首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M r 25,000 protein (pp25), a substrate for protein Ser/Thr kinases, was recently shown to consist of a portion of the Xenopus laevis vitellogenin B1 protein. By Western blot analyses using antibodies against pp25, a minor protein band with M r 43,000 (pp43) was detected in purified preparations of pp25. In this study, pp43 was highly purified through several column chromatography steps and its protein structure was analyzed. The amino acid sequence of the amino-terminal region of pp43 was the same as that of pp25. pp43 contained about two times more phosphates than pp25. These phosphates in pp43 were more resistant to acid phosphatase attack than those of pp25. pp43 was able to bind to pNiXa, a binding protein of pp25. α-chymotryptic digestion generated a common fragment with molecular mass of 23,000 from both pp43 and pp25. These results suggest that pp43 may be a precursor of pp25 generated during processing of vitellogenin B1.  相似文献   

2.
A phosphorylated protein with a molecular mass of 25 000 (pp25) previously purified from the cytosolic fraction of Xenopus laevis oocytes is an effective phosphate acceptor for casein kinases and protein kinase C. In this study, based on the partial amino acid sequence of pp25, a cDNA was isolated that encodes a new yolk precursor protein, Xenopus vitellogenin B1, which contained the sequence encoding pp25. Both mRNA and protein of vitellogenin B1 were expressed in all of the female organs examined. In agreement with a previous report, the amount of vitellogenin B1 protein in the liver increased after stimulation with estrogen. These results suggest that pp25 is a cytosolic non-crystallized yolk protein nutrient source, but it might also play a role in rapid development.  相似文献   

3.
A phosphorylated protein with molecular mass of 25,000 (pp25) is a component of Xenopus laevis vitellogenin B1. Our previous report showed the existence of several binding proteins of pp25 in the particulate fraction of Xenopus oocytes. In an attempt to elucidate the function of pp25, two of these binding proteins were purified, analyzed by mass-spectrometry, and identified as ribosomal proteins S13 and S14. Other binding proteins in the particulate fraction mostly corresponded to those derived from purified 40S and 60S ribosomal subunits, as shown by the overlay assay method. However, pp25 did not show any effect on protein synthesis in the rabbit reticulocyte lysate system. A model in which pp25 connects a type of serpin (serine protease inhibitor), the only pp25-binding protein detected in the cytoplasm, to the endoplasmic reticulum through two serine clusters is proposed to explain a possible function of this protein.  相似文献   

4.
A phosphorylated protein with molecular mass of 25,000 (pp25) can be derived from Xenopus laevis vitellogenin B1. In order to clarify the distribution of pp25, the changes in the concentration and localization of this protein in oocytes and embryos were examined by immunoblotting and immunohistochemistry using anti-pp25 antibodies, and compared with those of yolk proteins. In oocytes, pp25 was shown to localize characteristically at the surface just below the plasma membrane by immunohistochemical analysis. Interestingly, during embryogenesis, immunocytochemical staining revealed a transition of the pp25 distribution from beneath the outer surface of each germ layers to endoderm during tailbudding. In contrast, yolk proteins were localized in endoderm constantly throughout the developmental stages. However, the level of pp25 in the cytoplasm gradually decreased following the growth of embryos at the tailbud stage and disappeared at the tadpole stage, as shown by immunoblot analysis. These results suggest that pp25 could play different roles from those of yolk proteins such as lipovitellin and phosvitin in X. laevis oocytes and developing embryos.  相似文献   

5.
A phosphorylated protein with molecular mass of 25,000 (pp25) is a component of Xenopus laevis vitellogenin B1. In an attempt to elucidate the physiological role of pp25, its effect on protein phosphorylation was studied. In vitro phosphorylation of some endogenous proteins from the cytoplasm and membrane fraction of Xenopus oocytes by casein kinase II and protein kinase C (PKC) was inhibited by increasing the concentration of pp25. By Western blot analysis using an antibody against phospho-(Ser/Thr) PKC substrate, phosphorylation of some endogenous proteins, especially in the cytoplasm, of Xenopus embryos was seen to increase when pp25 disappeared during developmental stages 35–45. These results suggest that pp25 may have a role as an inhibitory modulator of some protein phosphorylation in Xenopus oocytes and embryos.  相似文献   

