首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cell estimates of genetic damage repair were obtained to characterize the epigenetic effect of the rad201(G1) mutation. The estimates included morphological defects (malformations); the frequency of chromosome aberrations in somatic cells; and somatic mosaicism, reflecting double-strand break repair via conversion. The range and frequency of malformations significantly differed between the rad201(G1) epigenetic effect and irradiation. A high pupal lethality, detected upon P-element mobilization, was not associated with an increase in the frequency of cells with chromosome aberrations, while somatic mosaicism was far greater. The results are discussed in the context of differences between radiation and P-element mutagenesis.  相似文献   

2.
Iu M Khromykh  V V Levina 《Genetika》1990,26(7):1203-1211
Two effects of gamma-rays were studied on radiosensitive mutant rad(2)201G1 and wild type strain rad+ of Drosophila: the rate of radiation-induced chromosome aberrations in somatic cells and lethality of individuals irradiated at different stages of preimaginal development. It has been shown that mutant strain is characterized by the increased rate of chromosome aberrations in somatic cells and lethality of developing flies. Control strain rad+ is characterized by more complicated relationship between the effects analyzed. The results obtained are discussed in connection with the action of rad(2)201G1 gene on repair of genetic damages and with existence of postradiation compensation mechanisms intrinsic in development of multicellular organisms.  相似文献   

3.
The effect on P-element activity in somatic cells was studied for a repair mutation localized in the Drosophila genome in the region of the rad201 and Rad51C overlapping genes. When one of the parents carried nonautonomous P elements and the rad201 mutation and the other carried a P-transposase source, a high dominant pupal lethality was observed in the progeny heterozygous for the mutant allele and their sibs homozygous for the rad201+ wild-type allele. The sib response was due to the epigenetic effect of the rad201 mutation and was maintained through at least two generations. The specifics of the epigenetic effect are discussed in terms of its possible association with P transpositions and mitotic crossing over events determined by P transposase. Based on the results of genetic and genomic DNA analyses of the rad201 mutant, it was assumed that the phenomenon in question was determined by several genetic factors.  相似文献   

4.
Chromosome aberrations induced by gamma-rays in ganglia cells of Drosophila melanogaster larvae have been studied. Two strains of Drosophila were used: radiosensitive mutant rad (2) 201G1 and normal strain. It has been shown that the frequency of cells with chromosome aberrations in radiosensitive larvae is much more than in normal larvae after gamma-irradiation. The ratio of chromosome and chromatid deletions number to the number of exchange type aberrations is the same for both strains. The kinetics of chromosome aberrations induced in rad-larvae is similar to the normal one. The conclusion has been made that the realization of rad (2) 201G1 mutation takes place on the cell level.  相似文献   

5.
Radiation-induced chromosome aberrations, particularly exchange-type aberrations, are thought to result from misrepair of DNA double-strand breaks. The relationship between individual pathways of break repair and aberration formation is not clear. By electrophoretic karyotyping of single-cell clones derived from irradiated cells, we have analyzed the induction of stable aberrations in haploid yeast cells mutated for the RAD52 gene, the RAD54 gene, the HDF1(= YKU70) gene, or combinations thereof. We found low and comparable frequencies of aberrational events in wildtype and hdf1 mutants, and assume that in these strains most of the survivors descended from cells that were in G2 phase during irradiation and therefore able to repair breaks by homologous recombination between sister chromatids. In the rad52 and the rad54 strains, enhanced formation of aberrations, mostly exchange-type aberrations, was detected, demonstrating the misrepair activity of a rejoining mechanism other than homologous recombination. No aberration was found in the rad52 hdf1 double mutant, and the frequency in the rad54 hdf1 mutant was very low. Hence, misrepair resulting in exchange-type aberrations depends largely on the presence of Hdf1, a component of the nonhomologous end-joining pathway in yeast.  相似文献   

