首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Hepatocyte growth factor (HGF) down-modulates FSH-dependent estradiol-17beta (E(2)) production in ovarian granulosa cells in vitro. The mechanisms of action underlying the antiestrogenic effects of HGF are vague, although evidence indicates that HGF may affect cAMP signal transduction in rat granulosa cells. The present study investigated the effects of HGF on FSH-induced steroidogenesis in the presence and absence of insulin-like growth factor I (IGF-I), as well as the actions of HGF within cyclic nucleotide-dependent signal transduction cascades in granulosa cells. Immature rat granulosa cells were incubated with FSH, IGF-I, and HGF. HGF impaired the production of FSH-stimulated and FSH + IGF-I-stimulated E(2) synthesis, as well as FSH + IGF-I-dependent estrone production. Progesterone synthesis was not altered by HGF. HGF suppressed FSH-dependent cAMP content at 24 h, but not at 36 h; cGMP content was stimulated by HGF with and without FSH at 24 h. In the presence of the cyclic nucleotide phosphodiesterase (PDE) inhibitor, 3-isobutyl-1-methylxanthine (IBMX), FSH-dependent cAMP accumulation was not affected by HGF. The suppressive effect of HGF on FSH-dependent E(2) production was alleviated by IBMX, whereas the HGF-dependent block in FSH + IGF-I-supported E(2) production was not prevented by IBMX. The effects of HGF on cyclic nucleotide PDE activities were manifested in a time-dependent and hormone-dependent manner. FSH-induced cAMP PDE was suppressed by HGF at 24 h but not at 36 h, whereas FSH-dependent cGMP PDE was impaired at 36 h, but not at 24 h. HGF prevented the IGF-I-dependent reduction in FSH-stimulated cAMP-PDE activity at 24 and 36 h, and lowered FSH + IGF-I-stimulated cGMP-PDE activity at 36 h, concomitant with an HGF-dependent increase in cGMP content at 24 h. These data indicate that HGF affects cAMP-directed and cGMP-directed signaling pathways at multiple sites in granulosa cells. These HGF-dependent effects may provide insight for mechanisms of action whereby HGF reduces E(2) secretion by granulosa cells.  相似文献   

2.
Propranolol inhibited cyclic AMP (cAMP) accumulation stimulated by 3-isobutyl-1-methylxanthine (IBMX) or forskolin in rat parotid acinar cells. The inhibition by propranolol was highly potent; 10(-7) M propranolol was sufficient for the maximum inhibition (approx. 50% at 5 min). The inhibitory effect was observed in both intact and saponin-permeabilized parotid cells, but the effect was more prominent in permeabilized cells than in intact cells. Other beta-blockers, like alprenolol and atenolol, were as effective as propranolol, but butoxamine (beta 2-selective) was slightly less effective. The inhibition by propranolol was similarly detected in the cells prepared from pertussis-toxin-pretreated rats, suggesting that inhibitory guanine nucleotide regulatory protein (Gi) is not involved in the inhibitory mechanism. Propranolol also inhibited the exocytosis of amylase stimulated by IBMX or forskolin. In the presence of propranolol and IBMX, the responsiveness of saponin-permeabilized cells to exogenous cAMP was markedly increased, indicating that propranolol neither promotes the degradation of cAMP nor prevents the inhibitory effect of IBMX on cAMP phosphodiesterase.  相似文献   

