首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
African swine fever is a haemorrhagic disease in pig production that can have disastrous financial consequences for farming. No vaccines are currently available and animal slaughtering or area zoning to restrict risk-related movements are the only effective measures to prevent the spread of the disease. Ornithodoros soft ticks are known to transmit the African swine fever virus (ASFV) to pigs in farms, following the natural epidemiologic cycle of the virus. Tick saliva has been shown to modulate the host physiological and immunological responses during feeding on skin, thus affecting viral infection. To better understand the interaction between soft tick, ASFV and pig at the bite location and the possible influence of tick saliva on pig infection by ASFV, salivary gland extract (SGE) of Ornithodoros porcinus, co-inoculated or not with ASFV, was used for intradermal auricular inoculation. Our results showed that, after the virus triggered the disease, pigs inoculated with virus and SGE presented greater hyperthermia than pigs inoculated with virus alone. The density of Langerhans cells was modulated at the tick bite or inoculation site, either through recruitment by ASFV or inhibition by SGE. Additionally, SGE and virus induced macrophage recruitment each. This effect was enhanced when they were co-inoculated. Finally, the co-inoculation of SGE and virus delayed the early local spread of virus to the first lymph node on the inoculation side. This study has shown that the effect of SGE was powerful enough to be quantified in pig both on the systemic and local immune response. We believe this model should be developed with infected tick and could improve knowledge of both tick vector competence and tick saliva immunomodulation.  相似文献   

2.
Aphid feeding requires the secretion of two types of saliva: gelling saliva (from the principal gland) that forms an intercellular sheath for the penetrating stylet, and watery saliva [from accessory salivary glands (ASGs)] that facilitates intracellular penetration and phloem feeding. Plant viruses can be used as salivary markers to investigate key steps in aphid feeding, and penetration can be monitored electrically using the electrical penetration graph (EPG) approach. We conducted a series of EPG‐controlled transmission experiments using Cucurbit aphid‐borne yellows virus [CABYV; Polerovirus spec. (Luteoviridae)], which is retained in the ASGs, as a marker for watery saliva secretions. The melon aphid, Aphis gossypii Glover (Hemiptera: Aphididae), was used as a vector and melon seedlings, Cucumis melo L. (Cucurbitaceae), as host plants. Viruliferous aphids were interrupted at various stages during stylet penetration, i.e., during intercellular penetration prior to intracellular puncture and following a potential drop within the first probe. Viruliferous aphids and leaf disc samples obtained from the stylet penetration site were used to detect CABYV by quantitative real‐time RT‐PCR. Approximately half of the inoculated leaf discs were found to be infected with CABYV after very brief (12.9 ± 1.9 s) intercellular stylet probes and before intracellular stylet puncture. The number of virus particles ejected during such probes was similar to the number ejected by aphids during longer probes including a single intracellular puncture. Our results therefore suggest that watery saliva is secreted by aphids from the onset of stylet penetration.  相似文献   

3.
The ability of coxsackievirus B-1 to pass the barriers of the circulatory system into whole saliva has been shown previously. In this investigation, the major salivary glands and the oral mucosa were studied, and their role as participants in the excretion of coxsackievirus B-1 during viremia was evaluated. The effect of the salivary-gland stimulant pilocarpine nitrate on both the salivary flow rate and the recovery of virus during viremia was determined. A comparison was made between the amount of virus recovered from whole saliva during viremia in animals deficient in one or both of the major salivary-gland pairs and animals with a complete complement of salivary glands. The salivary glands in other animals were cannulated, and pure glandular secretions were collected during viremia and assayed for the presence of virus The amount of virus passing from the capillaries of the oral mucosa to the surface was also determined to evaluate this route as a possible site for the excretion of virus into saliva during viremia. The major salivary glands did not excrete appreciable quantities of virus during viremia. The submaxillary-gland secretions did not contain virus, and the parotid-gland secretions showed virus only at extremely high blood virus levels. Either removal of the major salivary glands or decreased salivary flow rates increased the concentration of virus in whole saliva. This observation suggested that the production of saliva by the major salivary glands tends to dilute the virus in the oral cavity. A 0.88-cm2 sample of the oral mucosa excreted significantly large amounts of virus during viremia and suggested that the passage of virus through the oral mucosa was the major route for the excretion of virus into saliva during viremia.  相似文献   

