首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A proteolytic fragment of recA protein, missing about 15% of the protein at the C terminus, was found to promote assimilation of homologous single-stranded DNA into duplex DNA more efficiently than intact recA protein. This difference was not found if Escherichia coli single-stranded DNA binding protein was present. The ATPase activity of both intact recA protein and the fragment was identical. The difference in strand assimilation activity cannot be due to differences in single-stranded DNA affinity, since both the fragment and intact proteins bind to single-stranded DNA with nearly identical affinities. However, the fragment was found to bind double-stranded DNA more tightly and to aggregate more extensively than recA protein; both of these properties may be important in strand assimilation. Aggregation of the fragment was extensive in the presence of duplex DNA under the same condition where recA protein did not aggregate. The double-stranded DNA binding of both recA protein and the fragment responds to nucleotide cofactors in the same manner as single-stranded DNA binding, i.e. ADP weakens and ATP gamma S strengthens the association. The missing C-terminal region of recA protein includes a very acidic region that is homologous to other single-stranded DNA binding proteins and which has been implicated in DNA binding modulation. This C-terminal region may serve a similar function in recA protein, possibly inhibiting double-stranded DNA invasion. The possible role of the enhanced double-stranded DNA affinity of the fragment protein in the mechanism of strand assimilation is discussed.  相似文献   

2.
An addition of pancreatic DNAse to the cultural medium is found to stimulate DNA synthesis and proliferation of Bacillus subtilis cells. Pancreatic DNAse induces a single-stranded disruption of Bac. subtilis DNA, which may act as a mechanism of DNA synthesis increase and of the culture growth acceleration.  相似文献   

3.
T Fujiyoshi  J Nakayama  M Anai 《Biochemistry》1982,21(17):4159-4164
The various catalytic activities of the ATP-dependent deoxyribonuclease (DNase) of Bacillus laterosporus have pH optima at 6.3 and 8.3. Although the pH profile of ATP-dependent DNase activity on duplex DNA is bell shaped with a maximum at about pH 8.3, ATP-dependent DNAse activity on single-stranded DNA has optima at pH 6.3 and 8.3. ATPase activities dependent on double-stranded and single-stranded DNA have a high bell-shaped peak with a maximum at pH 6.3 with a low and broad shoulder at about pH 8.3. ATP-independent DNase activity also has optima at pH 6.3 and 8.3. The ratio of the amount of ATP hydrolyzed per number of cleaved phosphodiester bonds in DNA increases with decrease in the pH value of the reaction. The ratios obtained at pH 8.3 and 6.3 were respectively about 3 and 22 with duplex DNA as substrate and 5 and 17 with single-stranded DNA as substrate. Formation of a single-stranded region of 15000-20000 nucleotides, which is linked to duplex DNA and about half of which has 3'-hydroxyl termini, was observed at about pH 6.3, but not at above pH 7.5. Furthermore, the optimum concentrations of divalent cations for the activity producing the single-stranded region and the activity hydrolyzing ATP were identical (3 mM Mn2+ or 5 mM Mg2+). Thus the two activities are closely related. These results indicate that the enzyme has two different modes of action on duplex DNA which are modulated by the pH.  相似文献   

4.
Comparative effect of the DNAse from rat liver chromatin and Neurospora crassa endonuclease S1 on closed circular superhelical DNA of PM-2 phage and Simian Virus 40 is studied. It is shown that both of them--the DNAse from chromatin proteins and endonuclease S1--are specific to single-stranded regions in DNA molecular. It is suggested that chromatin protein DNAse participates in reparation processes.  相似文献   

5.
The DNA polymerase-primase from Drosophila melanogaster has been separated into its constituent polymerase and primase subunits by sedimentation in glycerol gradients containing 50% ethylene glycol. Both activities have been obtained in good yield. The properties of the 182-kDa polymerase subunit are similar to those of the intact four-subunit enzyme. However, there are three significant differences. (i) The polymerase activity of the 182-kDa subunit shows an increased thermolability; (ii) the pause sites during replication of singly primed, single-stranded circular DNA by the 182-kDa subunit are altered; and (iii) unlike the intact enzyme, the 182-kDa subunit is highly processive in the presence of the single-stranded DNA-binding protein of Escherichia coli.  相似文献   