3.
The effects of forskolin, Ro 20-1724, rolipram, and 3-isobutyl-1-methylxanthine (IBMX) on morphine-evoked release of adenosine from dorsal spinal cord synaptosomes were evaluated to examine the potential involvement of cyclic AMP in this action of morphine. Ro 20-1724 (1-100 microM), rolipram (1-100 microM), and forskolin (1-10 microM) increased basal release of adenosine, and at 1 microM inhibited morphine-evoked release of adenosine. Release of adenosine by Ro 20-1724, rolipram, and forskolin was reduced 42-77% in the presence of alpha,beta-methylene ADP and GMP, which inhibits ecto-5'-nucleotidase activity by 81%, indicating that this adenosine originated predominantly as nucleotide(s). Significant amounts of adenosine also were released from the ventral spinal cord by these agents. Ro 20-1724 and rolipram did not significantly alter the uptake of adenosine into synaptosomes. Although Ro 20-1724 and rolipram had only limited effects on the extrasynaptosomal conversion of added cyclic AMP to adenosine, IBMX, a phosphodiesterase inhibitor with a broader spectrum of inhibitory activity for phosphodiesterase isoenzymes, significantly inhibited the conversion of cyclic AMP to adenosine and resulted in recovery of a substantial amount of cyclic AMP. As with the non-xanthine phosphodiesterase inhibitors, IBMX increased basal release of adenosine and reduced morphine-evoked release of adenosine. Adenosine released by IBMX was reduced 70% in the presence of alpha,beta-methylene ADP and GMP, and release from the ventral spinal cord was 61% of that from the dorsal spinal cord. Collectively, these results indicate that forskolin and phosphodiesterase inhibitors release nucleotide(s) which is (are) converted extrasynaptosomally to adenosine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We have investigated the effects of several phosphodiesterase inhibitors on the activity of a cGMP-stimulated cyclic nucleotide phosphodiesterase purified from calf liver supernatant. Theophylline, RO 20-1724, and MY 5445 were not effective inhibitors. With 0.5 microM [3H]cGMP as substrate or with 0.5 microM [3H]cAMP in the presence of 1 microM cGMP, activity was inhibited by papaverine, dipyridamole, isobutylmethylxanthine (IBMX), and cilostamide. With 0.5 microM [3H]cAMP as substrate, however, only cilostamide was inhibitory; papaverine, dipyridamole, and IBMX increased activity. The increase was dependent on both drug and substrate concentration with maximal stimulation (150-180%) at concentrations of cAMP between 0.5 and 2.5 microM. At higher cAMP concentrations, the three drugs were inhibitory; inhibition was maximal at approximately 40 microM and decreased at higher cAMP concentrations. Inhibition of cGMP hydrolysis was maximal at approximately 3 microM and decreased at higher concentrations. Papaverine, IBMX, dipyridamole, and cilostamide inhibited [3H] cGMP hydrolysis competitively with Ki values of 3, 6.5, 7, and 11.5 microM, respectively. Papaverine, IBMX, or dipyridamole reduced the Hill coefficient for cAMP hydrolysis from 1.8 to 1.1-1.2, and Lineweaver-Burk plots were linear or nearly linear. With cilostamide, however, Lineweaver-Burk plots remained curvilinear. Thus, three competitive inhibitors, papaverine, dipyridamole, and IBMX, can mimic substrate and effect allosteric transitions that increase catalytic activity, whereas another, cilostamide, apparently cannot. Differences in the actions of these inhibitors presumably reflect differences in the molecular requirements for effective interaction at catalytic and allosteric sites on phosphodiesterase, i.e. differences in the structure of these sites.  相似文献   

5.
Neutrophils (PMN) treated with cAMP elevating agents were evaluated for their chemotactic responsiveness to FMLP and leukotriene B4 (LTB4). PGE1 and isoproterenol, increased PMN cyclic AMP production and inhibited chemotaxis to both FMLP and LTB4. In contrast, forskolin, which activates adenylate cyclase directly, inhibited chemotaxis to FMLP but not to LTB4. The phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX), was required for inhibition of PMN chemotaxis to FMLP by forskolin, PGE1, and isoproterenol. Isoproterenol and PGE1 inhibited PMN chemotaxis to LTB4 in the absence of IBMX and chemotaxis was further inhibited in the presence of IBMX. PMN cAMP levels were stimulated 2- to 3-fold with isoproterenol, 6- to 10-fold with PGE1, and 5- to 7-fold with forskolin over basal levels in the presence of IBMX. These observations demonstrate that total cellular cAMP concentration is not correlated with inhibition of PMN chemotaxis to all stimuli; forskolin, which increased cyclic AMP 5- to 7-fold over basal levels, did not inhibit chemotaxis to LTB4, whereas isoproterenol, which increased cyclic AMP only 2- to 3-fold over basal levels, inhibited chemotaxis to LTB4. PMN cAMP extrusion was determined under basal conditions and in the presence of PGE1, isoproterenol, or forskolin. PMN extruded cAMP under all conditions examined.  相似文献   