4.
5.
Thirty-six harbor porpoises, Phocaena phocaena, were caught off the coast of Southern New Brunswick and Nova Scotia as part of a study of the biology and ecology of these animals. The formalin-preserved heart was examined first in situ, then measured and studied in detail. If the weight of the thick layer of blubber is discounted, the heart is heavy relative to the total body weight as may be expected in an animal capable of fast swimming, great agility and frequent emergence from the water to breathe. The shape of the heart, the relative size of atria and atrial appendages, the morphology of the ventricular septum, the thickness of the walls of the sinus and conus of the right ventricle and the anatomy of the pulmonary veins were found to be constant for this animal and unlike that of non-cetaceans. It is suggested that the absence of respiratory movements during diving may lead to these modifications of cardiac structure in an animal that is particularly well adapted to a totally aquatic existence.  相似文献   

6.
Despite the increasing numbers of studies investigating hepatitis A diagnostic through saliva, the frequency and the pattern of hepatitis A virus (HAV) markers in this fluid still remains unknown. To address this issue, we carried on a longitudinal study to examine the kinetics of HAV markers in saliva, in comparison with serum samples. The present study followed-up ten patients with acute hepatitis A infection during 180 days post diagnosis (dpd). Total anti-HAV was detected in paired serum and saliva samples until the end of the follow-up, showing a peak titer at 90th. However, total anti-HAV level was higher in serum than in saliva samples. This HAV marker showed a probability of 100% to be detected in both serum and saliva during 180 dpd. The IgM anti-HAV could be detected in saliva up to 150 dpd, showing the highest frequency at 30th, when it was detected in all individuals. During the first month of HAV infection, this acute HAV marker showed a detection probability of 100% in paired samples. The detection of IgM anti-HAV in saliva was not dependent on its level in serum, HAV-RNA detection and/or viral load, since no association was found between IgM anti-HAV positivity in saliva and any of these parameter (p>0.05). Most of the patients (80%) were found to contain HAV-RNA in saliva, mainly at early acute phase (30th day). However, it was possible to demonstrate the HAV RNA presence in paired samples for more than 90 days, even after seroconversion. No significant relationship was observed between salivary HAV-RNA positivity and serum viral load, demonstrating that serum viral load is not predictive of HAV-RNA detection in saliva. Similar viral load was seen in paired samples (on average 104 copies/mL). These data demonstrate that the best diagnostic coverage can be achieved by salivary anti-HAV antibodies and HAV-RNA tests during 30–90 dpd. The long detection and high probability of specific-HAV antibodies positivity in saliva samples make the assessment of salivary antibodies a useful tool for diagnosis and epidemiological studies. The high frequency of HAV-RNA in saliva and the probability of detection of about 50%, during the first 30 dpd, demonstrate that saliva is also useful for molecular investigation of hepatitis A cases, mainly during the early course of infection. Therefore, the collection of saliva may provide a simple, cheap and non-invasive means of diagnosis, epidemiological surveys and monitoring of hepatitis A infection purposes.  相似文献   

7.
Implicit with the use of animal models to test human cytomegalovirus (HCMV) vaccines is the assumption that the viral challenge of vaccinated animals reflects the anticipated virus-host interactions following exposure of vaccinated humans to HCMV. Variables of animal vaccine studies include the route of exposure to and the titer of challenge virus, as well as the genomic coding content of the challenge virus. This study was initiated to provide a better context for conducting vaccine trials with nonhuman primates by determining whether the in vivo phenotype of culture-passaged strains of rhesus cytomegalovirus (RhCMV) is comparable to that of wild-type RhCMV (RhCMV-WT), particularly in relation to the shedding of virus into bodily fluids and the potential for horizontal transmission. Results of this study demonstrate that two strains containing a full-length UL/b' region of the RhCMV genome, which encodes proteins involved in epithelial tropism and immune evasion, were persistently shed in large amounts in bodily fluids and horizontally transmitted, whereas a strain lacking a complete UL/b' region was not shed or transmitted to cagemates. Shedding patterns exhibited by strains encoding a complete UL/b' region were consistent with patterns observed in naturally infected monkeys, the majority of whom persistently shed high levels of virus in saliva for extended periods of time after seroconversion. Frequent viral shedding contributed to a high rate of infection, with RhCMV-infected monkeys transmitting virus to one na?ve animal every 7 weeks after introduction of RhCMV-WT into an uninfected cohort. These results demonstrate that the RhCMV model can be designed to rigorously reflect the challenges facing HCMV vaccine trials, particularly those related to horizontal transmission.  相似文献   