6.
V V Levina  V I Sharygin 《Genetika》1984,20(3):416-424
The mus(2)201G1 mutation determining high sensitivity to UV-rays and methyl methansulfonate (MMS) has been studied. The larvae of Drosophila of different age were treated with UV-rays and MMS. Lethality of organisms during the larvae and the pupa stages of the development, as well as the frequency of spontaneous and induced chromosome aberrations were registered. The mus(2)201G1 mutation was shown to determine high lethality of Drosophila during larvae and pupa stages as well as a high frequency of spontaneous and induced chromosome aberrations. The conclusion was made that chromosome aberrations are not the single reason for the death of the mutant flies after mutagenic treatment and that the function of the mus(2)201G1 gene is necessary for divided and undivided cells.  相似文献   

7.
K Kishi 《Mutation research》1988,208(2):109-113
1-beta-D-Arabinofuranosylcytosine (ara C) induces chromosome-type aberrations in mammalian cells by inhibiting repair replication in the G1 phase. The effect of novobiocin, an inhibitor of prokaryotic gyrases, on G1 repair in human cells was studied cytogenetically using this characteristic of ara C. The experiment was based on the assumption that if novobiocin inhibits the relaxation of chromatin required prior to repair replication, it would reduce the frequency of chromosome-type aberrations in cells treated with a mutagen followed by posttreatment with ara C. It has also been shown that in lymphocytes ara C induces chromosome-type aberrations which were not caused by any induced DNA lesion, and that the frequency of these aberrations changes with the age of the blood donor. The effect of novobiocin on the frequency of chromosome-type aberrations induced by ara C in lymphocytes without mutagen pretreatment was also investigated for blood samples from donors of different ages. Human peripheral blood lymphocytes, which were either untreated of treated with 4-nitroquinoline-N-oxide (4NQO) or methyl methanesulfonate (MMS), were posttreated in their early G1 phase with ara C only or ara C and novobiocin. The resulting chromosome-type aberrations were observed in cells in their first mitoses, and a comparison was made between the frequency of aberrations occurring in the presence of novobiocin and in its absence. The results showed that novobiocin reduced the frequency of chromosome-type aberrations induced by ara C in both mutagen-pretreated and -non-pretreated cells, and that lymphocytes from younger donors were less sensitive to novobiocin. The present study demonstrated cytogenetically the existence of a novobiocin-sensitive process to induce chromosome recombination in G1 lymphocytes.  相似文献   

8.
The effect on P-element activity in somatic cells was studied for a repair mutation localized in the Drosophila genome in the region of the rad201 and Rad51C overlapping genes. When one of the parents carried nonautonomous P elements and the rad201 mutation and the other carried a P-transposase source, a high dominant pupal lethality was observed in the progeny heterozygous for the mutant allele and their sibs homozygous for the rad201 + wild-type allele. The sib response was due to the epigenetic effect of the rad201 mutation and was maintained through at least two generations. The specifics of the epigenetic effect are discussed in terms of its possible association with P transpositions and mitotic crossing over events determined by P transposase. Based on the results of genetic and genomic DNA analyses of the rad201 mutant, it was assumed that the phenomenon in question was determined by several genetic factors.  相似文献   

9.
Human lymphocytes from normal and Down syndrome (DS) subjects were examined to determine the effect of 3-aminobenzamide (3AB) on X-ray-induced chromosome aberrations. Lymphocytes were treated with 150 or 300 rad of X-rays in the presence of 3 mM 3AB for various times after irradiation, and then the cells were analyzed for the presence of chromosome aberrations in mitotic cells. 3-Aminobenzamide had no effect on the frequency of chromosome aberrations produced by X-rays in G0 lymphocytes from normal subjects. In contrast, lymphocytes from DS patients displayed an increase in the frequency of chromosome aberrations as a result of treatment with X-rays in the presence of 3AB. These observations indicate that DS lymphocytes are more sensitive to the inhibition of poly(ADP)ribose synthetase than normal lymphocytes.  相似文献   