6.
7.
Role of cyclic AMP in corticotropin releasing factor mediated ACTH release   总被引:1,自引:0,他引:1  
D O Sobel 《Peptides》1985,6(4):591-595
To elucidate the role of cAMP in the secretion of ACTH, the effect of (1) three phosphodiesterase inhibitors, (2) forskolin, and (3) 8Bromo-cAMP, on CRF mediated ACTH release was studied in rat pituitary cell culture. The action of glucocorticoids on CRF induced cAMP accumulation and ACTH release was investigated. Isobutyl-methylxanthine (IBMX), caffeine, and forskolin augmented the release of ACTH induced from CRF 1.0 nM by 17%, 39%, and 20%, respectively. Also IBMX and caffeine potentiated CRF 10 nM stimulated ACTH release by 32% and 20%. Doses of forskolin and 8Bromo-cAMP, which alone stimulate large amounts of ACTH release, did not increase the amount of ACTH released from CRF 100 nM stimulated cells. Cortisol (500 nM) and corticosterone (500 nM) inhibited CRF induced intracellular cAMP by 39% and 26% while inhibiting pituitary ACTH release by 40% and 52%. In conclusion, cAMP plays an important role in the mechanism of ACTH secretion and it appears the final intracellular mechanism of CRF stimulated ACTH is via cAMP. Also, glucocorticoids exert their inhibitory influence prior to cAMP generation.  相似文献   

8.
Treatment of murine peritoneal macrophages with 100 nM prostaglandin E2 (PGE2) produced a rapid biphasic increase in intracellular cAMP that was maximal at 1 min and sustained through 20 min. Pretreatment of macrophages with 100 ng/ml of lipopolysaccharide (LPS) for 60 min prior to PGE2 decreased the magnitude of cAMP elevation by 50%, accelerated the decrease of cAMP to basal levels, and abolished the sustained phase of cAMP elevation. The effect of LPS was concentration-dependent, with maximal effect at 10 ng/ml in cells incubated in the presence of 5% fetal calf serum and at 1 microgram/ml in the absence of fetal calf serum. LPS also inhibited cAMP accumulation in cells treated with 100 microM forskolin, but the decrease was about half that seen in cells treated with PGE2. LPS concentrations that inhibited cAMP accumulation produced a 30% increase in soluble low Km cAMP phosphodiesterase activity while having no effect on particulate phosphodiesterase activity. The nonspecific phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine, as well as the more specific inhibitors rolipram and Ro-20-1724 were effective in inhibiting soluble phosphodiesterase activity in vitro, producing synergistic elevation of cAMP in PGE2-treated cells, and blocking the ability of LPS to inhibit accumulation of cAMP. Separation of the phosphodiesterase isoforms in the soluble fraction by DEAE chromatography indicated that LPS activated a low Km cAMP phosphodiesterase. The enzyme(s) present in this peak could be activated 6-fold by cGMP and were potently inhibited by low micromolar concentrations of Ro-20-1724 and rolipram. Using both membranes from LPS-treated cells and membranes incubated with LPS, no decrease in adenylylcyclase activity could be attributed to LPS. Although effects of LPS on the rate of synthesis of cAMP cannot be excluded, the present evidence is most consistent with a role for phosphodiesterase activation in the inhibitory effects of LPS on cAMP accumulation in murine peritoneal macrophages.  相似文献   