8.
Safety of the modified live rabies virus vaccine, SAD B19, was studied in striped skunks (Mephitis mephitis). Seven skunks received 10(7.9) foci formatting units by direct oral administration. In four cages, a vaccinated animal was placed with a control animal, the other three vaccinated skunks were housed individually. Saliva and nasal swabs were collected 1, 2, 4, 24, 48, and 72 hr post-vaccination. From all vaccinated and control animals (n = 11) blood samples were collected 0, 28, 56, 84, and 296 days post-vaccination. Three of seven vaccinated skunks seroconverted. None of the control animals had detectable levels of rabies virus neutralizing antibodies. Also no vaccine virus was isolated from the nasal and saliva swabs collected from any animal. Thus, SAD B19 was innocuous for skunks in our study after direct oral administration at field concentration.  相似文献   

9.
The objective of this work was to study the pattern of salivation of triatomines during feeding in mouse skin. Rhodnius prolixus was fed with a solution of the dye acridine orange or fluorescein. The saliva was efficiently labelled with acridine orange, probably due to the difference in pH between the salivary gland (6.0) and the hemolymph (6.5-7.0). This procedure was not effective at labelling the saliva of Triatoma infestans, however, fluorescent labelling of R. prolixus saliva allowed us to demonstrate that salivation occurs during entire feeding process. The saliva is released soon after the bite. In the probing phase, saliva is pumped continuously in the host skin, including around the blood vessels. During the engorgement phase, saliva is observed in a bolus within the blood vessel and some of it is sucked up by the insect, together with blood. The frequency of saliva emission inside the vessels was low (0.51+/-0.18 Hz). The saliva deposition in the microcirculation is continuous and modulated by the frequency of the cibarial pump because, when functioning at high frequency, cibarial pump sucks almost all saliva to the insect gut. This mechanism would determine the quantity of saliva deposited in the microcirculation as necessary, and consequently minimizing the host's immune response to salivary antigens.  相似文献   

10.
West Nile virus (WNV) is transmitted during mosquito bloodfeeding. Consequently, the first vertebrate cells to contact WNV are cells in the skin, followed by those in the draining lymph node. Macrophages and dendritic cells are critical early responders in host defense against WNV infection, not just because of their role in orchestrating the immune response, but also because of their importance as sites of early peripheral viral replication. Antigen-presenting cell (APC) signals have a profound effect on host antiviral responses and disease severity. During transmission, WNV is intimately associated with mosquito saliva. Due to the ability of mosquito saliva to affect inflammation and immune responses, and the importance of understanding early events in WNV infection, we investigated whether mosquito saliva alters APC signaling during arbovirus infection, and if alterations in cell recruitment occur when WNV infection is initiated with mosquito saliva. Accordingly, experiments were performed with cultured dendritic cells and macrophages, flow cytometry was used to characterize infiltrating cell types in the skin and lymph nodes during early infection, and real-time RT-PCR was employed to evaluate virus and cytokine levels. Our in vitro results suggest that mosquito saliva significantly decreases the expression of interferon-β and inducible nitric oxide synthase in macrophages (by as much as 50 and 70%, respectively), whilst transiently enhancing interleukin-10 (IL-10) expression. In vivo results indicate that the predominate effect of mosquito feeding is to significantly reduce the recruitment of T cells, leading the inoculation site of mice exposed to WNV alone to have up to 2.8 fold more t cells as mice infected in the presence of mosquito saliva. These shifts in cell population are associated with significantly elevated IL-10 and WNV (up to 4.0 and 10 fold, respectively) in the skin and draining lymph nodes. These results suggest that mosquito saliva dysregulates APC antiviral signaling, and reveal a possible mechanism for the observed enhancement of WNV disease mediated by mosquito saliva via a reduction of T lymphocyte and antiviral activity at the inoculation site, an elevated abundance of susceptible cell types, and a concomitant increase in immunoregulatory activity of IL-10.  相似文献   

11.
12.
The decisive effect of physiological age of ticks on the infection of their saliva was revealed by means of parenteral infection of D. marginatus females with tick-borne encephalitis virus. The virus was not found in the saliva of young individuals of instar II. Maximum number of cases of saliva infection was recorded in mature ticks of instar III (50%). It was established that the infection of saliva did not depend on the amount of virus in the tick's body. Less susceptibility to the virus of young individuals, associated probably with the way of infection, was noted. Under light microscopy there were observed no significant age differences in salivary glands of ticks of instars II and III. The infection of saliva of young individuals is, apparently, opposed by the barrier of fat body on the way of virus to salivary glands, depending on the age of ticks. The barrier is supposed to have an influence under natural transphase infection of ticks.  相似文献   

