首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gibberellin Induced Changes in Diffusible Auxins from Savoy Cabbage   总被引:1,自引:0,他引:1  
Diffusates from apices of young plants of savoy cabbage treated with gibberellie acid (GA) and apices of control plants have been examined with respect to their content of Indole auxins. Three indole Compounds were detected and identified on the basis of their chromatographic characteristics in several systems. These compounds were: glucoubrassicin, indole-3-acetic acid (IAA) and indole-3-acetonitrile (IAN). An effect of GA on the total auxin activity of the diffusate was noted 90 hours after treatment, while an increase in stem height occurred 48 hours later. This increase in auxin effect of the entire diffusates was shown bv chromogenic development and bioassay of chromatograms of diffusates to be a result of an increase in level of the IAA content. A concomitant decrease in I the glucobrassicin content was indicated. Since GA was found to have no effect on the enzymatic conversion of tryptophan or tryptamine to IAA, it is proposed that the effect of GA is on the conversion of glucobrassicin to IAA.  相似文献   

2.
The plant-growth regulators, indole-3-carboxylic acids, were introduced into N-acyl ethanolamines, and a series of N-acyl O-indolylalkyl ethanolamines were prepared. Their biological activities to regulate rape hypocotyl elongation, cucumber cotyledon expansion and common wheat coleoptile growth were tested. The results indicate that the title compounds inhibited rape hypocotyl elongation, especially the indole-3-propionic acid derivatives, whose bioactivity was better than that of indole-3-acetic acid.  相似文献   

3.
The distribution of immunoassayable xanthoxin (XA), abscisic acid (ABA) and indole-3-acetic acid (IAA) in all parts of sunflower ( Helianthus annuus L.) seedlings was determined. During the course of phototropic curvature, including the lag phase (5 min), the distribution of these growth regulators was analyzed in the illuminated and shaded side of the hypocotyl, as well as in the peripheral and central tissues. All three growth regulators showed no detectable asymmetries between the illuminated and shaded hypocotyl halves during the lag phase and early phototropic curvature. Also, no indication for an exchange of XA, ABA or IAA between the peripheral and central tissues was observed. Partial removal of the peripheral cell layers revealed that changes in the growth properties of this tissue, preferentially at the illuminated side of the hypocotyl, are required for the phototropic reaction. Complete removal of the peripheral cell layers abolishes the phototropic response. In dark-incubated, green sunflower seedlings, the loss of sensitivity to phototropic stimulation is correlated with decreasing levels of IAA immunoreactivity, whereas no changes in the levels of ABA- and XA immunoreactivity were recorded. The findings are discussed with respect to the involvement of ABA, XA and IAA in phototropic reactions of green dicotyledonous shoots.  相似文献   

4.
J. M. Franssen  J. Bruinsma 《Planta》1981,151(4):365-370
For phototropic curvature of a green sunflower seedling, only the hypocotyl has to be illuminated; the tip and cotyledons are not involved in stimulus perception. The etiolated seedling is phototropically insensitive, illumination of only the hypocotyl renders it sensitive. It is concluded that the photoreceptor is located within the responding organ. In curving seedlings, the endogenous indoleacetic acid (IAA) remains evenly distributed. However, the inhibitor, xanthoxin (Xa), accumulates on the illuminated side. The degree of phototropic response is generally related to the concentration of Xa. The amount of phototropic curvature is independent of the rate of elongation growth, the former can be changed without affecting the latter, and vice versa. The data conflict with the Cholodny-Went theory, whereas they support the hypothesis of Blaauw that the phototropic reaction is caused by the local accumulation of a growth-inhibiting substance on the irradiated side.Abbreviations CCC chlormequat, (2-chloroethyl)trimethylammonium chloride - GA3 gibberellic acid - IAA indole-3-acetic acid - Xa xanthoxin  相似文献   