9.
Experiments were carried out to elucidate the characteristics of regulation of cyclic AMP levels in intact myocardial cells. For this purpose, the influence of isoproterenol, a nonselective cyclic nucleotide phosphodiesterase (PDE) inhibitor 3-isobutyl-1-methylxanthine (IBMX) and carbachol on cyclic AMP levels was investigated in isolated rat cardiac myocytes. The extent of cyclic AMP accumulation induced by isoproterenol was much less than that produced by IBMX: submaximal concentrations of isoproterenol and IBMX elevated the cyclic AMP level 2.4- and 4.8-fold of the control level, respectively. Both agents in combination increased the cyclic AMP level markedly 48-fold. Carbachol inhibited the cyclic AMP accumulation induced by isoproterenol, IBMX and their combination by 30%, 60% and 80% of the respective response. The extent of inhibition produced by carbachol of the cyclic AMP accumulation induced by IBMX + isoproterenol was smaller than that caused by propranolol, and carbachol produced only a marginal additional inhibitory action to that of propranolol, implying that carbachol does not affect the process of cyclic AMP degradation. The present findings indicate that in intact cardiac myocytes the rate of cyclic AMP degradation catalyzed by PDE may be a crucial process of cyclic AMP turnover. This view is supported by the observations that the inhibitory action of carbachol on the effect of isoproterenol was less than that on the effect of IBMX, and that the inhibitory action of carbachol was markedly enhanced by the simultaneous presence of IBMX.  相似文献   

10.
The role of cAMP in regulating follicular progesterone levels and oocyte maturation was investigated following in vitro culture of amphibian (Rana pipiens) ovarian follicles. Intrafollicular levels of cAMP were manipulated with the use of a stimulator of cAMP synthesis (forskolin) or by exogenous addition of cAMP alone or either of these in combination with an inhibitor of cAMP catabolism (3-isobutyl-1-methyl xanthine, IBMX). Follicular progesterone content was determined by RIA and oocyte maturation was assessed cytologically. In the presence of increasing doses of forskolin (0-3 microM), cAMP (0-3 mM), or dibutyryl cAMP (dbcAMP, 0-2.5 mM) increasing but low levels of progesterone were detected. Increasing doses of IBMX (0-0.09 mM) alone had no significant effect on follicular steroid content. Exogenous cAMP, dbcAMP, or IBMX (0.09 mM) suppressed hormone-induced oocyte maturation. Simultaneous exposure of follicles to increasing doses of both forskolin (0-3 microM) and IBMX (0-0.09 mM) markedly increased intrafollicular progesterone levels to those produced by frog pituitary homogenate (FPH). A marked increase in progesterone levels also occurred when follicles were exposed to exogenous cAMP (3 mM) and IBMX (0.09 mM). These results indicate that exogenous cAMP is incorporated by follicle cells and that forskolin effects are mediated through cAMP. Changes in follicular progesterone levels (increase and decrease) over time following FPH or cAMP manipulation (cAMP + IBMX or forskolin + IBMX) were essentially identical. In contrast to cAMP, cGMP was inactive in inhibiting hormone induced GVBD or stimulating follicular progesterone accumulation. Elevation of follicular and medium levels of progesterone resulting from FPH or cAMP stimulation required the presence of the somatic follicular cells. The decrease in follicular progesterone levels with prolonged culture was not associated with a corresponding increase in progesterone levels in the medium. The decrease in follicular progesterone levels appears to reflect steroid catabolism rather than loss of steroid to the culture medium. The results suggest that the level of intracellular cAMP in the follicle cells is modulated by the relative activity of the adenylate cyclase system and phosphodiesterase and that FPH can affect both components. Thus, intracellular levels of cAMP play a key role in regulating follicular progesterone levels and FPH action on the follicle cells. The steroidogenic capacity of follicle cells can be manipulated independently of FPH stimulation.  相似文献   