6.
It has been shown previously in our laboratory that, in Perinereis cultrifera, the four mature vitellin subunits (Mr 98,000, 22,000, 20,000, 16,000) are proteolytically derived within the oocyte from a single extraoocytic precursor, vitellogenin, with an apparent Mr (176,000) higher by 20,000 than the sum of the Mr of the four end products. In this report, it is shown that a 15,000-Mr protein, designated as P15, not only accumulates in maturing oocytes but also originates from outside these cells similarly to vitellin. Moreover in vivo labelling experiments indicate that the appearance of P15 occurs after vitellogenin enters the oocyte, concurrently with the appearance of the lower-Mr fragments characteristic of vitellin. From these data, it is concluded that P15 most likely represents a vitellogenin-derived protein which is generated within the oocytes during the transformation of vitellogenin into vitellin. This conclusion is further supported by the additional finding that P15 immunologically cross-reacts with vitellogenin but not with mature vitellin. P15 has been purified to homogeneity from the soluble protein fraction of submature oocytes and partially characterized. The 15,000-Mr protein exists in a monomeric form with a pI of about 7.7. Unlike vitellin, P15 does not contain significant amounts of lipid or carbohydrate and has a low absorbance at 280 nm. The amino acid composition of the purified protein is also presented.  相似文献   

7.
A glucocorticoid receptor-associated Mr approximately 90,000 non-hormone-binding protein was purified and characterized. The molybdate-stabilized nonactivated rat liver glucocorticoid-receptor complex (Mr approximately 300,000) was immunoadsorbed on cyanogen bromide-activated Sepharose 4B to which a monoclonal IgG 2a antibody directed against the activated rat glucocorticoid receptor (Mr approximately 94,000) had been coupled. Following removal of molybdate and thermal activation of the receptor immobilized on the immunoaffinity matrix, an Mr approximately 90,000 non-hormone-binding protein was specifically eluted. This protein was further purified to homogeneity using high performance ion exchange chromatography and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, sucrose gradient ultra-centrifugation, and high performance size-exclusion chromatography. Hydrodynamic characterization under nondenaturing conditions revealed that the purified glucocorticoid receptor-associated protein represents a molecular species with a sedimentation coefficient of 6.1 S, a Stokes radius of 6.9 nm, and a calculated Mr approximately 184,000. These results, combined with analysis on denaturing electrophoresis indicate that, under certain conditions, the Mr approximately 94,000 steroid-binding protein is associated with a dimer of Mr approximately 90,000 non-hormone-binding protein.  相似文献   

8.
Cytoskeletal preparation obtained from synaptosome fractions of rat cerebrum contained the activity of kinase C, which phosphorylated 17K Mr protein endogenous to the preparation. The kinase C activity associated with the synaptosome cytoskeletons is greater in the cerebellum and hippocampus than in the cerebrum. The enhancement rates of phosphorylation of the 17K Mr protein were 293%, 544%, and 526% in the Triton X-100-insoluble fractions of synaptosomes prepared from cerebral cortex, hippocampus, and cerebellum, respectively. The 17K Mr protein was distinct from myelin basic protein (MBP) for the following reasons: 1) The electrophoretic mobility of the protein was slightly smaller than that of major MBP of rat in the polyacrylamide gel of 10–20% linear gradient, and the protein was not contained in the purified rat myelin. 2) The isoelectric point of the protein was in neutral range, whereas that of MBP was in alkaline one. 3) The 17K Mr protein did not cross-react with anti-MBP antibody. The protein was shown to be a major substrate contained in the cytoskeletal preparation of synaptosome obtained from cerebrum except for contaminating MBP. Only serine residue of the 17K Mr protein was phosphorylated by the kinase C endogenous to the preparation. The results suggest strongly that the synaptic role of protein kinase C through phosphorylation of the 17K Mr protein.Abbreviations used EGTA ethyleneglycol-bis(-aminoethyl ether) - HEPES N-2-hydroxyethyl-piperazine-N-2-ethanesulfonic acid - MBP myelin basic protein - SDS sodium dodecyl sulfate - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - SPM synaptic plasma membrane  相似文献   