10.
Frequencies of radiation-induced chromosome aberrations in spermatogonia, peripheral blood lymphocytes and bone-marrow cells of the rhesus monkey (Macaca mulatta) and in human blood lymphocytes, were determined at different exposures of X-rays. The dose-response curve for the induction of reciprocal translocations in spermatogonia suggested a “hump” at about 200 rad. The absolute frequencies of chromosome aberrations in somatic and germ cells of the rhesus monkey were low in comparison with most other mammalian species and the ratio between aberrations in the two tissues was 25 to 1 at the 100 rad level. Although the numbers of “effective chromosome arms” in man and rhesus monkey are similar (81 vs. 83), the rhesus monkey showed a lower rate of induction of dicentrics in blood lymphocytes than man at all doses, reaching statistical significance at the 300 rad level.  相似文献   

11.
The frequency of X-ray-induced chromosome aberrations in G1 ML-1 mouse myeloid leukemia cells and normal mouse bone marrow cells increased with post-irradiation incubation with the DNA-repair resynthesis inhibitor 1-beta-D-arabinofuranosylcytosine (araC), but the frequency of aberrations in the leukemic cells increased with quite a different time response compared to the normal cells. Irradiated normal mouse bone marrow cells had a rapid increase in the frequency of chromosome exchanges and deletions with increasing araC incubation time, for example, an increase was observed with 0.5 h araC incubation. In contrast, the ML-1 cells did not have a significant increase in aberrations until 1-2 h post-irradiation incubation with araC. These results suggest that the ML-1 cells, per unit time, initially undergo less repair of the X-ray-induced DNA damage that can be converted into chromosome aberrations. We previously showed that the ML-1 cells have a higher frequency of X-ray-induced chromosome aberrations compared to normal cells and the results presented here indicate that a slower rate of repair resynthesis is contributing to the increased sensitivity of the ML-1 cells.  相似文献   

12.
The influence of aminopterin (AP), tritiated thymidine ([3H] TdR) and "cold" thymidine (TdR) on production of chromosomal aberrations in meristematic cells of Crepis capillaris irradiated in different stages of the mitotic cycle with 300 rad of 63Co gamma-rays was studied. All the chemical treatments increased most of all the frequency of aberrations induced during two "critical periods" localized before the stage of DNA synthesis (fixation 9 h after irradiation) and before that of mitosis (4 h). Treatments with TdR and [3H]TdR increased most of all the frequency of chromatid aberrations when irradiation was performed in G1, and the frequency of gaps when irradiated in G2. Treatment with AP increased the yield of different types of aberration more uniformly. The modifying effect of the chemicals tested appeared to be independent of replicative synthesis. The "critical periods" are suggested to be the stages when regular "proof reading" and correction of spontaneous errors takes place [9,13]. In addition to this regular mechanism, radiation induces an "emergency" mechanism of repair. AP inhibits the mechanism of regular repair; in addition TdR and [3H] TdR suppress the lateral spread of primary injuries across the chromosome.  相似文献   

13.
We have studied the induction of chromosomal aberrations in human lymphocytes exposed in G0 to X rays or carbon ions. Aberrations were analyzed in G0, G1, G2 or M phase. Analysis during the interphase was performed by chemically induced premature chromosome condensation, which allows scoring of aberrations in G1, G2 and M phase; fusion-induced premature chromosome condensation was used to analyze the damage in G0 cells after incubation for repair; M-phase cells were obtained by conventional Colcemid block. Aberrations were scored by Giemsa staining or fluorescence in situ hybridization (chromosomes 2 and 4). Similar yields of fragments were observed in G1 and G2 phase, but lower yields were scored in metaphase. The frequency of chromosomal exchanges was similar in G0 (after repair), G2 and M phase for cells exposed to X rays, while a lower frequency of exchanges was observed in M phase when lymphocytes were irradiated with high-LET carbon ions. The results suggest that radiation-induced G2-phase block is associated with unrejoined chromosome fragments induced by radiation exposure during G0.  相似文献   