11.
Initial sweet tastetransduction is expected to occur in the subsecond time range. Wedemonstrate a rapid and transient (75-250 ms) increase of cGMP(but not cAMP) level in rat intact circumvallate taste cells afterstimulation by sucrose. This rapid increase does not occur innonsensory epithelial cells. Pretreatment with a nonspecificphosphodiesterase (PDE) inhibitor (IBMX), a specific cAMP-PDE4inhibitor (denbufylline), or an adenylyl cyclase activator (forskolin)all increased basal cAMP and abolished the sucrose-stimulated cGMPincrease at 150 ms. Pretreatment with a soluble guanylyl cyclaseinhibitor(1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) reduced, whereas a specific cGMP-PDE inhibitor (zaprinast) abolished, the sucrose-stimulated cGMP increase. It is proposed that cGMP isinvolved in the initial stage of sugar taste transduction and that cGMPis more significant than cAMP at this stage. Activation of solubleguanylyl cyclase and inhibition of cGMP-PDE may be involved in thetransient elevation of cGMP in response to sucrose stimulation.Moreover, it appears that cAMP level must remain low for sucrose tostimulate an increase in cGMP.

  相似文献   

12.
F A McElroy  R B Philip 《Life sciences》1975,17(9):1479-1493
The effects of dipyridamole and five related agents (RA233, RA255, RA433, VK744 and VK774) on several aspects of human platelet cyclic nucleotide metabolism were investigated. In platelet-rich plasma VK774 caused a significant increase in total cAMP and a potentiation of adenosine-induced cAMP accumulation. VK744 and RA233 potentiated the adenosine effect while dipyridamole caused a lowering of cAMP levels both in the absence and presence of adenosine. All 6 agents inhibited the cAMP phosphodiesterase of collagen-treated platelets, the high affinity cAMP phosphodiesterase of platelet lysates, and the cGMP phosphodiesterase of membrane-enriched platelet fractions. Ki values for these agents were determined for both the high affinity cAMP and cGMP phosdiestereases. The order of potency of these drugs as inhibitors differed for the two enzymes studied. Neither order showed a clearcut relationship to the reported relative potencies of the drugs in inhibiting a number of other aspects of platelet function. If the relative selectivity of these agents for the two enzymes was however determined, there was a close correspondence between their tendency to promote a relative accumulation of cAMP and their inhibitory effects on platelet adhesion and aggregation. This close correspondence was taken to indicate that these drugs exert many of their effects on platelet function by altering the relative cAMP, cGMP levels and, moreover, supports the contention that platelet aggregation and release are modulated both by cAMP and cGMP.  相似文献   

13.
Carbachol in the presence of atropine and propranolol was employed to stimulate a non-adrenergic neural inhibitory system in the hemilung of the bullfrog (Rana catesbeiana). Tissue levels of cGMP were elevated 95% by carbachol whilst cAMP levels were unchanged. The phosphodiesterase inhibitor papaverine did not affect either cAMP or cGMP levels, but did selectively increase the carbachol-induced increase in lung cGMP to 220% of control levels. Papaverine did not potentiate the relaxant effects of carbachol. The results suggest that cyclic nucleotides may not be directly involved in the relaxation produced by stimulation of the non-adrenergic neural inhibitory system in this preparation.  相似文献   

