首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Starch and sugar content of potato tubers are quantitative traits, which are models for the candidate gene approach for identifying the molecular basis of quantitative trait loci (QTL) in noninbred plants. Starch and sugar content are also important for the quality of processed products such as potato chips and French fries. A high content of the reducing sugars glucose and fructose results in inferior chip quality. Tuber starch content affects nutritional quality. Functional and genetic models suggest that genes encoding invertases control, among other things, tuber sugar content. The invGE/GF locus on potato chromosome IX consists of duplicated invertase genes invGE and invGF and colocalizes with cold-sweetening QTL Sug9. DNA variation at invGE/GF was analyzed in 188 tetraploid potato cultivars, which have been assessed for chip quality and tuber starch content. Two closely correlated invertase alleles, invGE-f and invGF-d, were associated with better chip quality in three breeding populations. Allele invGF-b was associated with lower tuber starch content. The potato invertase gene invGE is orthologous to the tomato invertase gene Lin5, which is causal for the fruit-sugar-yield QTL Brix9-2-5, suggesting that natural variation of sugar yield in tomato fruits and sugar content of potato tubers is controlled by functional variants of orthologous invertase genes.  相似文献   

2.
Complex characters of plants such as starch and sugar content of seeds, fruits, tubers and roots are controlled by multiple genetic and environmental factors. Understanding their molecular basis will facilitate diagnosis and combination of superior alleles in crop improvement programs (“precision breeding”). Association genetics based on candidate genes is one approach toward this goal. Tetraploid potato varieties and breeding clones related by descent were evaluated for 2 years for chip quality before and after cold storage, tuber starch content, yield and starch yield. Chip quality is inversely correlated with tuber sugar content. A total of 36 loci on 11 potato chromosomes were evaluated for natural DNA variation in 243 individuals. These loci included microsatellites and genes coding for enzymes that function in carbohydrate metabolism or transport (candidate loci). The markers were used to analyze population structure and were tested for association with the tuber quality traits. Highly significant and robust associations of markers with 1–4 traits were identified. Most frequent were associations with chip quality and tuber starch content. Alleles increasing tuber starch content improved chip quality and vice versa. With two exceptions, the most significant and robust associations (q < 0.01) were observed with DNA variants in genes encoding enzymes that function in starch and sugar metabolism or transport. Comparing linkage and linkage disequilibrium between loci provided evidence for the existence of large haplotype blocks in the breeding materials analyzed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Association mapping using DNA-based markers is a novel tool in plant genetics for the analysis of complex traits. Potato tuber yield, starch content, starch yield and chip color are complex traits of agronomic relevance, for which carbohydrate metabolism plays an important role. At the functional level, the genes and biochemical pathways involved in carbohydrate metabolism are among the best studied in plants. Quantitative traits such as tuber starch and sugar content are therefore models for association genetics in potato based on candidate genes. In an association mapping experiment conducted with a population of 243 tetraploid potato varieties and breeding clones, we previously identified associations between individual candidate gene alleles and tuber starch content, starch yield and chip quality. In the present paper, we tested 190 DNA markers at 36 loci scored in the same association mapping population for pairwise statistical epistatic interactions. Fifty marker pairs were associated mainly with tuber starch content and/or starch yield, at a cut-off value of q ≤ 0.20 for the experiment-wide false discovery rate (FDR). Thirteen marker pairs had an FDR of q ≤ 0.10. Alleles at loci encoding ribulose-bisphosphate carboxylase/oxygenase activase (Rca), sucrose phosphate synthase (Sps) and vacuolar invertase (Pain1) were most frequently involved in statistical epistatic interactions. The largest effect on tuber starch content and starch yield was observed for the paired alleles Pain1-8c and Rca-1a, explaining 9 and 10% of the total variance, respectively. The combination of these two alleles increased the means of tuber starch content and starch yield. Biological models to explain the observed statistical epistatic interactions are discussed.  相似文献   

