首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is the most recently identified member of the proprotein convertase family. Genetic and cell biology studies have suggested a critical role of PCSK9 in regulating low-density lipoprotein receptor (LDLR) protein levels and thus modulating plasma LDL cholesterol. Recent data on the molecular basis for PCSK9 action support the model in which PCSK9 is self-cleaved, secreted, and tightly bound to the EGF-A repeat of LDLR extracellular domain. PCSK9 binding to LDLR is essential for the ensuing receptor-mediated endocytosis and is speculated to lock LDLR in a specific conformation that favors degradation in lysosomal compartment instead of recycling back to plasma membrane. We report here a novel human PCSK9 splicing variant, which we named PCSK9sv. PCSK9sv had an in-frame deletion of the eighth exon of 58 amino acids and was expressed in multiple tissues, including liver, small intestine, prostate, uterus, brain, and adipose tissue. Unlike wild-type PCSK9, which is secreted, PCSK9sv expressed in human embryonic kidney HEK293 cells failed to process the prosegment intracellularly and thus was not secreted into the medium. Examination of potential functions revealed that PCSK9sv did not change the LDLR protein levels. Two mutations that have been reported in humans with the associated changes in plasma LDL cholesterol were within exon 8, and thus the expression and function of the two mutants were studied. Both N425S and A443T mutants were processed normally, secreted, and reduced LDLR levels. However, the physiological function of this novel splicing variant of PCSK9 has yet to be determined.  相似文献   

2.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a protease that regulates low density lipoprotein receptor (LDLR) protein levels. The mechanisms of this action, however, remain to be defined. We show here that recombinant human PCSK9 expressed in HEK293 cells was readily secreted into the medium, with the prosegment associated with the C-terminal domain. Secreted PCSK9 mediated cell surface LDLR degradation in a concentration- and time-dependent manner when added to HEK293 cells. Accordingly, cellular LDL uptake was significantly reduced as well. When infused directly into C57B6 mice, purified human PCSK9 substantially reduced hepatic LDLR protein levels and resulted in increased plasma LDL cholesterol. When added to culture medium, fluorescently labeled PCSK9 was endocytosed and displayed endosomal-lysosomal intracellular localization in HepG2 cells, as was demonstrated by colocalization with DiI-LDL. PCSK9 endocytosis was mediated by LDLR as LDLR deficiency (hepatocytes from LDLR null mice), or RNA interference-mediated knockdown of LDLR markedly reduced PCSK9 endocytosis. In addition, RNA interference knockdown of the autosomal recessive hypercholesterolemia (ARH) gene product also significantly reduced PCSK9 endocytosis. Biochemical analysis revealed that the LDLR extracellular domain interacted directly with secreted PCSK9; thus, overexpression of the LDLR extracellular domain was able to attenuate the reduction of cell surface LDLR levels by secreted PCSK9. Together, these results reveal that secreted PCSK9 retains biological activity, is able to bind directly to the LDLR extracellular domain, and undergoes LDLR-ARH-mediated endocytosis, leading to accelerated intracellular degradation of the LDLR.  相似文献   

3.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes degradation of hepatic low density lipoprotein receptors (LDLR), the major route of clearance of circulating cholesterol. Gain-of-function mutations in PCSK9 cause hypercholesterolemia and premature atherosclerosis, whereas loss-of-function mutations result in hypocholesterolemia and protection from heart disease. Recombinant human PCSK9 binds the LDLR on the surface of cultured hepatocytes and promotes degradation of the receptor after internalization. Here we localized the site of binding of PCSK9 within the extracellular domain of the LDLR and determined the fate of the receptor after PCSK9 binding. Recombinant human PCSK9 interacted in a sequence-specific manner with the first epidermal growth factor-like repeat (EGF-A) in the EGF homology domain of the human LDLR. Similar binding specificity was observed between PCSK9 and purified EGF-A. Binding to EGF-A was calcium-dependent and increased dramatically with reduction in pH from 7 to 5.2. The addition of PCSK9, but not heat-inactivated PCSK9, to the medium of cultured hepatocytes resulted in redistribution of the receptor from the plasma membrane to lysosomes. These data are consistent with a model in which PCSK9 binding to EGF-A interferes with an acid-dependent conformational change required for receptor recycling. As a consequence, the LDLR is rerouted from the endosome to the lysosome where it is degraded.  相似文献   