5.
The performance of herbivorous insects is greatly affected by host chemical defenses and nutritional quality. Some herbivores have developed the ability to manipulate plant defenses via signaling pathways. It is currently unclear, however, whether a herbivore can benefit by simultaneously reducing plant defenses and enhancing plant nutritional quality. Here, we show that the better performance of the whitefly Bemisia tabaci Middle East‐Asia Minor 1 (MEAM1; formerly the “B” biotype) than Mediterranean (MED; formerly the “Q” biotype) on cabbage is associated with a suppression of glucosinolate (GS) content and an increase in amino acid supply in MEAM1‐infested cabbage compared with MED‐infested cabbage. MEAM1 had higher survival, higher fecundity, higher intrinsic rate of increase (rm), a longer life span, and a shorter developmental time than MED on cabbage plants. Amino acid content was higher in cabbage infested with MEAM1 than MED. Although infestation by either biotype decreased the levels of total GS, aliphatic GS, glucoiberin, sinigrin, glucobrassicin, and 4OH‐glucobrassicin, and the expression of related genes in cabbage, MED infestation increased the levels of 4ME‐glucobrassicin, neoglucobrassicin, progoitrin, and glucoraphanin. The GS content and expression of GS‐related genes were higher in cabbage infested with MED than with MEAM1. Our results suggest that MEAM1 performs better than MED on cabbage by manipulating host defenses and nutritional quality.  相似文献   

6.
Temperature passively affects biological processes involved in plant growth. Therefore, it is challenging to study the dedicated temperature signalling pathways that orchestrate thermomorphogenesis, a suite of elongation growth-based adaptations that enhance leaf-cooling capacity. We screened a chemical library for compounds that restored hypocotyl elongation in the pif4-2–deficient mutant background at warm temperature conditions in Arabidopsis thaliana to identify modulators of thermomorphogenesis. The small aromatic compound ‘Heatin’, containing 1-iminomethyl-2-naphthol as a pharmacophore, was selected as an enhancer of elongation growth. We show that ARABIDOPSIS ALDEHYDE OXIDASES redundantly contribute to Heatin-mediated hypocotyl elongation. Following a chemical proteomics approach, the members of the NITRILASE1-subfamily of auxin biosynthesis enzymes were identified among the molecular targets of Heatin. Our data reveal that nitrilases are involved in promotion of hypocotyl elongation in response to high temperature and Heatin-mediated hypocotyl elongation requires the NITRILASE1-subfamily members, NIT1 and NIT2. Heatin inhibits NIT1-subfamily enzymatic activity in vitro and the application of Heatin accordingly results in the accumulation of NIT1-subfamily substrate indole-3-acetonitrile in vivo. However, levels of the NIT1-subfamily product, bioactive auxin (indole-3-acetic acid), were also significantly increased. It is likely that the stimulation of hypocotyl elongation by Heatin might be independent of its observed interaction with NITRILASE1-subfamily members. However, nitrilases may contribute to the Heatin response by stimulating indole-3-acetic acid biosynthesis in an indirect way. Heatin and its functional analogues present novel chemical entities for studying auxin biology.  相似文献   

7.
We examined the physiological effects of brassinosteroids (BRs) on early growth of Arabidopsis. Brassinazole (Brz), a BR biosynthesis inhibitor, was used to elucidate the significance of endogenous BRs. It inhibited growth of roots, hypocotyls, and cotyledonous leaf blades dose-dependently and independent of light conditions. This fact suggests that endogenous BRs are necessary for normal growth of individual organs of Arabidopsis in both photomorphogenetic and skotomorphogenetic programs. Exogenous brassinolide (BL) promoted hypocotyl elongation remarkably in light-grown seedlings. Cytological observation disclosed that BL-induced hypocotyl elongation was achieved through cell enlargement rather than cell division. Furthermore, a serial experiment with hormone inhibitors showed that BL induced hypocotyl elongation not through gibberellin and auxin actions. However, a synergistic relationship of BL with gibberellin A3 (GA3) and indole-3-acetic acid (IAA) was observed on elongation growth in light-grown hypocotyls, even though gibberellins have been reported to be additive to BR action in other plants. Taken together, our results show that BRs play an important role in the juvenile growth of Arabidopsis; moreover, BRs act on light-grown hypocotyl elongation independent of, but cooperatively with, gibberellins and auxin.  相似文献   