4.
Cultivated potato (Solanum tuberosum L.) is a highly heterozygous autotetraploid crop species, and this creates challenges for traditional line development and molecular breeding. Recent availability of a single-nucleotide polymorphism (SNP) array with 8303 features and software packages for linkage and association mapping in autotetraploid species present new opportunities for the identification of genomic regions that contribute to high-value traits in cultivated potato. A biparental tetraploid potato population was evaluated across three field seasons and storage trials in order to identify quantitative trait loci (QTL) for multiple tuber traits including fried chip color after 5.5–7.2 °C storage. Tetra-allelic dosage information was used to construct a genetic linkage map that covered 1041 cM and contained 2095 SNP markers with a median marker interval of 0.4 cM. A total of 41 QTL were identified for flower color, tuber yield, tuber number per plant, tuber weight, tuber size, and chip color after various storage regimes. Moderate effect QTL for chip color at 3 months were identified that co-localized with candidate genes vacuolar invertase (VInv), invertase inhibitor (INH2), and apoplastic invertase (Inv ap -b). A separate QTL for chip color after 6 months of storage was identified in the short arm of chromosome 2, and this locus may contribute to variation in senescent sweetening resistance. QTL for tuber weight, length, and width co-localized with a known QTL for plant maturity on chromosome 5. Genome-wide association mapping using a polyploid model detected the tuber size QTL and identified a number of candidate SNPs, but was unable to detect markers significantly associated with chip color.  相似文献   

5.
6.
7.
In many plants, sucrose transporters are essential for both sucrose exports from sources and imports into sinks, indicating a function in assimilate partitioning. To investigate whether sucrose transporters can improve the yield of starch plant, potato plants (Solanum tuberosum L. cv. Désirée) were transformed with cDNAs of the rice sucrose transporter genes OsSUT5Z and OsSUT2M under the control of a tuber-specific, class-I patatin promoter. Compared to the controls, the average fructose content of OsSUT5Z transgenic tubers significantly increased. However, the content of the sugars and starch in the OsSUT2M transgenic potato tubers showed no obvious difference. Correspondingly, the average tuber yield, average number of tubers per plant and average weight of single tuber showed no significant difference in OsSUT2M transgenic tubers with controls. In the OsSUT5Z transgenic lines, the average tuber yield per plant was 1.9-fold higher than the controls, and the average number of tubers per plant increased by more than 10 tubers on average, whereas the average weight of a single tuber did not increase significantly. These results suggested that the average number of tubers per plant showed more contribution than the average weight of a single tuber to the tuber yield per plant.  相似文献   

8.
Storage of mature or developing potato tubers (Solanum tuberosum “Up-to-Date” variety) at 4 C causes a reduction in the starch content and the elevation in the level of free sugars. This phenomenon is not observed when the tubers are stored at 25 C. Changes in the morphology of cells from developing or mature tubers after storage at 4 or 25 C have been followed by electron microscopy. During all stages of the tuber development the starch granules are surrounded by a membrane derived from the plastid envelope. Storage in the cold induces disintegration of this membrane. A membrane fraction isolated from starch granules of tubers stored at 4 C has a lower buoyant density, and the electrophoretic pattern of its proteins is different from that of a similar membrane fraction obtained from tubers stored at 25 C. It is suggested that the cold-induced changes in the starch and sugar content during storage of potato tubers might be correlated with damage to the membranes surrounding the starch granules and changes in their permeability to degradative enzymes and substrates.  相似文献   

9.
10.
Sink strength of growing potato tubers is believed to be limited by sucrose metabolism and/or starch synthesis. Sucrose synthase (Susy) is most likely responsible for the entire sucrose cleavage in sink tubers, rather than invertases. To investigate the unique role of sucrose synthase with respect to sucrose metabolism and sink strength in growing potato tubers, transgenic potato plants were created expressing Susy antisense RNA corresponding to the T-type sucrose synthase isoform. Although the constitutive 35S CaMV promotor was used to drive the expression of the antisense RNA the inhibition of Susy activity was tuber-specific, indicating that independent Susy isoforms are responsible for Susy activity in different potato organs. The inhibition of Susy leads to no change in sucrose content, a strong accumulation of reducing sugars and an inhibition of starch accumulation in developing potato tubers. The increase in hexoses is paralleled by a 40-fold increase in invertase activities but no considerable changes in hexokinase activities. The reduction in starch accumulation is not due to an inhibition of the major starch biosynthetic enzymes. The changes in carbohydrate accumulation are accompanied by a decrease in total tuber dry weight and a reduction of soluble tuber proteins. The reduced protein accumulation is mainly due to a decrease in the major storage proteins patatin, the 22 kDa proteins and the proteinase inhibitors. The lowered accumulation of storage proteins is not a consequence of the availability of the free amino acid pool in potato tubers. Altogether these data are in agreement with the assumption that sucrose synthase is the major determinant of potato tuber sink strength. Contradictory to the hypothesis that the sink strength of growing potato tubers is inversely correlated with the tuber number per plant, no increase in tuber number per plant was found in Susy antisense plants.  相似文献   