4.
Secreted PCSK9 binds to cell surface LDL receptor (LDLR) and directs the receptor for lysosomal degradation. PCSK9 is potent at inducing LDLR degradation in cultured liver-derived cells, but it is considerably less active in immortalized fibroblasts. We examined PCSK9 trafficking in SV-589 human skin fibroblasts incubated with purified recombinant wild-type PCSK9 or gain-of-function mutant PCSK9-D374Y with increased LDLR binding affinity. Despite LDLR-dependent PCSK9 uptake, cell surface LDLR levels in SV-589 fibroblasts were only modestly reduced by wild-type PCSK9, even at high nonphysiological concentrations (20 µg/ml). Internalized 125I-labeled wild-type PCSK9 underwent lysosomal degradation at high levels, indicating its dissociation from recycling LDLRs. PCSK9-D374Y (2 µg/ml) reduced cell surface LDLRs by approximately 50%, but this effect was still blunted compared with HepG2 hepatoma cells. Radioiodinated PCSK9-D374Y was degraded less efficiently in SV-589 fibroblasts, and Alexa488-labeled PCSK9-D374Y trafficked to both lysosomes and endocytic recycling compartments. Endocytic recycling assays showed that more than 50% of internalized PCSK9-D374Y recycled to the cell surface compared with less than 10% for wild-type PCSK9. These data support that wild-type PCSK9 readily dissociates from the LDLR within early endosomes of SV-589 fibroblasts, contributing to PCSK9-resistance. Although a large proportion of gain-of-function PCSK9-D374Y remains bound to LDLR in these cells, degradative activity is still diminished.  相似文献   

5.
Common and rare gene variants affecting plasma LDL cholesterol   总被引:1,自引:0,他引:1       下载免费PDF全文
The plasma level of LDL cholesterol is clinically important and genetically complex. LDL cholesterol levels are in large part determined by the activity of LDL receptors (LDLR) in the liver. Autosomal dominant familial hypercholesterolaemia (FH) - with its high LDL cholesterol levels, xanthomas, and premature atherosclerosis - is caused by mutations in either the LDLR or in APOB - the protein in LDL recognised by the LDLR. A third, rare form - autosomal recessive hypercholesterolaemia - arises from mutations in the gene encoding an adaptor protein involved in the internalisation of the LDLR. A fourth variant of inherited hypercholesterolaemia was recently found to be associated with missense mutations in PCSK9, which encodes a serine protease that degrades LDLR. Whereas the gain-of-function mutations in PCSK9 are rare, a spectrum of more frequent loss-of-function mutations in PCSK9 associated with low LDL cholesterol levels has been identified in selected populations and could protect against coronary heart disease. Heterozygous familial hypobetalipoproteinaemia (FHBL) - with its low LDL cholesterol levels and resistance to atherosclerosis - is caused by mutations in APOB. In contrast to other inherited forms of severe hypocholesterolaemia such as abetalipoproteinaemia - caused by mutations in MTP - and homozygous FHBL, a deficiency of PCSK9 appears to be benign. Rare variants of NPC1L1, the gene encoding the putative intestinal cholesterol receptor, have shown more modest effects on plasma LDL cholesterol than PCSK9 variants, similar in magnitude to the effect of common APOE variants. Taken together, these findings indicate that heritable variation in plasma LDL cholesterol is conferred by sequence variation in various loci, with a small number of common and multiple rare gene variants contributing to the phenotype.  相似文献   