6.
7.
The DNA helicase encoded by gene 4 of bacteriophage T7 assembles on single-stranded DNA as a hexamer of six identical subunits with the DNA passing through the center of the toroid. The helicase couples the hydrolysis of dTTP to unidirectional translocation on single-stranded DNA and the unwinding of duplex DNA. Phe(523), positioned in a β-hairpin loop at the subunit interface, plays a key role in coupling the hydrolysis of dTTP to DNA unwinding. Replacement of Phe(523) with alanine or valine abolishes the ability of the helicase to unwind DNA or allow T7 polymerase to mediate strand-displacement synthesis on duplex DNA. In vivo complementation studies reveal a requirement for a hydrophobic residue with long side chains at this position. In a crystal structure of T7 helicase, when a nucleotide is bound at a subunit interface, Phe(523) is buried within the interface. However, in the unbound state, it is more exposed on the outer surface of the helicase. This structural difference suggests that the β-hairpin bearing the Phe(523) may undergo a conformational change during nucleotide hydrolysis. We postulate that upon hydrolysis of dTTP, Phe(523) moves from within the subunit interface to a more exposed position where it contacts the displaced complementary strand and facilitates unwinding.  相似文献   

8.
DNA-dependent protein kinase (DNA-PK) is involved in joining DNA double-strand breaks induced by ionizing radiation or V(D)J recombination. The kinase is activated by DNA ends and composed of a DNA binding subunit, Ku, and a catalytic subunit, DNA-PK(CS). To define the DNA structure required for kinase activation, we synthesized a series of DNA molecules and tested their interactions with purified DNA-PK(CS). The addition of unpaired single strands to blunt DNA ends increased binding and activation of the kinase. When single-stranded loops were added to the DNA ends, binding was preserved, but kinase activation was severely reduced. Obstruction of DNA ends by streptavidin reduced both binding and activation of the kinase. Significantly, short single-stranded oligonucleotides of 3-10 bases were capable of activating DNA-PK(CS). Taken together, these data indicate that kinase activation involves a specific interaction with free single-stranded DNA ends. The structure of DNA-PK(CS) contains an open channel large enough for double-stranded DNA and an adjacent enclosed cavity with the dimensions of single-stranded DNA. The data presented here support a model in which duplex DNA binds to the open channel, and a single-stranded DNA end is inserted into the enclosed cavity to activate the kinase.  相似文献   

9.
DNA polymerase III of Escherichia coli requires multiple auxiliary factors to enable it to serve as a replicative complex. We demonstrate that auxiliary components of the DNA polymerase III holoenzyme, the gamma delta complex and beta subunit, markedly stimulate DNA polymerase II on long single-stranded templates. DNA polymerase II activity is enhanced by single-stranded DNA binding protein, but the stimulation by gamma delta and beta can be observed either in the absence or presence of single-stranded DNA binding protein. In contrast with DNA polymerase III, the requirement of DNA polymerase II for gamma delta cannot be bypassed by large excesses of the beta subunit at low ionic strength in the absence of the single-stranded DNA binding protein. The product of the DNA polymerase II-gamma delta-beta reaction on a uniquely primed single-stranded circle is of full template length; the reconstituted enzyme apparently is incapable of strand displacement synthesis. The possible biological implications of these observations are discussed.  相似文献   

10.
The three-dimensional structure of the homodimeric single-stranded DNA binding protein encoded by the filamentous Pseudomonas bacteriophage Pf3 has been determined using heteronuclear multidimensional NMR techniques and restrained molecular dynamics. NMR experiments and structure calculations have been performed on a mutant protein (Phe36 --> His) that was successfully designed to reduce the tendency of the protein to aggregate. The protein monomer is composed of a five-stranded antiparallel beta-sheet from which two beta-hairpins and a large loop protrude. The structure is compared with the single-stranded DNA binding protein encoded by the filamentous Escherichia coli phage Ff, a protein with a similar biological function and DNA binding properties, yet quite different amino acid sequence, and with the major cold shock protein of Escherichia coli, a single-stranded DNA binding protein with an entirely different sequence, biological function and binding characteristics. The amino acid sequence of the latter is highly homologous to the nucleic acid binding domain (i.e. the cold shock domain) of proteins belonging to the Y-box family. Despite their differences in amino acid sequence and function, the folds of the three proteins are remarkably similar, suggesting that this is a preferred folding pattern shared by many single-stranded DNA binding proteins.  相似文献   