14.
M. Gatti  C. Tanzarella    G. Olivieri 《Genetics》1974,77(4):701-719
A technique has been perfected for enabling good microscope preparations to be obtained from the larval ganglia of Drosophila melanogaster. This system was then tested with X-rays and an extensive series of data was obtained on the chromosome aberrations induced in the various stages of the cell cycle.-The analysis of the results obtained offers the following points of interest: (1) There exists a difference in radio-sensitivity between the two sexes. The females constantly display a greater frequency of both chromosome and chromatid aberrations. They also display a greater frequency of spontaneous aberrations. (2) In both sexes the overall chromosome damage is greater in cells irradiated in stages G(2) and G(1). These two peaks of greater radiosensitivity are produced by a high frequency of terminal deletions and chromatid exchanges and by a high frequency of dicentrics, respectively. (3) The aberrations are not distributed at random among the various chromosomes. On the average, the Y chromosome is found to be more resistant and the breaks are preferentially localized in the pericentromeric heterochromatin of the X chromosome and of the autosomes. (4) Somatic pairing influences the frequency and type of the chromosome aberrations induced. In this system, such an arrangement of the chromosomes results in a high frequency of exchanges and dicentrics between homologous chromosomes and a low frequency of scorable translocations. Moreover, somatic pairing, probably by preventing the formation of looped regions in the interphase chromosomes, results in the almost total absence of intrachanges at both chromosome and chromatid level.  相似文献   

15.
Primary chromosome damages as well as the frequency of spontaneous and X-rays induced chromosome aberrations in Drosophila melanogaster males and females are studied. It is found using cytofluorimetric method that primary chromosome damages in ganglia cells of females and males are the same. In these cells as well as in cells of imaginal discs the frequency of induced chromosome aberrations, except gaps, is considerably higher for females. Ganglia cells of females and males of Drosophila are found not to differ from each other in their proliferation activity. The frequency of morphoses for both sexes is also the same. The assumption is made concerning the role of the non-identical repair in the increased mutability of female somatic cells, which is more intensive in this sex, as well as concerning more intensive identical repair in imaginal discs of females.  相似文献   

16.
A mutagenic effect of aflatoxin B1 (AFB1) was studied in somatic cells of primates. It is shown that AFB1 elevates the chromosome aberration frequency in bone marrow cells of two monkey species: Macaca mulatta and Papio hamadryas. Genome mutations were found in these experimental primates simultaneously with chromosome aberrations. The AFB1-induced chromosome aberrations were revealed at least during two years of the study. The fact of the chromosome aberration frequency increase was established in Macaca babies born from females who received AFB1 in pregnancy.  相似文献   

17.
Site-specific double-strand breaks (DSBs) were generated in the white gene located on the X chromosome of Drosophila by excision of the w(hd) P-element. To investigate the role of nonhomologous end joining (NHEJ) and homologous recombination (HR) in the repair of these breaks, the w(hd) P-element was mobilized in flies carrying mutant alleles of either lig4 or rad54. The survival of both lig4- and rad54-deficient males was reduced to 25% in comparison to the wild type, indicating that both NHEJ and HR are involved in the repair P-induced gaps in males. Survival of lig4-deficient females was not affected at all, implying that HR using the homologous chromosome as a template can partially compensate for the impaired NHEJ pathway. In rad54 mutant females survival was reduced to 70% after w(hd) excision. PCR analysis indicated that the undamaged homologous chromosome may compensate for the potential loss of the broken chromosome in rad54 mutant females after excision. Molecular analysis of the repair junctions revealed microhomology (2-8 bp)-dependent DSB repair in most products. In the absence of Lig4, the 8-bp target site duplication is used more frequently for repair. Our data indicate the presence of efficient alternative end-joining mechanisms, which partly depend on the presence of microhomology but do not require Lig4.  相似文献   