6.
Proprotein convertase subtilisin/kexin type-9 (PCSK9) is a secreted protein that binds to the epidermal growth factor-like-A domain of the low density lipoprotein receptor (LDLR) and mediates LDLR degradation in liver. Gain-of-function mutations in PCSK9 are associated with autosomal dominant hypercholesterolemia in humans. Size-exclusion chromatography of human plasma has shown PCSK9 to be partly associated with undefined high molecular weight complexes within the LDL size range. We used density gradient centrifugation to isolate LDL in plasma pooled from 5 normolipidemic subjects and report that >40% of total PCSK9 was associated with LDL. Binding of fluorophore-labeled recombinant PCSK9 to isolated LDL in vitro was saturable with a KD ∼ 325 nm. This interaction was competed >95% by excess unlabeled PCSK9, and competition binding curves were consistent with a one-site binding model. An N-terminal region of the PCSK9 prodomain (amino acids 31–52) was required for binding to LDL in vitro. LDL dose-dependently inhibited binding and degradation of cell surface LDLRs by exogenous PCSK9 in HuH7 cells. LDL also inhibited PCSK9 binding to mutant LDLRs defective at binding LDL. These data suggest that association of PCSK9 with LDL particles in plasma lowers the ability of PCSK9 to bind to cell surface LDLRs, thereby blunting PCSK9-mediated LDLR degradation.  相似文献   

7.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is predominantly expressed in liver and regulates cholesterol metabolism by down regulating liver LDL receptor (LDLR) proteins. Here we report transgenic overexpression of human PCSK9 in kidney increased plasma levels of PCSK9 and subsequently led to a dramatic reduction in liver LDLR proteins. The regulation of LDLR by PCSK9 displayed tissue specificity, with liver being the most responsive tissue. Even though the PCSK9 transgene was highly expressed in kidney, LDLR proteins were suppressed to a lower extent in this tissue than in liver. Adrenal LDLR proteins were not regulated by elevated plasma PCSK9. hPCSK9 transgene expression and subsequent reduction of liver LDLR led to increases in plasma total cholesterol, LDL cholesterol, and ApoB, which were further increased by a high-fat, high-cholesterol diet. We also observed that the size distribution of hPCSK9 in transgenic mouse plasma was heterogeneous. In chow-fed mice, the majority of PCSK9 proteins were in free forms; however, feeding a high-fat, high-cholesterol diet resulted in a shift of hPCSK9 distribution toward larger complexes. PCSK9 distribution in human plasma also exhibited heterogeneity and individual variability in the percentage of PCSK9 in free form and in large complexes. We provide strong evidence to support that human PCSK9 proteins secreted from extrahepatic tissue are able to promote LDLR degradation in liver and increase plasma LDL. Our data also suggest that LDLR protein regulation by PCSK9 has tissue specificity, with liver being the most responsive tissue.  相似文献   

8.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an important factor in plasma cholesterol regulation through modulation of low density lipoprotein receptor (LDLR) levels. Naturally occurring mutations can lead to hyper- or hypocholesterolemia in human. Recently, we reported that PCSK9 was also able to modulate CD81 in Huh7 cells. In the present study, several gain-of-function and loss-of-function mutants as well as engineered mutants of PCSK9 were compared for their ability to modulate the cell surface expression of LDLR and CD81. Although PCSK9 gain-of-function D374Y enhanced the degradation both receptors, D374H and D129N seemed to only reduce LDLR levels. In contrast, mutations in the C-terminal hinge-cysteine-histidine-rich domain segment primarily affected the PCSK9-induced CD81 degradation. Furthermore, when C-terminally fused to an ACE2 transmembrane anchor, the secretory N-terminal catalytic or hinge-cysteine-histidine-rich domain domains of PCSK9 were able to reduce CD81 and LDLR levels. These data confirm that PCSK9 reduces CD81 levels via an intracellular pathway as reported for LDLR. Using immunocytochemistry, a proximity ligation assay, and co-immunoprecipitation, we found that the cell surface level of PCSK9 was enhanced upon overexpression of CD81 and that both PCSK9 and LDLR interact with this tetraspanin protein. Interestingly, using CHO-A7 cells lacking LDLR expression, we revealed that LDLR was not required for the degradation of CD81 by PCSK9, but its presence strengthened the PCSK9 effect.  相似文献   