8.
Lau OL  Murr DP  Yang SF 《Plant physiology》1974,54(2):182-185
Auxin-induced ethylene production by mung bean (Phaseolus mungo L.) hypocotyl segments was markedly inhibited by 2,4-dinitrophenol regardless of whether or not kinetin was present. Uptake of indoleacetic acid-2-14C was also inhibited in the presence of 2,4-dinitrophenol. Segments treated only with indoleacetic acid rapidly converted indoleacetic acid into indole-3-acetylaspartic acid with time whereas kinetin suppressed indoleacetic acid conjugation. Formation of indole-3-acetylaspartic acid was significantly reduced when 2,4-dinitrophenol was present. The suppression of indoleacetic acid conjugation by kinetin and 2,4-dinitrophenol appeared to be additive, and the free indoleacetic acid level in segments treated with 2,4-dinitrophenol in the presence of indoleacetic acid or indoleacetic acid plus kinetin was remarkably higher than in corresponding segments which received no 2,4-dinitrophenol.  相似文献   

9.
Unilateral application of indole-3-acetic acid (IAA) in a lanolin base to hypocotyls of partially etiolated seedlings of wild-type Arabidopsis thaliana induced growth curvature in a dose-dependent manner. The effects of IAA in concentrations from 1 to 1000 microM were studied, with maximum IAA-induced curvature at 100 microM. Three IAA-insensitive mutants were isolated and are all in the same locus, massugu1 (msg1). They did not undergo hypocotyl growth curvature at any of the IAA concentrations tested. msg1 is recessive and is located on chromosome 5. msg 1 hypocotyl growth is resistant to 2,4-dichlorophenoxyacetic acid (2,4-D), but the roots are as sensitive to 2,4-D as the wild type. Growth of the hypocotyl was inhibited to essentially the same extent as the wild type by 6-benzylaminopurine, abscisic acid, and 1-aminocyclopropane-1-carboxylate, an ethylene precursor. The msg1 leaves were also resistant to 2,4-D-induced chlorosis. The gravitropic response of the msg1 hypocotyl takes much more time to initiate and achieve the wild-type degree of curvature, whereas the msg1 roots responded normally to gravity. The mature plants and the etiolated seedlings of msg1 were generally wild type in appearance, except that their rosette leaves were either epinastic or hyponastic. msg1 is the first auxin-insensitive mutant in which it effects are mostly restricted to the hypocotyl and leaf, and msg1 also appears to be auxin specific.  相似文献   

10.
Went's classical experiment on the diffusion of auxin activity from unilaterally illuminated oat coleoptile tips (Went 1928), was repeated as precisely as possible. In agreement with Went's data with theAvena curvature assay, the agar blocks from the illuminated side of oat (Avena sativa L. cv. Victory) coleoptile tips had, on an average, 38% of the auxin activity of those from the shaded side. However, determination of the absolute amounts of indole-3-acetic acid (IAA) in the agar blocks, using a physicochemical assay following purification, showed that the IAA was evenly distributed in the blocks from the illuminated and shaded sides. In the blocks from the shaded and dark-control halves the amounts of IAA were 2.5 times higher than the auxin activity measured by theAvena curvature test, and in those from the illuminated half even 7 times higher. Chromatography of the diffusates prior to theAvena curvature test demonstrated that the amounts of two growth inhibitors, especially of the more polar one, were significantly higher in the agar blocks from the illuminated side than in those from the shaded side and the dark control. These results show that the basic experiment from which the Cholodny-Went theory was derived, does not justify this theory. The data rather indicate that phototropism is caused by the light-induced, local accumulation of growth inhibitors against a background of even auxin distribution, the diffusion of auxin being unaffected.Abbreviation IAA indole-3-acetic acid  相似文献   