11.
Escherichia coli dnaZX, the gene which when mutant blocks DNA chain elongation, was cloned into a lambda PL promoter-mediated expression vector. In cells carrying this plasmid, the activity that complements a mutant dnaZ extract in replicating a primed single-stranded DNA circle was increased about 20-fold. Two polypeptides of 71 and 52 kDa were overproduced. Upon fractionation, two complementing activities were purified to homogeneity and proved to be the 71- and 52-kDa polypeptides. Immunoassays revealed their respective identities with the tau and gamma subunits of DNA polymerase III holoenzyme. The N-terminal amino acid sequences of the first 12 residues were identical in both subunits, as were their molar specific activities in dnaZ complementation. Thus, the tau subunit complements the defect in the mutant holoenzyme from the dnaZts strain as efficiently as does the gamma subunit. Inasmuch as the 71-kDa subunit (tau) can also overcome the enzymatic defect in a dnaX mutant strain, this polypeptide has dual replication functions, only one of which can be performed by the gamma subunit. Availability of pure tau and gamma subunits for study has provided the basis for proposing an asymmetry in the structure and function of a dimeric DNA polymerase III holoenzyme.  相似文献   

12.
DNA primase has been partially purified from wheat germ. This enzyme, like DNA primases characterized from many procaryotic and eucaryotic sources, catalyses the synthesis of primers involved in DNA replication. However, the wheat enzyme differs from animal DNA primase in that it is found partially associated with a DNA polymerase which differs greatly from DNA polymerase alpha. Moreover, the only wheat DNA polymerase able to initiate on a natural or synthetic RNA primer is DNA polymerase A. In this report we describe in greater detail the chromatographic behaviour of wheat DNA primase and its copurification with DNA polymerase A. Some biochemical properties of wheat DNA primase such as pH optimum, Mn + 2 or Mg + 2 optima, and temperature optimum have been determined. The enzyme is strongly inhibited by KCI, cordycepine triphosphate and dATP, and to a lesser extent by cAMP and formycine triphosphate. The primase product reaction is resistant to DNAse digestion and sensitive to RNAse digestion. Primase catalyses primer synthesis on M13 ssDNA as template allowing E.coli DNA polymerase I to replicate the primed M13 single-stranded DNA leading to double-stranded M13 DNA (RF). M13 replication experiments were performed with wheat DNA polymerases A, B, CI and CII purified in our laboratory. Only DNA polymerase A is able to recognize RNA-primed M13 ssDNA.  相似文献   

13.
The DNA cleavage reaction of eukaryotic topoisomerase II produces nicked DNA along with linear nucleic acid products. Therefore, relationships between the enzyme's DNA nicking and double-stranded cleavage reactions were determined. This was accomplished by altering the pH at which assays were performed. At pH 5.0 Drosophila melanogaster topoisomerase II generated predominantly (greater than 90%) single-stranded breaks in duplex DNA. With increasing pH, less single-stranded and more double-stranded cleavage was observed, regardless of the buffer or the divalent cation employed. As has been shown for double-stranded DNA cleavage, topoisomerase II was covalently bound to nicked DNA products, and enzyme-mediated single-stranded cleavage was salt reversible. Moreover, sites of single-stranded DNA breaks were identical with those mapped for double-stranded breaks. To further characterize the enzyme's cleavage mechanism, electron microscopy studies were performed. These experiments revealed that separate polypeptide chains were complexed with both ends of linear DNA molecules generated during cleavage reactions. Finally, by use of a novel religation assay [Osheroff, N., & Zechiedrich, E. L. (1987) Biochemistry 26, 4303-4309], it was shown that nicked DNA is an obligatory kinetic intermediate in the topoisomerase II mediated reunion of double-stranded breaks. Under the conditions employed, the apparent first-order rate constant for the religation of the first break was approximately 6-fold faster than that for the religation of the second break. The above results indicate that topoisomerase II carries out double-stranded DNA cleavage/religation by making two sequential single-stranded breaks in the nucleic acid backbone, each of which is mediated by a separate subunit of the homodimeric enzyme.  相似文献   