9.
Mutations within proprotein convertase subtilisin/kexin type 9 (PCSK9) are associated with dominant forms of familial hypercholesterolemia. PCSK9 binds the LDL receptor (LDLR), and addition of PCSK9 to cells promotes degradation of LDLR. PCSK9 mutant proteins associated with hypercholesterolemia (S127R and D374Y) are more potent in decreasing LDL uptake than is wild-type PCSK9. To better understand the mechanism by which mutations at the Ser127 and Asp374 residues of PCSK9 influence PCSK9 function, a limited vertical scanning mutagenesis was performed at both sites. S127R and S127K proteins were more potent in decreasing LDL uptake than was wild-type PCSK9, and each D374 mutant tested was more potent in reducing LDL uptake when the proteins were added exogenously to cells. The potencies of D374 mutants in lowering LDL uptake correlated with their ability to interact with LDLR in vitro. Combining S127R and D374Y was also found to have an additive effect in enhancing PCSK9's ability to reduce LDL uptake. Modeling of PCSK9 S127 and D374 mutations indicates that mutations that enhance PCSK9 function stabilize or destabilize the protein, respectively. In conclusion, these results suggest a model in which mutations at Ser127 and Asp374 residues modulate PCSK9's ability to regulate LDLR function through distinct mechanisms.  相似文献   

10.
11.
12.
Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibits the clearance of low-density lipoprotein (LDL) cholesterol (LDL-C) from plasma by directly binding with the LDL receptor (LDLR) and sending the receptor for lysosomal degradation. As the interaction promotes elevated plasma LDL-C levels, and therefore a predisposition to cardiovascular disease, PCSK9 has attracted intense interest as a therapeutic target. Despite this interest, an orally bioavailable small-molecule inhibitor of PCSK9 with extensive lipid-lowering activity is yet to enter the clinic. We report herein the discovery of NYX-PCSK9i, an orally bioavailable small-molecule inhibitor of PCSK9 with significant cholesterol-lowering activity in hyperlipidemic APOE13-Leiden.CETP mice. NYX-PCSK9i emerged from a medicinal chemistry campaign demonstrating potent disruption of the PCSK9-LDLR interaction in vitro and functional protection of the LDLR of human lymphocytes from PCSK9-directed degradation ex vivo. APOE13-Leiden.CETP mice orally treated with NYX-PCSK9i demonstrated a dose-dependent decrease in plasma total cholesterol of up to 57%, while its combination with atorvastatin additively suppressed plasma total cholesterol levels. Importantly, the majority of cholesterol lowering by NYX-PCSK9i was in non-HDL fractions. A concomitant increase in total plasma PCSK9 levels and significant increase in hepatic LDLR protein expression strongly indicated on-target function by NYX-PCSK9i. Determinations of hepatic lipid and fecal cholesterol content demonstrated depletion of liver cholesteryl esters and promotion of fecal cholesterol elimination with NYX-PCSK9i treatment. All measured in vivo biomarkers of health indicate that NYX-PCSK9i has a good safety profile. NYX-PCSK9i is a potential new therapy for hypercholesterolemia with the capacity to further enhance the lipid-lowering activities of statins.  相似文献   