18.
For 99 healthy volunteers, the frequencies of spontaneous and y-induced (1 Gy in vitro) chromosome aberrations in blood lymphocytes were compared with the results of PCR-genotyping by 8 repair genes: XRCC1, XPD, ERCC1, APEXI, RAD23B, OGG1, ATM, Tp53 (in all, 10 polymorphic sites). The frequency of spontaneous aberrations of chromosome type increased additively with the number of copies of minor allele of excision repair gene XPD variant *2251G and *862A D (p = 0.025). The frequency of gamma-induced chromosome aberrations proved to be elevated for the carriers of a minor allele OGG1*977G (p = 0.011). The significantly elevated number of gamma-induced chromosome aberrations was also observed for the carriers of major alleles XRCC1*G1996 and XRCC1*C589 (p = 0.002).  相似文献   

19.
Previous studies have shown that p53 is involved in the repair of bleomycin-induced DNA damage, and that the frequency of bleomycin-induced chromatid aberrations is elevated in G(2)-treated p53 null transgenic mouse embryo fibroblasts (MEF) as compared to isogenic controls. To further characterize p53-mediated DNA repair, we studied the effect of p53 status on the ability of the DNA repair inhibitor 1-ss-D-arabinofuranosylcytosine (AraC) to sensitize MEF to bleomycin-induced chromatid aberrations. Both p53+/+ and p53-/- MEF were treated in G(2) with 0 to 7.5 microg/ml bleomycin in the presence or absence of AraC (5x10(-5) M). The frequency of bleomycin-induced chromatid aberrations was significantly higher in p53-/- cells than wild-type cells in the absence of AraC. AraC treatment significantly increased the frequency of bleomycin-induced chromatid aberrations in p53+/+ MEF to the levels in p53-/- (no AraC) but had no effect in p53-/- MEF. These results suggest that an AraC-sensitive DNA repair component is altered or absent in p53-/- cells. Similar results were observed in p53-mutant WTK1 and wild-type TK6 human lymphoblast cells exposed to 0 to 3 microg/ml bleomycin in G(2). However, AraC did cause a small increase in bleomycin sensitivity in WTK1 cells. This difference from the p53-/- MEF response may be due to differences in p53-mutant phenotype. To determine whether mutation of p53 alters DNA replication fidelity, p53+/+ and p53-/- MEF were exposed to 0 to 1 microg/ml mitomycin C (MMC). MMC did not induce chromosome aberrations in either cell line treated in G(2) but did with the same effectiveness in both cell lines treated in S-phase. Thus, p53 deficiency does not affect DNA replication fidelity or the repair of MMC-induced DNA damage.  相似文献   

20.
The frequency of X-ray induced X-chromosome breaks has been studied in females of the line rad (2) 201G1 hypersensitive to radiation and in females of the control line selected from the same population. The frequency of X-chromosome breaks was judged based on the frequency of X0 males occurrence. Synergism of the effects of X-rays (at doses 0.1, 0.5 and 1.0 kr) and of hyperthermia (+37 degrees C, 5.5 hours) applied after irradiation served as an indirect evidence for the functioning of DNA repair systems. It is demonstrated that radiosensitivity of mature oocytes of the lines compared was equal and that hyperthermia applied after irradiation increased the latter effect in both lines. Young oocytes of the control line were radioresistant, and hyperthermia applied after irradiation enhanced its effect. Opposite to them, young oocytes of the rad line females were radiosensitive. They did not differ from mature oocytes in the frequency of X-chromosome losses. Synergism of the two factors (irradiation and hyperthermia) was not registered in young oocytes. On the basis of the results obtained, it may be concluded that radiosensitivity of young oocytes in the hypersensitive line is conditioned by the failure of DNA repair systems and that the rad (2) 201G1 gene may be considered, in relation to the genes controlling DNA repair, as a suppressor functioning selectively at a certain stage of oogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号