14.
The role of a pertussis toxin sensitive GTP-binding protein in mediating between cholecystokinin receptors and phosphatidylinositol 4,5-bisphosphate phosphodiesterase as well as in preventing cholecystokinin from increasing cellular cyclic AMP has been investigated using dispersed acini from rabbit pancreas. Pertussis toxin pretreatment (500 ng/ml, 2 h) did not affect cholecystokinin(octapeptide) (CCK-8)-induced increases in cytosolic free Ca2+ as judged from changes in fluorescence obtained from quin2-loaded acini. Although pretreatment with pertussis toxin was also without effect on resting acinar cell cyclic AMP levels, adenylate cyclase activity was increased, since inhibition of cyclic AMP phosphodiesterase activity by isobutylmethylxanthine (IBMX) resulted in an additional increase in cyclic AMP levels in toxin-treated acini, indicating that acinar cell adenylate cyclase activity is under some tonic inhibitory control by the pertussis toxin-sensitive inhibitory GTP-binding protein (Gi) of the adenylate cyclase system. CCK-8 gave an increase in cyclic AMP levels in both control (1.6-fold) and toxin-treated (2.3-fold) acini, leading to cyclic AMP levels in the toxin-treated acini 2-times as high as those in control acini. In the presence of IBMX, the cyclic AMP response to CCK-8 was again markedly enhanced in acini pretreated with the toxin (3.2- vs. 1.8-fold), resulting in cAMP levels in the toxin-treated acini 3.7-times those in the absence of IBMX, 2.5-times those in control acini in the presence of IBMX and 7.0-times those in control acini in the absence of IBMX. Neither the pretreatment with pertussis toxin, nor the presence of IBMX alone, nor the combination had an effect on basal amylase secretion. However, all three treatments potentiated the stimulatory effect of CCK-8 on amylase secretion and the amount of potentiation was proportional to the cyclic AMP levels reached. Our findings suggest that in the intact pancreatic acinar cell Gi inhibition of the catalytic subunit of the adenylate cyclase may largely be responsible for preventing cholecystokinin from increasing cellular cyclic AMP. They moreover show that cyclic AMP is a modulatory agent in rabbit pancreatic enzyme secretion, not able to stimulate secretion itself, but potentiating effects mediated by the phosphatidylinositol-calcium pathway.  相似文献   

15.
The regulation of bile acid transport in rat ileum was studied in vitro using the adenylate cyclase stimulator forskolin, or 3-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor. Forskolin 20 microM as well as 100 microM IBMX enhanced mucosal cyclic AMP to 3-fold the control levels. As a physiological response, net fluid absorption in everted ileal sacs was reduced. Taurocholate (10-500 microM) transfer in everted perfused segments of rat ileum was measured using a three compartment dual label method suitable for measuring active transport. Transport asymmetry with absorption exceeding its counterflux by 26-fold, was measured at 500 microM taurocholate. Forskolin increased absorption of taurocholate still further, by 68%, and reduced the serosal to mucosal flux. Enhanced intracellular accumulation of taurocholate indicated a stimulatory action of forskolin on active transport at the mucosal brush-border membrane. In uptake studies, accumulation of taurocholate was enhanced by 100 microM IBMX also. Forskolin-induced uptake stimulation could also be shown for chenodeoxycholate and cholate. In the presence of the neuronal blocker tetrodotoxin, uptake stimulation was still effective. Results indicate that the ileal bile acid transporter is included within the group of sodium-dependent cotransporters of the rat small intestine which are subject to a cyclic AMP-related stimulation at the mucosal cellular level.  相似文献   

