个LoxP位点之外,最终获得的重组病毒可以在BHK-Cre细胞系上删除筛选标记Eco gpt。为了验证系统的有效  相似文献   

13.

Background

Modified vaccinia virus Ankara (MVA), a highly attenuated strain of vaccinia virus, has been used as vaccine delivery vector in preclinical and clinical studies against infectious diseases and malignancies. Here, we investigated whether an MVA which does not encode any antigen (Ag) could be exploited as adjuvant per se.

Methodology/Principal Findings

We showed that dendritic cells infected in vitro with non-recombinant (nr) MVA expressed maturation and activation markers and were able to efficiently present exogenously pulsed Ag to T cells. In contrast to the dominant T helper (Th) 1 biased responses elicited against Ags produced by recombinant MVA vectors, the use of nrMVA as adjuvant for the co-administered soluble Ags resulted in a long lasting mixed Th1/Th2 responses.

Conclusions/Significance

These findings open new ways to potentiate and modulate the immune responses to vaccine Ags depending on whether they are co-administered with MVA or encoded by recombinant viruses.  相似文献   

14.
The ability of vaccinia virus to replicate in HeLa cells which had been previously infected with adenovirus type 2 (Ad2) was studied in order to gain insight into the mechanism by which adenovirus inhibits the expression of host cell functions. Vaccinia virus was employed in these studies because it replicates in the cytoplasm, whereas Ad2 replicates in the nucleus of the cell. It was found that vaccinia deoxyribonucleic acid (DNA) synthesis is greatly inhibited in adeno-preinfected HeLa cells provided that vaccinia superinfection does not occur before 18 hr after adeno infection. The inhibition of vaccinia DNA synthesis can be traced to an inhibition of vaccinia protein synthesis and viral uncoating. Vaccinia ribonucleic acid (RNA) synthesis is not inhibited in adeno-preinfected cells, but the vaccinia RNA does not become associated with polysomes.  相似文献   

15.
Human papillomavirus infection is associated with cervical cancer. The E6 and E7 papillomavirus proteins are normally required for the maintenance of the malignant phenotype. Expression of these proteins in infected cells is negatively regulated by the binding of the papilloma E2 protein to the long terminal control region of the papilloma virus genome. The E2 protein can also promote cell arrest and apoptosis in HeLa cells. Therefore, it is clear that this protein has the potential of inhibiting the malignant phenotype. Because, anticancer vaccines based in vaccinia viruses have recently been shown to be an effective way to treat and to eradicate tumors, a recombinant vaccinia virus expressing the E2 gene of bovine papilloma virus (Modified Vaccinia Ankara, MVA E2) was created, to explore further the antitumor potential of the E2 protein. A series of rabbits, containing the VX2 transplantable papilloma carcinoma, were treated with MVA E2. An impressive tumor regression, up to a complete disappearance of tumor, was observed in most animals (80%). In contrast, very little or no regression was detected if the normal vaccinia virus was used. Lymphocytes isolated from MVA E2-treated rabbits did not show cytotoxic activity against tumor cells. However, in these animals a humoral immune response against tumor cells was observed. These antitumor antibodies were capable of activating macrophages to destroy tumor cells efficiently. These data indicate that injecting the MVA E2 recombinant vaccinia virus directly into the tumor results in a robust and long-lasting tumor regression. Data also suggest that antitumor antibodies are responsible, at least in part, for eliminating tumors by activating macrophage antibody-dependent cytotoxicity. Received: 23 November 1999 / Accepted: 12 April 2000  相似文献   

16.
Modified vaccinia virus Ankara (MVA) is a highly attenuated vaccinia virus that is under consideration as an alternative to the conventional smallpox vaccine Dryvax. MVA was attenuated by extensive passage of vaccinia virus Ankara in chicken embryo fibroblasts. Several immunomodulatory genes and genes that influence host range are deleted or mutated, and replication is aborted in the late stage of infection in most nonavian cells. The effect of these mutations on immunogenicity is not well understood. Since the structural genes appear to be intact in MVA, it is hypothesized that critical targets for antibody neutralization have been retained. To test this, we probed microarrays of the Western Reserve (WR) proteome with sera from humans and macaques after MVA and Dryvax vaccination. As most protein sequences of MVA are 97 to 99% identical to those of other vaccinia virus strains, extensive binding cross-reactivity is expected, except for those deleted or truncated. Despite different hosts and immunization regimens, the MVA and Dryvax antibody profiles were broadly similar, with antibodies against membrane and core proteins being the best conserved. The responses to nonstructural proteins were less well conserved, although these are not expected to influence virus neutralization. The broadest antibody response was obtained for hyperimmune rabbits with WR, which is pathogenic in rabbits. These data indicate that, despite the mutations and deletions in MVA, its overall immunogenicity is broadly comparable to that of Dryvax, particularly at the level of antibodies to membrane proteins. The work supports other information suggesting that MVA may be a useful alternative to Dryvax.  相似文献   

17.