14.
The rate of production of acid-soluble material during degradation of duplex DNA by Hemophilus influenzae ATP-dependent DNAse (Hind exonuclease V) has been shown to be directly dependent upon the Mg2+ concentration in the reaction mixture. At high concentrations of Mg2+ (5 to 20 mM), DNA degradation to acid-soluble products is rapid and the rate of ATP hydrolysis is slightly depressed. At low concentrations of Mg2+ (0.1 to 0.5 mM), the enzyme rapidly hydrolyzes ATP and converts up to 35% of linear duplex DNA to single-stranded material while degrading less than 0.2% of the DNA to acid-soluble products. We refer to this enzymatic production of single-stranded DNA as the "melting" activity. Under the conditions of our assay, the initial melting reaction is processive, lasting about 70s on phage T7 DNA. Using DNAs with several different lengths, we have established that the duration of the initial reaction is dependent upon DNA length, requiring approximately 1 s per 0.18 mum. The products of the initial reaction on phage T7 DNA are somewhat heterogeneous, consisting of short duplex fragments approximately 0.5 mum long, purely single-stranded products up to 7 mum long, and longer duplex fragments 3 to 11 mum in length, some of which have single-stranded tails. Nearly half of the single-stranded material remains linked to a duplex segment of DNA after the inital processive reaction. We propose that Hind exo V initiates attack at the DNA termini and then acts in a processive manner, migrating along the DNA molecule, converting some regions to single-stranded material by the combined action of the melting activity and limited phosphodiester cleavage, while leaving other regions double-stranded. At the completion of its processive movement through a single DNA molecule, it is released and then recycles onto either intact molecules or the partially degraded products, continuing in this manner until the DNA is finally reduced to oligonucleotides.  相似文献   

15.
16.
An auxiliary protein for DNA polymerase-delta from fetal calf thymus   总被引:62,自引:0,他引:62  
An auxiliary protein which affects the ability of calf thymus DNA polymerase-delta to utilize template/primers containing long stretches of single-stranded template has been purified to homogeneity from the same tissue. The auxiliary protein coelutes with DNA polymerase-delta on DEAE-cellulose and phenyl-agarose chromatography but is separated from the polymerase on phosphocellulose chromatography. The physical and functional properties of the auxiliary protein strongly resemble those of the beta subunit of Escherichia coli DNA polymerase III holoenzyme. A molecular weight of 75,000 has been calculated from a sedimentation coefficient of 5.0 s and a Stokes radius of 36.5 A. A single band of 37,000 daltons is seen on sodium dodecyl sulfate gel electrophoresis, suggesting that the protein exists as a dimer of identical subunits. The purified protein has no detectable DNA polymerase, primase, ATPase, or nuclease activity. The ability of DNA polymerase-delta to replicate gapped duplex DNA is relatively unaffected by the presence of the auxiliary protein, however, it is required to replicate templates with low primer/template ratios, e.g. poly(dA)/oligo(dT) (20:1), primed M13 DNA, and denatured calf thymus DNA. The auxiliary protein is specific for DNA polymerase-delta; it has no effect on the activity of calf thymus DNA polymerase-alpha or the Klenow fragment of E. coli DNA polymerase I with primed homopolymer templates. Although the auxiliary protein does not bind to either single-stranded or double-stranded DNA, it does increase the binding of DNA polymerase-delta to poly(dA)/oligo(dT), suggesting that the auxiliary protein interacts with the polymerase in the presence of template/primer, stabilizing the polymerase-template/primer complex.  相似文献   