16.
The effect of the adenylate cyclase activator forskolin on bone resorption and cyclic AMP accumulation was studied in an organ-culture system by using calvarial bones from 6-7-day-old mice. Forskolin caused a rapid and fully reversible increase of cyclic AMP, which was maximal after 20-30 min. The phosphodiesterase inhibitor rolipram (30 mumol/l), enhanced the cyclic AMP response to forskolin (50 mumol/l) from a net cyclic AMP response of 1234 +/- 154 pmol/bone to 2854 +/- 193 pmol/bone (mean +/- S.E.M., n = 4). The cyclic AMP level in bones treated with forskolin (30 mumol/l) was significantly increased after 24 h of culture. Forskolin, at and above 0.3 mumol/l, in the absence and the presence of rolipram (30 mumol/l), caused a dose-dependent cyclic AMP accumulation with an calculated EC50 (concentration producing half-maximal stimulation) value at 8.3 mumol/l. In 24 h cultures forskolin inhibited spontaneous and PTH (parathyroid hormone)-stimulated 45Ca release with calculated IC50 (concentration producing half-maximal inhibition) values at 1.6 and 0.6 mumol/l respectively. Forskolin significantly inhibited the release of 3H from [3H]proline-labelled bones stimulated by PTH (10 nmol/l). The inhibitory effect by forskolin on PTH-stimulated 45Ca release was significant already after 3 h of culture. In 24 h cultures forskolin (3 mumol/l) significantly inhibited 45Ca release also from bones stimulated by prostaglandin E2 (1 mumol/l) and 1 alpha-hydroxycholecalciferol (0.1 mumol/l). The inhibitory effect of forskolin on spontaneous and PTH-stimulated 45Ca release was transient. A dose-dependent stimulation of basal 45Ca release was seen in 120 h cultures, at and above 3 nmol of forskolin/l, with a calculated EC50 value at 16 nmol/l. The stimulatory effect of forskolin (1 mumol/l) could be inhibited by calcitonin (0.1 unit/ml), but was insensitive to indomethacin (1 mumol/l). Forskolin increased the release of 3H from [3H]proline-labelled bones cultured for 120 h and decreased the amount of hydroxyproline in bones after culture. Forskolin inhibited PTH-stimulated release of Ca2+, Pi, beta-glucuronidase and beta-N-acetylglucosaminidase in 24 h cultures. In 120 h cultures forskolin stimulated the basal release of minerals and lysosomal enzymes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Previous studies have indicated that the effects of parathyroid hormone (PTH) on osteoblastic function involve alteration of cytoskeletal assembly. We have reported that after a transitory cell retraction, PTH induces respreading with stimulation of actin, vimentin and tubulins synthesis in mouse bone cells and that this effect is not mediated by cAMP. In order to further elucidate the role of intracellular cAMP and calcium on PTH action on bone cell shape and cytoskeleton we have compared the effects of calcium- and cAMP-enhancing factors on actin, tubulin and vimentin synthesis in relation with mouse bone cell morphology, DNA synthesis and alkaline phosphatase activity as a marker of differentiation. Confluent mouse osteoblastic cells were treated with 0.1 mM isobutylmethylxanthine (IBMX) for 24 h. This treatment caused an increase in the levels of cytoskeletal subunits associated with an elevation of cAMP. Under these conditions, PTH (20 nM) and forskolin (0.1 microM) produced persistent cytoplasmic retraction. PTH and forskolin treatment in presence of IBMX (24 h) induced inhibitory effects on actin and tubulin synthesis evaluated by [35S]methionine incorporation into cytoskeletal proteins identified on two-dimensional gel electrophoresis. Under these culture conditions PTH and forskolin also caused disassembly of microfilament and microtubules as shown by the marked reduction in Triton X soluble-actin and alpha- and beta-tubulins. In contrast, incubation of mouse bone cells with 1 microM calcium ionophore A23187 (24 h) resulted in increased monomeric and polymeric forms of actin and tubulin while not affecting intracellular cAMP. Alkaline phosphatase activity was increased in all conditions while DNA synthesis evaluated by [3H]thymidine incorporation into DNA was stimulated by PTH combined with forskolin and inhibited by the calcium ionophore. These data indicate that persistent elevation of cAMP levels induced by PTH and forskolin with IBMX cause cell retraction with actin and tubulin disassembly whereas rising cell calcium induces cytoskeletal protein assembly and synthesis in mouse osteoblasts. The results point to a distinct involvement of calcium and cAMP in both cytoskeletal assembly and DNA synthesis in mouse bone cells.  相似文献   