Background

Vaccinia viruses have been used as a model for viral disease and as a protective live vaccine.

Methodology and Principal Findings

We investigated the immunogenicity of an attenuated strain of vaccinia virus engineered to inactivate the N1L gene (vGK5). Using the intranasal route, this recombinant virus was 2 logs less virulent compared to the wildtype VACV-WR. Infection by the intranasal, intraperitoneal, and tail scarification routes resulted in the robust induction of cytolytic virus-specific CD8 T cells in the spleens and the lungs. VACV-specific antibodies were also detected in the sera of mice infected 3–5 months prior with the attenuated vGK5 virus. Finally, mice immunized with vGK5 were significantly protected when challenged with a lethal dose of VACV-WR.

Conclusions

These results indicate that the attenuated vGK5 virus protects against subsequent infection and suggest that the N1L protein limits the strength of the early antiviral CD8 T cell response following respiratory infection.  相似文献   

18.
构建了含有pGHcDNA的重组痘苗病毒,用ELISA证明该重组病毒在被感染的h143细胞中,可表达出猪生长激素并将之分泌到培养基中,表达量约为1.05μg/10 ̄6细胞(24h)。用定位免疫化学法进一步证明该病毒可感染小鼠并在小鼠体内表达pGHcDNA。同时还构建了含双拷贝pGHcDNA的重组痘苗病毒,并证明其pGH表达量比单拷贝重组病毒有明显提高,约为1.50μg/10 ̄6细胞(24h)。  相似文献   

19.
Vaccinia virus has a broad range of infectivity in many cell lines and animals. Although it is known that the vaccinia mature virus binds to cell surface glycosaminoglycans and extracellular matrix proteins, whether additional cellular receptors are required for virus entry remains unclear. Our previous studies showed that the vaccinia mature virus enters through lipid rafts, suggesting the involvement of raft-associated cellular proteins. Here we demonstrate that one lipid raft-associated protein, integrin β1, is important for vaccinia mature virus entry into HeLa cells. Vaccinia virus associates with integrin β1 in lipid rafts on the cell surface, and the knockdown of integrin β1 in HeLa cells reduces vaccinia mature virus entry. Additionally, vaccinia mature virus infection is reduced in a mouse cell line, GD25, that is deficient in integrin β1 expression. Vaccinia mature virus infection triggers the activation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling, and the treatment of cells with inhibitors to block P13K activation reduces virus entry in an integrin β1-dependent manner, suggesting that integrin β1-mediates PI3K/Akt activation induced by vaccinia virus and that this signaling pathway is essential for virus endocytosis. The inhibition of integrin β1-mediated cell adhesion results in a reduction of vaccinia virus entry and the disruption of focal adhesion and PI3K/Akt activation. In summary, our results show that the binding of vaccinia mature virus to cells mimics the outside-in activation process of integrin functions to facilitate vaccinia virus entry into HeLa cells.  相似文献   

20.
Among reactions of innate immunity, resistance of human peripheral blood leukocytes (PBL) to viral infection seems important. The purpose of our study was to find, which of the subpopulations of PBL is the most responsible for the innate antiviral immunity of these cells. The innate immunity was measured by using the direct method of infection of leukocytes with vesicular stomatitis virus (VSV). The lack of VSV replication by infected leukocytes (0-1 log TCID50) was taken as an indicator for complete immunity; a low level of VSV (2-3 log) for partial immunity; and high VSV titer (more than 4 log) for no immunity. The resistance/innate immunity of whole PBL and subpopulations such as: adherent cells, fractions enriched in lymphocytes T, and lymphocytes B (separated on column with nylon wool), NK(+) and NK(-) (separated by microbeads activated cell sorting MACS) differ from each other. All fractions express higher resistance/innate immunity than the whole PBL. NK(+) cells were found the most resistant fraction of PBL to VSV infection. The results indicate that among the leukocytes in PBL the regulation mechanisms of innate immunity exist. The study on the mechanism of innate immunity regulation as well as the role of NK in innate immunity of PBL must be continued.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号