17.
The mitochondrial replication machinery in human cells includes the DNA polymerase γ holoenzyme and the TWINKLE helicase. Together, these two factors form a processive replication machinery, a replisome, which can use duplex DNA as template to synthesize long stretches of single-stranded DNA. We here address the importance of the smaller, accessory B subunit of DNA polymerase γ and demonstrate that this subunit is absolutely required for replisome function. The duplex DNA binding activity of the B subunit is needed for coordination of POLγ holoenzyme and TWINKLE helicase activities at the mtDNA replication fork. In the absence of proof for direct physical interactions between the components of the mitochondrial replisome, these functional interactions may explain the strict interdependence of TWINKLE and DNA polymerase γ for mitochondrial DNA synthesis. Furthermore, mutations in TWINKLE as well as in the catalytic A and accessory B subunits of the POLγ holoenzyme, may cause autosomal dominant progressive external ophthalmoplegia, a disorder associated with deletions in mitochondrial DNA. The crucial importance of the B subunit for replisome function may help to explain why mutations in these three proteins cause an identical syndrome.  相似文献   

18.
The hormone-induced and post-irradiation changes in the molecular weight of a single-stranded DNA (SSDNA) in alkaline nuclear lysates and the activities of DNAses and pyknotic nuclei from rat thymocytes were studied. It was shown that 1 hr after injection of prednisolone (1 mg per 100 g of body weight) the molecular weight of SSDNA in the lymphoid organs is decreased with a subsequent increase by the 6th hour. The hormone-induced degradation of DNA is not accompanied by any marked increase in the activities of DNAses or by an appearance of pykotic nuclei in the thymocytes. The irradiation of the animals at a dose of 900 R leads to an irreversible decrease of the molecular weight of SSDNA in the lymphoid organs, to a steady increase of the DNAse activity and a sharp increase of the amount of pyknotic nuclei in the thymocytes. Studies on the mechanism of post-hormonal degradation of DNA in rat thymocytes in vitro demonstrated that prednisolone exerts its effects on the early and late stages of DNA degradation.  相似文献   

19.
The mitochondrial DNA polymerase from embryos of Drosophila melanogaster has been examined with regard to template-primer utilization, processivity, and fidelity of nucleotide polymerization. The enzyme replicates predominantly single-stranded and double-stranded DNAs: the rate of DNA synthesis is greatest on the gapped homopolymeric template poly(dA).oligo(dT), while the highest substrate specificity is observed on single-stranded DNA templates of natural DNA sequence. Kinetic experiments and direct physical analysis of DNA synthetic products indicate that the Drosophila DNA polymerase gamma polymerizes nucleotides by a quasi-processive mechanism. The mitochondrial enzyme demonstrates a high degree of accuracy in nucleotide incorporation which is nearly identical with that of the replicative DNA polymerase alpha from Drosophila embryos. Thus, the catalytic properties of the near-homogeneous Drosophila DNA polymerase gamma are consistent with the in vivo requirements for mitochondrial DNA synthesis as described in a variety of animal systems.  相似文献   

20.
A purification procedure described previously resulting in electrophoretically pure Bacillus subtilis ATP-dependent DNAse has now been modified by adding a fractionation stage with Polymin P to permit large-scale isolation of the enzyme. It has been found that the enzyme molecule (Mr = 300000) consists of two large subunits with Mr 155000 and 140000. The purified enzyme has three activities: (1) DNAse on linear single-stranded and double-stranded DNAs (2) DNA-unwinding and (3) ATPase. Circular DNAs were not affected by the enzyme. Study of the dependence of these activities on temperature, pH, and ATP and Mg2+ concentrations has revealed two different states of the enzyme. At low ATP concentrations and alkaline pH, it showed chiefly nuclease action, degrading considerable amounts of DNA to small fragments five residues long on average. At higher ATP concentrations and neutral pH (more physiological conditions) it predominantly unwound DNA. Simultaneously it cut preferentially one of the duplex strands to fragments more than 1000 residues in length. The results obtained suggest that the energy of the enzyme-cleaved ATP is mainly expended on unwinding rather than on degrading DNA molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号