18.
Differentiation of 3T3-L1 adipocytes, monitored by accumulation of neutral lipid and by increase in alpha-glycerophosphate dehydrogenase activity, is accelerated by incubation of confluent 3T3-L1 fibroblasts in media containing insulin, dexamethasone and isobutylmethylxantine (IBMX). IBMX inhibits cyclic nucleotide phosphodiesterases as well as the binding of adenosine to its receptor. Agents with relatively specific effects were utilized to examine the role of IBMX in differentiation. Ro 20-1724, a selective inhibitor of soluble cAMP phosphodiesterase activities, was as effective as IBMX in increasing alpha-glycerophosphate dehydrogenase activity and fat deposition. Neither cilostamide, which inhibits particulate but not soluble cAMP phosphodiesterase activities, 8-phenyltheophylline, an adenosine receptor antagonist with little inhibitory effect on phosphodiesterase activities, nor N6-(R phenyl-isopropyl) adenosine (PIA), a potent adenosine receptor agonist, were effective in promoting differentiation. In addition, we find that maximal increases in alpha-glycerophosphate dehydrogenase activity and lipid accumulation were observed when differentiation was initiated in the presence of 10 nM dexamethasone. These data suggest that inhibition of soluble cAMP phosphodiesterase activity and subsequent alterations in cAMP may play an important role in the mechanism whereby IBMX enhances differentiation of 3T3-L1 cells.  相似文献   

19.
The goal of this study was to assess the potential cross-regulation of cyclic nucleotides in human corpus cavernosum (HCC). Incubation of primary cultures of HCC smooth muscle cells with either the NO donor sodium nitroprusside (SNP, 10 μM) or the phosphodiesterase type 5 (PDE 5) inhibitor sildenafil (50 nM) produced little or no changes in the intracellular cGMP levels. Incubation with both SNP and sildenafil produced marked increases in cGMP. Interestingly, incubation of cells with 10 μM of forskolin or PGE1 produced significant enhancement of cGMP accumulation. These increases were not further enhanced by the addition of SNP and sildenafil. Kinetic analyses of cGMP hydrolysis by PDE 5 showed that high concentrations of cAMP reversibly inhibited the enzyme with a Ki of 258 ± 54 μM. The increase in cGMP levels in response to cAMP generating agents is not due to assay artifact since cAMP did not cross-react with cGMP antibody. Our data suggest that cAMP up-regulates intracellular levels of cGMP, in part, by inhibition of PDE 5. We also noted that cGMP down-regulates cAMP synthesis via a mechanism requiring G-protein coupling of adenylyl cyclase. These observations may have important implications in the utility of pharmacotherapeutic agents targeting cyclic nucleotide metabolism for the treatment of erectile dysfunction.  相似文献   

20.
In term gestational human umbilical artery segments incubated in room air at 37 degrees, histamine, acetylcholine, bradykinin, K+, and serotonin (agonists that cause contraction) cause accumulation of guanosine 3':5'-monophosphate (cGMP) without altering the content of adenosine 3':5'-monosphophate (cAMP); prostaglandin E1 (PGE1), which relaxes the artery, causes cAMP accumulation without affecting the cGMP content (Clyman, R. I., Sandler, J.A., Manganiello, V.C., and Vaughan, M. (1975) J. Clin. Invest., in press). It has been postulated that Ca-2+ is important in the regulation of cyclic nucleotides in other tissues. In the umbilical artery the control of cAMP content by PGE1 was independent of Ca-2+. After incubation in Ca-2+-free medium, the c GMP contentof the artery segments was decreased by 50% and was unaffected by histamine, acetylcholine, bradykinin, and K+. Readdition of Ca-2+ (2.7 mM) or Sr-2+ (3.6 mM) to the medium partially restored the basal cGMP content and the agonist effects on the cGMP content. However, Sr-2+ was not as effective as Ca-2+ in this regard. Ionophores A23187 and X537A (agents that facilitate Ca-2+ movement through membranes) mimicked the effects of these Ca-2+-dependent agonists on cGMP content. Incubation with the phosphodiesterase inhibitor 3-isobutyl-1-methyl xanthine (0.1 mM) increased both the basal content of cGMP and the histamine-induced accumulation 3-fold. This effect was dependent on the presence of Ca-2+ also. Accumulation of cGMP induced by serotonin, on the other hand, was not diminished in Ca-2+-depleted arteries and, in fact, seemed to be inhibited by 2.7 mM Ca-2+. These observations are consistent with the existence in the umbilical artery of two separate mechanisms for control of cGMP synthesis that are influenced differently by Ca-2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号