11.
The dependence of morphogenetic processes in the formation of vegetative and generative organs in spring oilseed rape and barley on exogenously applied physiological analogues of auxin: 2,4-D (2,4-dichlorphenoxyacetic acid), NAA (naphthalene-1-acetic acid), TA-12 (1-[2-chloroethoxycarbonyl-methyl]-4-naphthalenesulfonic acid calcium salt) and TA-14 (1-[2-dimethylaminoethoxicarbonylmethyl]naphtalene chlormethylate) were investigated. The experiments were performed with hypocotyl tissue cultures of oilseed rape and barley microspores in vitro. The auxin analogues applied revealed differences of morphogenetic competence in dedifferentiation-redifferentiation processes that occurred in oilseed rape cultures. TA-12 and TA-14 applied together with NAA and BA (6-benzylaminopurine) caused more intensive callus growth in comparison with 2,4-D. Rhizogenesis was induced when 2,4-D was substituted by TA-12. Compound TA-14, unlike TA-12, facilitated the appearance and development of cotyledons in callus tissues. Hower the compounds TA-12 and TA-14 have no positive effect in monocot plant — barly anther culture for callogenesis and regeneration in comparison to indole-3-acetic acid (IAA). TA-14 and TA-12 showed similar but not identical auxin properties and demonstrated high efficiency as modifiers of rape-dicot plant growth and morphogenesis.  相似文献   

12.
Summary Callus derived from the winter annual desert plant Anastatica hiërochuntica was grown on different media, Murashige and Skoog (1962) medium giving the best results. Large amounts of lignified xylem elements were formed resulting in an extremely hard tissue. The growth responses to different auxins, cytokinins and abscisic acid were investigated. When salts (high Na+, Ca2+ and Cl--contents) as they can be found in aqueous extracts of desert soils from a natural A. hiëerochuntica habitat were added to Abou-Mandour (1977) or MS-media, growth of callus was inhibited drastically. In the presence of abscisic acid, however, original growth was completely restored. In salt free control media on the other hand, ABA proved to be inhibitory. Drought stress caused a decrease of both cytokinins and indoleacetic acid in the callus while ABA levels were increased, but by far not as distinct as in intact plants. Proline level was not affected by stress.Abbreviations ABA abscisic acid - AM Abou-Mandour-medium - BAP benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - DHZR dihydroxyzeatinriboside - DW dry weight - ELISA enzyme linked immuno sorbent assay - FW freshweight - IAA indole-3-acetic acid - NAA 1-naphthaleneacetic acid - IBA indole-3-butyric acid - IPA isopentenyladenosine - Kin kinetin - MS Murashige and Skoog-medium  相似文献   

13.
Brassinosteroid, an analogue of brassinolide, (BR) (2α, 3α, 22β, 23β-tetrahydroxy-24β-methyl-B-homo-7-oxa-5α-cholestan-6-one), was tested in conjunction with indole-3-acetic acid (IAA), naphthaleneacetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), indole-3-butyric acid (IBA), indole-3-propionic acid (IPA), indole-3-pyruvic acid (IPyA), indole-3-aldehyde (IAld), indole-3-carbinol (ICB) or tryptophan (TRP) for its effects on ethylene production by etiolated mung bean (Vigna radiata (L.) Rwilcz cv. Berken) hypocotyl segements. The enhancement of ethylene production due to BR was greatest in conjunction with 1 μM IBA, 2,4-D, IAA, or NAA (these increases were 2580, 2070, 890, and 300%, respectively). When increasing concentrations of IBA, 2,4-D, IAA, or NAA were used, there was a decrease in the percentage stimulation by BR. Both IPyA and IPA had different optimal concentrations than the other auxins tested. Their BR-enhanced maximum percentage stimulations (1430 and 1580%) were greatest with 5 μM IPya and 10 μM IPA, respectively. There was a marked reduction in the percentage stimulation by BR with either 100 μM IPyA or IPA. The inactive indoles (IAld, ICB, or TRP) did not synergize with BR at any of the concentrations tested. Four hours following treatment those segments in contact with 1 μM BR with or without the addition of 10 μM IAA began to show a stimulation in ethylene production above the control and this stimulation became greater over the following 20 h. It was necessary for BR to be in continual contact with the tissue to have a stimulatory effect on auxin-induced ethylene production. When segments excised from greater distances below the hypocotyl hook, were treated with either IAA alone or in combination with BR, there was a decrease in ethylene production with increasing distance. There was no effect of hypocotyl length on BR stimulation of auxin-induced ethylene production; however, there was a definite decrease in ethylene production when IAA was applied alone.  相似文献   