9.
Dystrophin was purified by immunoaffinity chromatography from detergent-solubilized Torpedo electric organ postsynaptic membranes using monoclonal antibodies. A major doublet of proteins at Mr 58,000 and minor proteins at Mr 87,000, Mr 45,000, and Mr 30,000 reproducibly copurified with dystrophin. The Mr 58,000 and Mr 87,000 proteins were identical to previously described peripheral membrane proteins (Mr 58,000 protein and 87,000 protein) whose muscle homologs are associated with the sarcolemma (Froehner, S. C., Murnane, A. A., Tobler, M., Peng, H. B., and Sealock, R. (1987) J. Cell Biol. 104, 1633-1646; Carr, C., Fischbach, G. D., and Cohen, J. B. (1989) J. Cell Biol. 109, 1753-1764). The copurification of dystrophin and Mr 58,000 protein was shown to be specific, since dystrophin was also captured with a monoclonal antibody against the Mr 58,000 protein but not by several control antibodies. The Mr 87,000 protein was a major component (along with the Mr 58,000 protein) in material purified on anti-58,000 columns, suggesting that the Mr 58,000 protein forms a distinct complex with the Mr 87,000 protein, as well as with dystrophin. Immunofluorescence staining of skeletal and cardiac muscle from the dystrophin-minus mdx mouse with the anti-58,000 antibody was confined to the sarcolemma as in normal muscle but was much reduced in intensity, even though immunoblotting demonstrated that the contents of Mr 58,000 protein in normal and mdx muscle were comparable. Thus, the Mr 58,000 protein appears to associate inefficiently with the sarcolemmal membrane in the absence of dystrophin. This deficiency may contribute to the membrane abnormalities that lead to muscle necrosis in dystrophic muscle.  相似文献   

10.
A phosphorylated protein with a molecular mass of 25,000 (pp25) is involved in Xenopus laevis vitellogenin B1 and partially overlaps with phosvitin and lipovitellin 2. The protease responsible for pp25 degradation was studied in vitro since this occurs during embryogenesis. Initially, a protease thought to be a contaminant of the purified pp25 preparation was analyzed and an antipain-sensitive protease presumed to be involved. When commercially available proteases were examined, pp25 was not degraded by calpain I or 20S proteasome, but it was degraded by cathepsin L in vitro. A survey of the protease responsible for pp25 degradation in the cytoplasm of Xenopus oocytes found partially purified pp25 was degraded in partly antipain-sensitive manner. These results suggest that an antipain-sensitive protease or cathepsin L (or a related protease) is a candidate for pp25 degradation.  相似文献   

11.
Inhibitory actions of 1-(5-isoquinolinyl-sulfonyl)-2-methylpiperazine (H-7), N-[2-(methylamine)ethyl]-5-isoquinolinesulfonamide [H-8] and polymyxin B on the calcium-activated, phospholipid-dependent protein kinase (protein kinase C) of rat liver were compared. Using a partially purified liver protein kinase C and an exogenous substrate histone-III S, polymyxin B showed maximum inhibition (IC50, 9.5 microM) followed by H-7 (IC50, 25 microM) and H-8 (IC50, 36 microM). These inhibitors also inhibited protein kinase C-induced phosphorylation of endogenous cytosolic and particulate proteins in a dose-dependent manner though polymyxin B was relatively less effective with the particulate fraction. With the aid of protein kinase-C activators and these inhibitors, seven proteins in cytosolic (Mr 170K, 150K, 43K, 34K, 30K, 25K and 19K daltons) and six proteins in particulate (Mr 150K, 43K, 34K, 25K, 19K and 16K daltons) fractions were identified as probable substrates for protein kinase C in liver. The identity of these proteins remains to be determined.  相似文献   

12.
We have purified a novel GTP-binding protein (G protein) with a Mr of about 24,000 to homogeneity from bovine brain membranes (Kikuchi, A., Yamashita, T., Kawata, M., Yamamoto, K., Ikeda, K., Tanimoto, T., and Takai, Y. (1988) J. Biol. Chem. 263, 2897-2904). In the present studies, we have isolated and sequenced the cDNA of this G protein from a bovine brain cDNA library using oligonucleotide probes designed from the partial amino acid sequences. The cDNA of the G protein has an open reading frame encoding a protein of 220 amino acids with a calculated Mr of 24,954. This G protein is designated as the smg-25A protein (smg p25A). The amino acid sequence deduced from the smg-25A cDNA contains the consensus sequences of GTP-binding and GTPase domains. smg p25A shares about 28 and 44% amino acid homology with the ras and ypt1 proteins, respectively. In addition to this cDNA, we have isolated two other homologous cDNAs encoding G proteins of 219 and 227 amino acids with calculated Mr values of 24,766 and 25,975, respectively. These G proteins are designated as the smg-25B and smg-25C proteins (smg p25B and smg p25C), respectively. The amino acid sequences deduced from the three smg-25 cDNAs are highly homologous with one another in the overall sequences except for C-terminal 32 amino acids. Moreover, three smg p25s have a consensus C-terminal sequence, Cys-X-Cys, which is different from the known C-terminal consensus sequences of the ras and ypt1 proteins, Cys-X-X-X and Cys-Cys, respectively. These results together with the biochemical properties of smg p25A described previously indicate that three smg p25s constitute a novel G protein family.  相似文献   