11.
Marker assisted selection in crop plants   总被引:1,自引:0,他引:1  
Genetic mapping of major genes and quantitative traits loci (QTLs) for many important agricultural traits is increasing the integration of biotechnology with the conventional breeding process. Exploitation of the information derived from the map position of traits with agronomical importance and of the linked molecular markers, can be achieved through marker assisted selection (MAS) of the traits during the breeding process. However, empirical applications of this procedure have shown that the success of MAS depends upon several factors, including the genetic base of the trait, the degree of the association between the molecular marker and the target gene, the number of individuals that can be analyzed and the genetic background in which the target gene has to be transferred. MAS for simply inherited traits is gaining increasing importance in breeding programs, allowing an acceleration of the breeding process. Traits related to disease resistance to pathogens and to the quality of some crop products are offering some important examples of a possible routinary application of MAS. For more complex traits, like yield and abiotic stress tolerance, a number of constraints have determined severe limitations on an efficient utilization of MAS in plant breeding, even if there are a few successful applications in improving quantitative traits. Recent advances in genotyping technologies together with comparative and functional genomic approaches are providing useful tools for the selection of genotypes with superior agronomical performancies.  相似文献   

12.
Summary Out of 720 field-grown potato first year seedlings plants with best tuber apearance and large and medium size tubers with best shape were respectively selected. The tuber progeny of each group was evaluated in field experiments. It was demonstrated that the selection of individual tubers was very effective in the elimination of clones with irregular tuber shape and deep eyes. The tuber progeny of selected tubers was not inferior to the tuber progeny of selected plants. Possible applications of the results to practical potato breeding are discussed.  相似文献   

13.
Brassica rapa displays enormous morphological diversity, with leafy vegetables, turnips and oil crops. Turnips (Brassica rapa subsp. rapa) represent one of the morphotypes, which form tubers and can be used to study the genetics underlying storage organ formation. In the present study we investigated several characteristics of an extensive turnip collection comprising 56 accessions from both Asia (mainly Japanese origin) and Europe. Population structure was calculated using data from 280 evenly distributed SNP markers over 56 turnip accessions. We studied the anatomy of turnip tubers and measured carbohydrate composition of the mature turnip tubers of a subset of the collection. The variation in 16 leaf traits, 12 tuber traits and flowering time was evaluated in five independent experiments for the entire collection. The effect of vernalization on flowering and tuber formation was also investigated. SNP marker profiling basically divided the turnip accessions into two subpopulations, with admixture, generally corresponding with geographical origin (Europe or Asia). The enlarged turnip tuber consists of both hypocotyl and root tissue, but the proportion of the two tissues differs between accessions. The ratio of sucrose to fructose and glucose differed among accessions, while generally starch content was low. The evaluated traits segregated in both subpopulations, with leaf shape, tuber colour and number of shoots per tuber explaining most variation between the two subpopulations. Vernalization resulted in reduced flowering time and smaller tubers for the Asian turnips whereas the European turnips were less affected by vernalization.  相似文献   

14.
We have transformed potato with Nt-inhh cDNA, encoding a putative vacuolar homolog of a tobacco cell wall invertase inhibitor, under the control of the CaMV 35S promoter. In transgenic tubers, cold-induced hexose accumulation was reduced by up to 75%, without any effect on potato tuber yield. Processing quality of tubers was greatly improved without changing starch quantity or quality, an important prerequisite for the biotechnological use of Nt-inhh for potato transformation.  相似文献   

15.
Changes in carbon flow and sink/source activities can affect floral, architectural, and reproductive traits of plants. In potato, overexpression (OE) of the purple acid phosphatase 2 of Arabidopsis (AtPAP2) resulted in earlier flowering, faster growth rate, increased tubers and tuber starch content, and higher photosynthesis rate. There was a significant change in sucrose, glucose and fructose levels in leaves, phloem and sink biomass of the OE lines, consistent with an increased expression of sucrose transporter 1 (StSUT1). Furthermore, the expression levels and enzyme activity of sucrose-phosphate synthase (SPS) were also significantly increased in the OE lines. These findings strongly suggest that higher carbon supply from the source and improved sink strength can improve potato tuber yield.  相似文献   

16.

Key message

Potatoes are highly heterozygous and the conventional breeding of superior germplasm is challenging, but use of a combination of MAS and EBVs can accelerate genetic gain.