14.
Soybean is an important oilseed crop grown globally. However, two examples of environmental stresses that drastically regulate soybean growth are low light and high-temperature. Emerging evidence suggests a possible interconnection between these two environmental stimuli. Low light and high-temperature as individual factors have been reported to regulate plant hypocotyl elongation. However, their interactive signal effect on soybean growth and development remains largely unclear. Here, we report that gibberellins (GAs) and auxin are required for soybean hypocotyl elongation under low light and high-temperature interaction. Our analysis indicated that low light and high-temperature interaction enhanced the regulation of soybean hypocotyl elongation and that the endogenous GA3, GA7, indole-3-acetic acid (IAA), and indole-3-pyruvate (IPA) contents significantly increased. Again, analysis of the effect of exogenous phytohormones and biosynthesis inhibitors treatments showed that exogenous GA, IAA, and paclobutrazol (PAC), 2, 3, 5,-triiodobenzoic acid (TIBA) treatments significantly regulated soybean seedlings growth under low light and high-temperature interaction. Further qRT-PCR analysis showed that the expression level of GA biosynthesis pathway genes (GmGA3ox1, GmGA3ox2 and GmGA3) and auxin biosynthesis pathway genes (GmYUCCA3, GmYUCCA5 and GmYUCCA7) significantly increased under (i) low light and high-temperature interaction and (ii) exogenous GA and IAA treatments. Altogether, these observations support the hypothesis that gibberellins and auxin regulate soybean hypocotyl elongation under low light and high-temperature stress interaction.  相似文献   

15.
The first steps in the biosynthesis of glucosinolates and indole-3-acetic acid (IAA) in oilseed rape (Brassica napus L.) and Chinese cabbage (Brassica campestris ssp. pekinensis) involve the formation of aldoximes. In rape the formation of aldoximes from chain-extended amino acids, for aromatic and aliphatic glucosinolate biosynthesis, is catalysed by microsomal flavin-containing monooxygenases. The formation of indole-3-aldoxime from l-tryptophan, the potential precursor of both indole-3-acetic acid and indolyl-glucosinolates, is catalysed by several microsomal peroxidases. The biosynthesis of glucosinolates and indole-3-acetic acid was shown to be under developmental control in oilseed rape and Chinese cabbage. No monooxygenase activities were detected in cotyledons or old leaves of either species. The highest monooxygenase activities were found in young expanding leaves; as the leaves reached full expansion and matured the activities decreased rapidly. The indole-aldoxime-forming activity was found in all of the tissues analysed, but there was also a clear decrease in foliar activity with maturity in leaves of rape and Chinese cabbage. Partial characterisation of the Chinese cabbage monooxygenases showed that they have essentially identical properties to the previously characterised rape enzymes; they are not cytochrome P450-type enzymes, but resemble flavin-containing monooxygenases. No monooxygenase inhibitors were detected in microsomes prepared from either cotyledons or old leaves.Abbreviations DHMet dihomomethionine - FMO flavin-containing monooxygenase - HPhe homophenylalanine - IAA indole-3-acetic acid - l-Phe l-phenylalanine - l-Trp l-tryptophan - MO monooxygenase - IAALD indole-3-acetaldehyde - IAOX indole-3-aldoxime - THMet trihomomethionine  相似文献   

16.
Overexpression of the IAGLU gene from maize (ZmIAAGLU) in Arabidopsis thaliana, under the control of the CaMV 35S promoter, inhibited root but not hypocotyl growth of seedlings in four different transgenic lines. Although hypocotyl growth of seedlings and inflorescence growth of mature plants was not affected, the leaves of mature plants were smaller and more curled as compared to wild-type and empty vector transformed plants. The rosette diameter in transgenic lines with higher ZmIAGLU expression was also smaller compared to the wild type. Free indole-3-acetic acid (IAA) levels in the transgenic plants were comparable to the wild type, even though a decrease in free IAA levels might be expected from overexpression of an IAA-conjugate–forming enzyme. IAA-glucose levels, however, were increased in transgenic lines compared to the wild type, indicating that the ZmIAGLU gene product is active in these plants. In addition, three different 35SZmIAGLU lines showed less inhibition of root growth when cultivated on increasing concentrations of IAA but not indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D). Feeding IAA to transgenic lines resulted in increased IAA-glucose synthesis, whereas the levels of IAA-aspartate and IAA-glutamine formed were reduced compared to the wild type. Our results show that IAA homeostasis can be altered by heterologous overexpression of a conjugate-forming gene from maize.  相似文献   