13.
We have purified, characterized, and identified two GTP-binding proteins with Mr of 25,000 (c25KG) and 21,000 (c21KG) from the cytosol fraction of human platelets. These two proteins were not copurified with the beta gamma subunits of heterotrimeric GTP-binding proteins. Amino acid sequences of tryptic fragments of c21KG completely matched with those of rap1 protein (Pizon, V., Chardin, P., Lerosey, I., Olofsson, B., and Tavitian, A. (1988) Oncogene 3, 201-204), smg p21 (Kawata, M., Matsui, Y., Kondo, J., Hishida, T., Teranishi, Y., and Takai, Y. (1988) J. Biol. Chem. 263, 18965-18971), and Krev-1 protein (Kitayama, H., Sugimoto, Y., Matsuzaki, T., Ikawa, Y., and Noda, M. (1989) Cell 56, 77-84). The partial amino acid sequence analysis of c25KG revealed that this protein was different from any low Mr GTP-binding proteins already reported. c25KG bound about 1 mol of [35S] guanosine 5'-(3-O-thio)triphosphate (GTP gamma S)/mol of protein, with a Kd value of about 45 nM. [35S]GTP gamma S-binding to c25KG was specifically inhibited by guanine nucleotides, GTP and GDP, but not by adenine nucleotides such as ATP and adenyl-5'-yl beta, gamma-imidodiphosphate. The binding activity was not inhibited by pretreatment with N-ethylmaleimide. c25KG hydrolyzed GTP to librate Pi with the specific activity of 1.8 mmol of Pi/mol of protein/min, which are different from the activities of the already purified low Mr GTP-binding proteins. We conclude that c25KG is a novel GTP-binding protein and c21KG is a rap1/smg p21/Krev-1 product.  相似文献   

14.
In purified preparations of human erythrocyte GTP-binding proteins, we have identified a new substrate for pertussis toxin, which has an apparent molecular mass of 43 kDa by silver and Coomassie Blue staining. Pertussis toxin-catalyzed ADP-ribosylation of the 43-kDa protein is inhibited by Mg2+ ion and this inhibition is relieved by the co-addition of micromolar amounts of guanine nucleotides. GTP affects the ADP-ribosylation with a K value of 0.8 microM. Addition of a 10-fold molar excess of purified beta gamma subunits (Mr = 35,000 beta; and Mr = 7,000 gamma) of other GTP-binding proteins results in a significant decrease in the pertussis toxin-mediated ADP-ribosylation of the 43-kDa protein. Treatment of the GTP-binding proteins with guanosine 5'-O-(thiotriphosphate) and 50 mM MgCl2 resulted in shifting of the 43-kDa protein from 4 S to 2 S on sucrose density gradients. Immunoblotting analysis of the 43-kDa protein with the antiserum A-569, raised against a peptide whose sequence is found in the alpha subunits of all of the known GTP-binding, signal-transducing proteins (Mumby, S. M., Kahn, R. A., Manning, D. R., and Gilman, A. G. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 265-259) showed that the 43-kDa protein is specifically recognized by the common peptide antiserum. A pertussis toxin substrate of similar molecular weight was observed in human erythrocyte membranes, bovine brain membranes, membranes made from the pituitary cell line GH4C1, in partially purified GTP-binding protein preparations of rat liver, and in human neutrophil membranes. Treatment of neutrophils with pertussis toxin prior to preparation of the membranes resulted in abolishment of the radiolabeling of this protein. From these data, we conclude that we have found a new pertussis toxin substrate that is a likely GTP-binding protein.  相似文献   