13.
Fresh human immunodeficiency virus type 1 (HIV-1) isolates from patients with AIDS were screened for infectivity in chimpanzee peripheral blood mononuclear cells (PBMC) to identify strains potentially able to generate high virus loads in an inoculated animal. Only 3 of 23 isolates obtained were infectious in chimpanzee cells. Of these three, only one (HIV-1DH12) was able to initiate a productive infection in PBMC samples from all 25 chimpanzees tested. HIV-1DH12 tissue culture infections were characterized by extremely rapid replication kinetics, profound cytopathicity, and tropism for chimp and human PBMC, primary human macrophage, and several human T-cell lines. An infection was established within 1 week of inoculating a chimpanzee with 50 50% tissue culture infective doses of HIV-1DH12; cell-free virus was recovered from the plasma at weeks 1, 2, and 4 and was associated with the development of lymphadenopathy. Virus loads during the primary infection and at 6 months postinoculation were comparable to those reported in HIV-1-seropositive individuals.  相似文献   

14.
15.
1. Pilocarpine-induced saliva of the soft tick Ornithodoros moubata inhibits platelet aggregation induced by ADP or collagen, even when diluted 2000 times into platelet rich plasma. 2. Saliva contains apyrase (ATP-diphosphohydrolase) activity, which has an optimal pH of 7.0 for ADP and of 8.0 for ATP hydrolysis, respectively. Both Ca2+ and Mg2+ activate the reactions. 3. The mean specific activities for ATP and ADP hydrolysis at pH 7.5 were 0.97 and 0.74 mumoles orthophosphate/min/mg protein. 4. These results, which demonstrate for the first time such activities in the saliva of soft ticks, support the hypothesis that the saliva of blood sucking arthropods serves an anti-hemostatic role during feeding and that large amounts of salivary apyrase activity have evolved independently in hematophagous arthropods.  相似文献   

16.
Salivary Excretion of Coxsackie B-1 Virus in Rabbits   总被引:1,自引:1,他引:0       下载免费PDF全文
Coxsackie B-1 virus was injected into the ear vein of albino doe rabbits. Saliva and blood samples were taken before the injection of virus and at specific times thereafter. Virus was recovered in the whole saliva when the blood titer was approximately 10(4) TCID(50) per 0.1 ml or greater. The virus could be detected in the saliva as early as 2 min after the initiation of the viremia. The recovered virus was shown to be the same as the injected virus by serological identification of the recovered virus with neutralizing antibody for Coxsackie B-1 virus. These results suggest that virus may be transmitted to other animals in the saliva of animals who are in the viremic phase of infection without infection of the oropharyngeal tissues.  相似文献   

17.
Influenza virus neuraminidase (NA) cleaves terminal sialic acid residues on oligosaccharide chains that are receptors for virus binding, thus playing an important role in the release of virions from infected cells to promote the spread of cell-to-cell infection. In addition, NA plays a role at the initial stage of viral infection in the respiratory tract by degrading hemagglutination inhibitors in body fluid which competitively inhibit receptor binding of the virus. Current first line anti-influenza drugs are viral NA-specific inhibitors, which do not inhibit bacterial neuraminidases. Since neuraminidase producing bacteria have been isolated from oral and upper respiratory commensal bacterial flora, we posited that bacterial neuraminidases could decrease the antiviral effectiveness of NA inhibitor drugs in respiratory organs when viral NA is inhibited. Using in vitro models of infection, we aimed to clarify the effects of bacterial neuraminidases on influenza virus infection in the presence of the NA inhibitor drug zanamivir. We found that zanamivir reduced progeny virus yield to less than 2% of that in its absence, however the yield was restored almost entirely by the exogenous addition of bacterial neuraminidase from Streptococcus pneumoniae. Furthermore, cell-to-cell infection was severely inhibited by zanamivir but restored by the addition of bacterial neuraminidase. Next we examined the effects of bacterial neuraminidase on hemagglutination inhibition and infectivity neutralization activities of human saliva in the presence of zanamivir. We found that the drug enhanced both inhibitory activities of saliva, while the addition of bacterial neuraminidase diminished this enhancement. Altogether, our results showed that bacterial neuraminidases functioned as the predominant NA when viral NA was inhibited to promote the spread of infection and to inactivate the neutralization activity of saliva. We propose that neuraminidase from bacterial flora in patients may reduce the efficacy of NA inhibitor drugs during influenza virus infection. (295 words).  相似文献   