17.
An efficient protocol for spinach (Spinacia oleracea L.) plant regeneration from hypocotyl and root segments was established. When the sub-apical hypocotyl and tip-free root segments were cultured on Murashige & Skoog (1962)-based medium containing high concentrations of indole-3-acetic acid (85.62 M) and gibberellic acid (100 M), more than 75% and 90% of the hypocotyl and root explants, respectively, formed shoots. After elongation, more than 92% of the shoots rooted on medium supplemented with 2.85–5.71 M of indole-3-acetic acid. More than 70% of rooted plantlets survived in soil and were fertile. Significant interactions between growth regulator combinations, explant types and environmental conditions on shoot initiation, development and rooting were discussed.Abbreviations BA benzyladenine - BM Murashige & Skoog basal medium - B5 Gamborg et al. medium (1968) - 2,4-d 2,4-dichlorophenoxyacetic acid - 2ip isopentenyladenine - GA3 gibberellic acid - IAA indole-3-acetic acid - MS Murashige & Skoog medium (1962) - NAA naphthaleneacetic acid - HS hypocotyl segments - RSS root segments of seedlings - RSV foot segments of in vitro plantlets  相似文献   

18.
The kinetics of redistribution of endogenous indole-3-acetic acid, cis-abscisic acid and gibberellic acid (+gibberellin A7) in gravistimulated plant organs were followed by immunoassay, during the latent period and the phase of gravitropic curvature. Whereas in maize coleoptile tips, endogenous indole-3-acetic acid accumulated in the lower half of the organ (ratio 65:35, in favour of the lower half) before bending occurred, it was not possible to detect any significant lateral asymmetry of any of the growth regulators assayed in gravitropically reacting root tips of Zea mays L. and Vicia faba L. nor in hypocotyls of Helianthus annus L. Also, no indication was obtained for an exchange of growth regulators between peripheral and central cell layers of the sunflower hypocotyl. Evidence is presented that changes in the properties of the epidermal or subepidermal cell layers located in the lower half of the horizontally placed sunflower hypocotyl are largely responsible for the gravitropic reaction. An alteration in the subcellular compartmentation of IAA may be involved in this process.  相似文献   

19.
In this study we investigated the role of indole-3-acetonitrile, indole-3-carbinol, indole and tryptophan in the formation of N-nitroso compounds in green cabbage extracts. Green cabbage extracts were separated by gel permeation chromatography. Fractions were treated with nitrite, tested for mutagenicity and analysed for total N-nitroso content. Fractions in which spiked indole-3-acetonitrile, indole-3-carbinol, indole and tryptophan eluted appeared to be low in mutagenic activity and contained relatively small amounts of N-nitroso compounds. To detect indole compounds other than the ones used in the gel permeation chromatography experiments, high-performance liquid chromatography and gas chromatography-mass spectrometry analyses were performed of green cabbage extracts. Indole-3-carboxaldehyde was found to be the most commonly occurring indole compound, but it did not show direct mutagenic activity upon nitrite treatment. Indole-3-acetonitrile was the second most common compound; although it was mutagenic after nitrite treatment, its contribution to the mutagenicity of nitrite-treated green cabbage was roughly estimated to be only 2%. No other indole compounds were detected. From this study we conclude that neither the tested indole compounds nor indole-3-carboxaldehyde play a significant role in the formation of direct mutagenic N-nitroso compounds in nitrite-treated green cabbage extracts.  相似文献   

20.
Crude ether extracts of green shoots of Cucumis sativus L. promoted the elongation of cucumber hypocotyl segments. Purification of the extract was accomplished by DEAE cellulose, silicic acid, and magnesium silicate chromatography followed by gel filtration and preparative thin layer chromatography. Identification of the growth promoter as indole-3-ethanol was achieved by mass spectrometry, thin layer and gas chromatography, and ultraviolet and visible spectroscopy, as well as by physiological characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号