15.
A novel Mr 28,000 erythrocyte transmembrane protein was recently purified and found to exist in two forms, "28kDa" and "gly28kDa," the latter containing N-linked carbohydrate (Denker, B. M., Smith, B. L., Kuhajda, F. P., and Agre, P. (1988) J. Biol. Chem. 263, 15634-15642). Although 28kDa protein resembles the Rh polypeptides biochemically, structural homologies were not identified by immunoblot or two-dimensional iodopeptide maps. The NH2-terminal amino acid sequence for the first 35 residues of purified 28kDa protein is 37% identical to the 26-kDa major intrinsic protein of lens (Gorin, M. B., Yancey, S. B., Cline, J., Revel, J.-P., and Horwitz, J. Cell 39, 49-59). Antisera to a synthetic peptide corresponding to the NH2-terminus of 28kDa protein gave a single reaction of molecular mass 28kDa on immunoblots of erythrocyte membranes. Selective digestions of intact erythrocytes and inside-out membrane vesicles with carboxypeptidase Y indicated the existence of a 5-kDa COOH-terminal cytoplasmic domain. Multiple studies indicated that 28kDa and gly28kDa proteins exist together as a multisubunit oligomer: 1) similar partial solubilizations in Triton X-100; 2) co-purification during ion exchange and lectin affinity chromatography; 3) cross-linking in low concentrations of glutaraldehyde; and 4) physical analyses of purified proteins and solubilized membranes in 1% (v/v) Triton X-100 showed 28kDa and gly28kDa proteins behave as a large single unit with Stokes radius of 61 A and sedimentation coefficient of 5.7 S. These studies indicate that the 28kDa and gly28kDa proteins are distinct from the Rh polypeptides and exist as a multisubunit oligomer. The 28kDa protein has NH2-terminal amino acid sequence homology and membrane organization similar to major intrinsic protein and other members of a newly recognized family of transmembrane channel proteins.  相似文献   

16.
A GTP-binding protein with an Mr of 24,000 was purified from a cholate extract of bovine brain membranes in addition to the previously reported alpha beta gamma-trimeric GTP-binding proteins (G proteins). Partial amino acid sequence analysis of the purified 24-kDa protein revealed that it was not identical to any of the low Mr GTP-binding proteins already reported, but similar to the rac-gene products serving as the substrate of an ADP-ribosyltransferase (C3) purified from the culture medium of Clostridium botulinum type C. However, the 24-kDa protein was not ADP-ribosylated by the botulinum C3 enzyme. The 24-kDa protein was purified as a nucleotide-free form and characterized by the following unique properties distinct from those of alpha beta gamma-trimeric G proteins. (1) Mg2+ was essentially required for nucleotide binding to the 24-kDa protein; there was a progressive increase in its binding affinity for nucleotides as the concentration of the divalent cation was increased. (2) Nucleotides previously bound to the 24-kDa protein were rapidly dissociated from the protein in Mg(2+)-free medium, in accord with the fact that the protein was indeed purified as a nucleotide-free form with Mg(2+)-free solutions. (3) The 24-kDa protein apparently exhibited much lower GTPase activity than do alpha beta gamma-trimeric G proteins because the product GDP was released from the 24-kDa protein in exchange for the substrate GTP only at a very low rate. Based on these findings, a possible role of the 24-kDa protein in cellular signalling is discussed in comparison with well characterized alpha beta gamma-trimeric G proteins.  相似文献   

