首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pollen formation is a complex process that is strictly controlled by genetic factors. Although many novel mitochondrial genes have been implicated in the dysfunction of mitochondrial enzymes and the cytoplasmic male sterility (CMS), there is little empirical evidence to show that CMS-related genes actually result in the dysfunction of enzyme and little is known about the regulatory mechanisms of the aberrant mitochondrial enzymes in male sterility in CMS lines. Here, we report the characterization of a novel mitochondrial gene, Ψatp6-2, which is hypothesized to play a role in male sterility in pepper. Using virus-induced gene silencing (VIGS), we observed that silencing the atp6-2 gene in the maintainer line resulted in an increase in ATP hydrolysis activity of the mitochondrial F1Fo-ATP synthase along with pollen abortion, while silencing the truncated Ψatp6-2 gene in the CMS line resulted in an inhibition of ATP hydrolysis activity and restoration of fertility. Altered ATP hydrolysis also affected the tolerance of the gene-silenced plants to abiotic stresses. Localization experiments showed that premature ATP hydrolysis occurred at the tetrad stage of pollen development in the CMS line, but no ATPase activity was observed in the microspores at the later stage. These results suggest that the Ψatp6-2 gene causes the alteration in ATP hydrolysis activity of the mitochondrial F1Fo-ATP synthase during pollen development, which eventually leads to male sterility in pepper.  相似文献   

2.
Cytoplasmic male sterility (CMS) is a maternally inherited trait that causes dysfunctions in pollen and anther development. CMS is caused by the interaction between nuclear and mitochondrial genomes. A product of a CMS-causing gene encoded by the mitochondrial genome affects mitochondrial function and the regulation of nuclear genes, leading to male sterility. In contrast, the RESTORER OF FERTILITY gene (Rf gene) in the nuclear genome suppresses the expression of the CMS-causing gene and restores male fertility. An alloplasmic CMS line is often bred as a result of nuclear substitution, which causes the removal of functional Rf genes and allows the expression of a CMS-causing gene in mitochondria. The CMS/Rf system is an excellent model for understanding the genetic interactions and cooperative functions of mitochondrial and nuclear genomes in plants, and is also an agronomically important trait for hybrid seed production. In this review article, pollen and anther phenotypes of CMS, CMS-associated mitochondrial genes, Rf genes, and the mechanism that causes pollen abortion and its agronomical application for rice are described.  相似文献   

3.
4.
Molecular markers, coxII SCAR, atp6-2 SCAR and accD-U, have been used for marker-assisted selection of cytoplasmic male sterility (CMS) in pepper. However, the presence of these markers at the sub-stoichiometric level in maintainer lines affects the reliable selection of male sterile (S-) cytoplasm. This study aimed to develop a new CMS-specific molecular marker, SCAR130, for reliable identification of S-cytoplasm in pepper, while the new and three previous molecular markers were used to determine the cytoplasm types of pepper lines. Based on mitochondrial genome sequence related amplified polymorphism (SRAP) analysis of the CMS lines and the maintainer lines, SCAR130 was developed from a 10-bp deletion at the SRAP primer binding site in the CMS line (130 bp) compared with that in the maintainer line (140 bp). S-cytoplasm could be unambiguously selected from the pepper lines by the different length of the marker bands. Application of the four molecular markers to various pepper lines revealed that SCAR130 is more reliable than the other three previous markers, orf507, ψatp6-2 and accD-U. Homology alignment with BLAST showed that the marker was located between trnE and trnS in the Nicotiana tabacum mitochondrial genome. Furthermore, expression of the marker-linked gene was significantly higher at the pollen abortive stage in the CMS line (HW203A) than in the maintainer line, which indicated that the marker was closely related to male sterility. Hence, factors other than orf507 and ψatp6-2 may exist for the regulation of male sterility in pepper.  相似文献   

5.
6.
7.
The review deals with cytoplasmic male sterility (CMS) in higher plants: impairment of the pollen formation resulting from interaction of the nuclear and mitochondrial genomes. The information on the known nuclear restorer-of-fertility genes and their effects on the expression of CMS-associated mitochondrial loci are considered. Heteroplasmy of mtDNA in plants and its potential association with CMS inheritance, as well as possible mechanisms of the observed direct and reverse association between altered expression of the CMS-inducing mitochondrial genome, metabolic defects, and pollen sterility are discussed.  相似文献   

8.
9.
10.
A small number of stress-responsive genes, such as those of the mitochondrial F1F0-ATP synthase complex, are encoded by both the nucleus and mitochondria. The regulatory mechanism of these joint products is mysterious. The expression of 6-kDa subunit (MtATP6), a relatively uncharacterized nucleus-encoded subunit of F0 part, was measured during salinity stress in salt-tolerant and salt-sensitive cultivated wheat genotypes, as well as in the wild wheat genotypes, Triticum and Aegilops using qRT-PCR. The MtATP6 expression was suddenly induced 3 h after NaCl treatment in all genotypes, indicating an early inducible stress-responsive behavior. Promoter analysis showed that the MtATP6 promoter includes cis-acting elements such as ABRE, MYC, MYB, GTLs, and W-boxes, suggesting a role for this gene in abscisic acid-mediated signaling, energy metabolism, and stress response. It seems that 6-kDa subunit, as an early response gene and nuclear regulatory factor, translocates to mitochondria and completes the F1F0-ATP synthase complex to enhance ATP production and maintain ion homeostasis under stress conditions. These communications between nucleus and mitochondria are required for inducing mitochondrial responses to stress pathways. Dual targeting of 6-kDa subunit may comprise as a mean of inter-organelle communication and save energy for the cell. Interestingly, MtATP6 showed higher and longer expression in the salt-tolerant wheat and the wild genotypes compared to the salt-sensitive genotype. Apparently, salt-sensitive genotypes have lower ATP production efficiency and weaker energy management than wild genotypes; a stress tolerance mechanism that has not been transferred to cultivated genotypes.  相似文献   