18.
O. Munk 《Zoomorphology》1984,104(3):180-183
Summary A conus-like structure, the hyaloid conus, located on the optic nerve head of the mesopelagic deep-sea teleost Radiicephalus elongatus is described. The hyaloid conus consists of a tapering sheath of unpigmented, vascularized connective tissue enveloping the proximal part of the hyaloid artery which proceeds from the optic nerve head through the vitreous body to the ventrally located falciform process and lens muscles. The hyaloid artery passes through the hyaloid conus without giving off any branches. The conus vessels encircling the hyaloid artery receive arterial blood from the choroid via small arteries and are drained to the choroid by a single vein. The hyaloid conus is compared with the lacertilian conus papillaris. The function of the hyaloid conus is unknown. Because of its small dimensions relative to those of the eyeball and its few capillaries, it is unlikely that the hyaloid conus is a supplemental nutritive device for the retina.  相似文献   

19.
Ticks and their pathogens cause significant disease and economic loss in many animal populations. Despite this, experiments that test the impact of ticks and tick-borne diseases on wild animal populations are rare. Here, we report on an experiment assessing the effect of ticks on red grouse productivity and chick growth in relation to other causes of poor recruitment at two sites in the Scottish uplands during 2005. Treated hens received two leg bands impregnated with the acaricide permethrin, while controls hens were untreated. Chicks were captured at c.2 weeks of age and fitted with a metal patagial tag, and chicks from treated hens also received a permethrin-impregnated strip. Mean tick burdens in treated chicks were close to zero compared with a mean of around 12 in the control group. Although treatment reduced tick infestations, it did not increase brood size. Growth rates in chicks from control and treated hens were similar during the first 10 days and comparable with chicks fed an ad-lib invertebrate-based diet. These results suggest that in this case, neither ticks (and the tick transmitted louping-ill virus) nor food shortages was the main cause of chick mortality. However, mortality in the adult hens was around 35 %, and predation accounted for 62 % of these losses before broods fledged. Our results indicate that on our study sites, predation may have a more important impact on grouse population dynamics than ticks and tick-borne disease. We suggest that it may be more cost effective to determine the causes of poor grouse population performance before implementing popular but expensive tick control measures such as the culling of alternative hosts and running acaracide treated sheep ‘tick-mop’ flocks.  相似文献   

20.
Despite the recognized importance of fecal/oral transmission of low pathogenic avian influenza (LPAI) via contaminated wetlands, little is known about the length, quantity, or route of AI virus shed by wild waterfowl. We used published laboratory challenge studies to evaluate the length and quantity of low pathogenic (LP) and highly pathogenic (HP) virus shed via oral and cloacal routes by AI-infected ducks and geese, and how these factors might influence AI epidemiology and virus detection. We used survival analysis to estimate the duration of infection (from virus inoculation to the last day virus was shed) and nonlinear models to evaluate temporal patterns in virus shedding. We found higher mean virus titer and longer median infectious period for LPAI-infected ducks (10-11.5 days in oral and cloacal swabs) than HPAI-infected ducks (5 days) and geese (7.5 days). Based on the median bird infectious dose, we found that environmental contamination is two times higher for LPAI- than HPAI-infectious ducks, which implies that susceptible birds may have a higher probability of infection during LPAI than HPAI outbreaks. Less environmental contamination during the course of infection and previously documented shorter environmental persistence for HPAI than LPAI suggest that the environment is a less favorable reservoir for HPAI. The longer infectious period, higher virus titers, and subclinical infections with LPAI viruses favor the spread of these viruses by migratory birds in comparison to HPAI. Given the lack of detection of HPAI viruses through worldwide surveillance, we suggest monitoring for AI should aim at improving our understanding of AI dynamics (in particular, the role of the environment and immunity) using long-term comprehensive live bird, serologic, and environmental sampling at targeted areas. Our findings on LPAI and HPAI shedding patterns over time provide essential information to parameterize environmental transmission and virus spread in predictive epizootiologic models of disease risks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号