17.
The major substrate for Ca2+/calmodulin-dependent protein kinase III in mammalian cells is a species of Mr 100,000 that has a primarily cytoplasmic localization. This substrate has now been identified as elongation factor-2 (EF-2), a protein that catalyzes the translocation of peptidyl-tRNA on the ribosome. The amino acid sequence of 18 residues from the N-terminal of the Mr 100,000 CaM-dependent protein kinase III substrate purified from rat pancreas was found to be identical to the N-terminal sequence of authentic rat EF-2 as previously deduced from nucleic acid sequencing of a cDNA (Kohno, K., Uchida, T., Ohkubo, H., Nakanishi, S., Nakanishi, T., Fukui, T., Ohtsuka, E., Ikehara, M., and Okada, Y. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 4978-4982). CaM-dependent protein kinase III phosphorylated EF-2 in vitro with a stoichiometry of approximately 1 mol/mol on a threonine residue. Amino acid sequencing of the purified tryptic phosphopeptide revealed that this threonine residue lies within the sequence: Ala-Gly-Glu-Thr-Arg-Phe-Thr-Asp-Thr-Arg (residues 51-60 of EF-2). The Mr 100,000 protein was stoichiometrically ADP-ribosylated in vitro by the addition of diphtheria toxin and NAD. The Mr 100,000 protein was photoaffinity labeled with a GTP analog and the protein had an endogenous GTPase activity that could be stimulated by the addition of salt-washed ribosomes. These properties are all characteristic of EF-2. Dephospho-EF-2 could support poly(U)-directed polyphenylalanine synthesis in a reconstituted elongation system when combined with EF-1. In the same system, phospho-EF-2 was virtually inactive in supporting polypeptide synthesis; this effect could be reversed by dephosphorylation of phospho-EF-2. These results suggest that intracellular Ca2+ inhibits protein synthesis in mammalian cells via CaM-dependent protein kinase III-catalyzed phosphorylation of EF-2.  相似文献   

18.
Larval-specific protein (LSP) is the most abundant protein in the hemolymph of cockroaches shortly before molting, but is rapidly cleared from the hemolymph during the molt (Kunkel, J. G., and Lawler, D. M. (1974) Comp. Biochem. Physiol. 47B, 697-710). Blatta orientalis LSP was purified by sedimentation in preparative sucrose gradients followed by 2-hydroxypropylamino-cellulose anion-exchange chromatography and gel filtration on a column of Bio-Gel A-1.5m. The amino acid composition of LSP includes 16.3 mol % tyrosine and 4.9 mol % phenylalanine, but virtually no cysteine and little methionine. The following physical properties were determined for LSP: R8 = 68.3 A, 8(20),w = 17.8, and V = 0.723. From these values an Mr = 507,900 was calculated. In electron micrographs, LSP appears as rectangular particles of 121 by 134 A. In disc polyacrylamide gel electrophoresis, native LSP exhibits a single band, but in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, LSP is resolved into a doublet of closely spaced bands of Mr = 88,100 and 84,400 present in a ratio of 1.38:1. These data indicate that native B. orientalis LSP is a hexamer of subunits averaging approximately Mr = 86,000. Crossed immunoelectrophoresis of Blattella germanica larval serum indicates that LSP in that species is a hexamer composed of a random assortment of two subunits of different charge in the ratio 1.25:1. The amino acid composition and physical properties of LSP suggest that LSP may be the hemimetabolous analogue of the tyrosine- and phenylalanine-rich storage proteins of holometabolous insects.  相似文献   

19.
A fast and efficient method for the isolation of the rat Mr approximately 90,000 heat shock protein is presented, comprising a two-step high-performance anion-exchange and gel-permeation column chromatography. The Mr approximately 90,000 protein was purified to electrophoretic homogeneity in high yield (up to 2 mg per 10g of normal rat liver) in 4-5 h. The purified protein was recognized on protein immunoblots by monospecific rabbit antibodies raised against the rat glucocorticoid receptor-associated Mr approximately 90,000 non-ligand-binding protein. The N-terminal sequence of the first 25 amino acids of the purified protein showed a high degree of similarity with Mr approximately 90,000 heat shock proteins from calf, human, Drosophila, and yeast.  相似文献   

20.
A protein in calf serum with molecular mass of 125,000 is selectively phosphorylated by the surface kinase activity of intact tissue culture cells and erythrocytes. The protein, termed pp125, is phosphorylated at serine and threonine residues to a ratio of greater than 1 mol P/mol. The pp125 is an acidic protein (pI 4.4) which also serves as substrate for purified phosvitin/casein kinases but not for cyclic AMP-dependent protein kinases. About 80-fold purification of pp125 was achieved by ion exchange and affinity chromatography. Gel filtration under non-reducing conditions showed that pp125 is part of a complex (Mr 535,000). The pp125 obviously originates from a large plasma protein: the incubation of calf plasma with intact cells in the presence of [gamma-32P]ATP resulted in the labeling of a protein with Mr greater than 300,000 (pp greater than 300). The relationship between pp greater than 300 in plasma and pp125 in serum was demonstrated by cyanogen bromide peptide patterns, and the use of specific anti-serum raised against pp125. Furthermore, it was shown that pp125 is derived from pp greater than 300 during blood clotting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号