11.
Ogura cytoplasmic male sterility (CMS) occurs naturally in radishand has been introduced into rapeseed (Brassica napus) by protoplastfusion. As with all CMS systems, it involves a constitutivelyexpressed mitochondrial gene which induces male sterility tootherwise hermaphroditic plants (so they become females) anda nuclear gene named restorer of fertility that restores pollenproduction in plants carrying a sterility-inducing cytoplasm.A correlative approach using light and electron microscopy wasapplied to define what stages throughout development were affectedand the subcellular events leading to the abortion of the developingpollen grains upon the expression of the mitochondrial protein.Three central stages of development (tetrad, mid-microsporeand vacuolate microspore) were compared between fertile, restored,and sterile plants. At each stage observed, the pollen in fertileand restored plants had similar cellular structures and organization.The deleterious effect of the sterility protein expression startedas early as the tetrad stage. No typical mitochondria were identifiedin the tapetum at any developmental stage and in the vacuolatemicrospores of the sterile plants. In addition, some strikingultrastructural alterations of the cell's organization werealso observed compared with the normal pattern of development.The results showed that Ogu-INRA CMS was due to premature celldeath events of the tapetal cells, presumably by an autolysisprocess rather than a normal PCD, which impairs pollen developmentat the vacuolate microspore stage, in the absence of functionalmitochondria. Key words: Brassica napus, cell death, light and electron microscopy, mitochondria, plastids, pollen development, Ogu-INRA cytoplasmic male sterility, transgenic-restored plants, tapetum Received 30 September 2007; Revised 11 December 2007 Accepted 20 December 2007  相似文献   

12.
Plant mitochondrial genomes (mtDNAs) are large and undergo frequent recombination events. A common phenotype that emerges as a consequence of altered mtDNA structure is cytoplasmic-male sterility (CMS). The molecular basis for CMS remains unclear, but it seems logical that altered respiration activities would result in reduced pollen production. Analysis of tobacco (Nicotiana tabacum) mtDNAs indicated that CMS-associated loci often contain fragments of known organellar genes. These may assemble with organellar complexes and thereby interfere with normal respiratory functions. Here, we analyzed whether the expression of truncated fragments of mitochondrial genes (i.e. atp4, cox1 and rps3) may induce male sterility by limiting the biogenesis of the respiratory machinery. cDNA fragments corresponding to atp4f, cox1f and rps3f were cloned in-frame to a mitochondrial localization signal and a C-termini HA-tag under a tapetum-specific promoter and introduced to tobacco plants by Agrobacterium-mediated transformation. The constructs were then analyzed for their effect on mitochondrial activity and pollen fertility. Atp4f , Cox1f and Rps3f plants demonstrated male sterility phenotypes, which were tightly correlated with the expression of the recombinant fragments in the floral meristem. Fractionation of native organellar extracts showed that the recombinant ATP4f-HA, COX1f-HA and RPS3f-HA proteins are found in large membrane-associated particles. Analysis of the respiratory activities and protein profiles indicated that organellar complex I was altered in Atp4f, Cox1f and Rps3f plants.  相似文献   

13.
14.
15.
16.
17.
Ivanov MK  Dymshits GM 《Genetika》2007,43(4):451-468
The review deals with cytoplasmic male sterility (CMS) in higher plants: impairment of the pollen formation resulting from interaction of the nuclear and mitochondrial genomes. The information on the known nuclear restorer-of-fertility genes and their effects on the expression of CMS-associated mitochondrial loci are considered. Heteroplasmy of mtDNA in plants and its potential association with CMS inheritance, as well as possible mechanisms of the observed direct and reverse association between altered expression of the CMS-inducing mitochondrial genome, metabolic defects, and pollen sterility are discussed.  相似文献   

18.
We studied how mitochondria–nuclear interactions may give rise to cytoplasmic male sterility (CMS) in stem mustard exhibiting abnormal microsporogenesis. In this system, expression of SPL-like , the counterpart of the Arabidopsis nuclear gene SPOROCYTELESS , is specifically lost in buds of CMS plants. When mitochondrial-specific inhibitors were applied to wild-type fertile stem mustard plants, expression of SPL-like was repressed to some extent. As a consequence, the shape and vigor of pollen grains were severely affected, whereas the fertility of pistils remained unaltered. Thereby, we suggest that a probable pathway responsible for CMS in stem mustard involves mitochondrial retrograde regulation, with SPL-like as a target nuclear gene for a mitochondrial signal.  相似文献   

19.
Summary In view of accumulating evidence that cytoplasmic male sterility (CMS) in some species results from an inability to generate the high ATP/ADP ratios required for specific stages of differentiation in the reproductive cycle, a number of aspects of ATP metabolism are being examined in CMS and male fertile plants.In experiments designed to test mitochondrial efficiency in ATP export, organelles from CMS plants performed very poorly when compared with normal lines. It is proposed that although most of the molecules involved in mitochondrial ATP production are nuclear encoded, the lesions in mitochondrial (mt)DNA known to accompany the CMS phenotype may be expressed as small modifications within the architecture of the mitochondrial membrane. To detect whether such changes could affect the ADP-ATP translocator in the membrane, two sets of experiments were carried out to determine a Km for the translocator. The two methods employed were based on different precepts, but nevertheless indicated a Km for the mitochondrial translocator in CMS lines which differed dramatically from that of male fertile plants. The view that CMS in Petunia hybrida thus might result from small differences in mtDNA encoded membrane proteins is considered in the light of the cytological changes seen to accompany CMS in these plants, as well as in the context of current theories advanced to explain CMS in other species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号