Abstract

Cultivated potatoes are highly heterozygous due to their outbreeding nature, and suffer acute inbreeding depression. Modern potato cultivars also exhibit tetrasomic inheritance. Due to this genetic heterogeneity, the large number of target traits and the specific requirements of commercial cultivars, potato breeding is challenging. A conventional breeding strategy applies phenotypic recurrent selection over a number of generations, a process which can take over 10 years. Recently, major advances in genetics and molecular biology have provided breeders with molecular tools to accelerate gains for some traits. Marker-assisted selection (MAS) can be effectively used for the identification of major genes and quantitative trait loci that exhibit large effects. There are also a number of complex traits of interest, such as yield, that are influenced by a large number of genes of individual small effect where MAS will be difficult to deploy. Progeny testing and the use of pedigree in the analysis can provide effective identification of the superior genetic factors that underpin these complex traits. Recently, it has been shown that estimated breeding values (EBVs) can be developed for complex potato traits. Using a combination of MAS and EBVs for simple and complex traits can lead to a significant reduction in the length of the breeding cycle for the identification of superior germplasm.  相似文献   

17.
Two decades of investigations on maize resistance to Mediterranean corn borer (Sesamia nonagrioides Lefebvre; MCB) have shown that breeding for increased resistance to stem tunnelling by MCB often resulted in reduced yield because significant genetic correlation between both traits exists in some backgrounds. Unlike phenotypic selection, marker‐assisted selection (MAS) could differentiate markers linked only to one trait from those linked simultaneously to yield potential and susceptibility to the pest. In the current study, the suitability of MAS for improving resistance to stem tunnelling without adverse effects on yield has been tested. The unfavourable genetic relationship between yield potential and susceptibility could be overcome using MAS. Gains obtained using MAS were weak, because genetic variance explained by the quantitative trait loci (QTL) was low but results encourage us to persevere in using marker information for simultaneous improvement of resistance and yield especially if genome‐wide approaches are applied. Approaches to detect QTL are widely used, but studies on the suitability of markers linked to QTL for performing MAS have been mostly neglected.  相似文献   

18.
19.

Key message

Nineteen tuber quality traits in potato were phenotyped in 205 cultivars and 299 breeder clones. Association analysis using 3364 AFLP loci and 653 SSR-alleles identified QTL for these traits.

Abstract

Two association mapping panels were analysed for marker–trait associations to identify quantitative trait loci (QTL). The first panel comprised 205 historical and contemporary tetraploid potato cultivars that were phenotyped in field trials at two locations with two replicates (the academic panel). The second panel consisted of 299 potato cultivars and included recent breeds obtained from five Dutch potato breeding companies and reference cultivars (the industrial panel). Phenotypic data for the second panel were collected during subsequent clonal selection generations at the individual breeding companies. QTL were identified for 19 agro-morphological and quality traits. Two association mapping models were used: a baseline model without, and a more advanced model with correction for population structure and genetic relatedness. Correction for population structure and genetic relatedness was performed with a kinship matrix estimated from marker information. The detected QTL partly not only confirmed previous studies, e.g. for tuber shape and frying colour, but also new QTL were found like for after baking darkening and enzymatic browning. Pleiotropic effects could be discerned for several QTL.  相似文献   

20.

Key message

Genomic prediction models for starch content and chipping quality show promising results, suggesting that genomic selection is a feasible breeding strategy in tetraploid potato.

Abstract

Genomic selection uses genome-wide molecular markers to predict performance of individuals and allows selections in the absence of direct phenotyping. It is regarded as a useful tool to accelerate genetic gain in breeding programs, and is becoming increasingly viable for crops as genotyping costs continue to fall. In this study, we have generated genomic prediction models for starch content and chipping quality in tetraploid potato to facilitate varietal development. Chipping quality was evaluated as the colour of a potato chip after frying following cold induced sweetening. We used genotyping-by-sequencing to genotype 762 offspring, derived from a population generated from biparental crosses of 18 tetraploid parents. Additionally, 74 breeding clones were genotyped, representing a test panel for model validation. We generated genomic prediction models from 171,859 single-nucleotide polymorphisms to calculate genomic estimated breeding values. Cross-validated prediction correlations of 0.56 and 0.73 were obtained within the training population for starch content and chipping quality, respectively, while correlations were lower when predicting performance in the test panel, at 0.30–0.31 and 0.42–0.43, respectively. Predictions in the test panel were slightly improved when including representatives from the test panel in the training population but worsened when preceded by marker selection. Our results suggest that genomic prediction is feasible, however, the extremely high allelic diversity of tetraploid potato necessitates large training populations to efficiently capture the genetic diversity of elite potato germplasm and enable accurate prediction across the entire spectrum of elite potatoes. Nonetheless, our results demonstrate that GS is a promising breeding strategy for tetraploid potato.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号