13.
The proprotein convertase PCSK9 gene is the third locus implicated in familial hypercholesterolemia, emphasizing its role in cardiovascular diseases. Loss of function mutations and gene disruption of PCSK9 resulted in a higher clearance of plasma low density lipoprotein cholesterol, likely due to a reduced degradation of the liver low density lipoprotein receptor (LDLR). In this study, we show that two of the closest family members to LDLR are also PCSK9 targets. These include the very low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2) implicated in neuronal development and lipid metabolism. Our results show that wild type PCSK9 and more so its natural gain of function mutant D374Y can efficiently degrade the LDLR, VLDLR, and ApoER2 either following cellular co-expression or re-internalization of secreted human PCSK9. Such PCSK9-induced degradation does not require its catalytic activity. Membrane-bound PCSK9 chimeras enhanced the intracellular targeting of PCSK9 to late endosomes/lysosomes and resulted in a much more efficient degradation of the three receptors. We also demonstrate that the activity of PCSK9 and its binding affinity on VLDLR and ApoER2 does not depend on the presence of LDLR. Finally, in situ hybridization show close localization of PCSK9 mRNA expression to that of VLDLR in mouse postnatal day 1 cerebellum. Thus, this study demonstrates a more general effect of PCSK9 on the degradation of the LDLR family that emphasizes its major role in cholesterol and lipid homeostasis as well as brain development.  相似文献   

14.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a serine protease that is known to reduce hepatic low-density lipoprotein receptor (LDLR) levels and increase plasma LDL cholesterol. It is not clear, however, whether secreted PCSK9 degrades extrahepatic LDLRs. We present evidence that recombinant PCSK9, either injected intravenously into or expressed in the liver of C57BL/6 mice, significantly reduced LDLR levels in multiple extrahepatic tissues. During the initial characterization, we found that injected human recombinant PCSK9 at 30 μg/mouse had a half-life of 15 min in serum in mice. Hepatic LDLR levels were reduced within 30 min and the degradation of hepatic LDLR reached the maximum 2 h after the initial protein injection. Endocytosis of PCSK9 in liver occurred within 5 min of protein injection and internalized PCSK9 was only barely detectable within 1 h. When extrahepatic LDLRs were examined by Western blotting analysis, we found significant reductions of LDLRs in multiple extrahepatic tissues including lung, adipose and kidney along with the more dramatic reduction of LDLRs in liver. These studies were further extended using adenoviral expression of human PCSK9 in C57BL/6 mice to demonstrate that PCSK9 produced in liver impacted extrahepatic tissue LDLR levels as well. Taken together, our studies indicate that secreted PCSK9 can potentially impact extrahepatic tissue cholesterol homeostasis by regulating extrahepatic tissue LDLR levels.  相似文献   

15.
Proprotein convertase subtilisin/kexin type 9 (PCSK9), a liver-secreted plasma enzyme, restricts hepatic uptake of low-density lipoprotein (LDL) cholesterol by promoting the degradation of LDL receptors (LDLR). PCSK9 and LDLR are also expressed in insulin-producing pancreatic islet β cells, possibly affecting the function of these cells. Here we show that, compared to control mice, PCSK9-null male mice over 4 months of age carried more LDLR and less insulin in their pancreas; they were hypoinsulinemic, hyperglycemic and glucose-intolerant; their islets exhibited signs of malformation, apoptosis and inflammation. Collectively, these observations suggest that PCSK9 may be necessary for the normal function of pancreatic islets.  相似文献   

16.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the low density lipoprotein receptor (LDLR) at the cell surface and disrupts the normal recycling of the LDLR. In this study, we investigated the role of the C-terminal domain for the activity of PCSK9. Experiments in which conserved residues and histidines on the surface of the C-terminal domain were mutated indicated that no specific residues of the C-terminal domain, apart from those responsible for maintaining the overall structure, are required for the activity of PCSK9. Rather, the net charge of the C-terminal domain is important. The more positively charged the C-terminal domain, the higher the activity toward the LDLR. Moreover, replacement of the C-terminal domain with an unrelated protein of comparable size led to significant activity of the chimeric protein. We conclude that the role of the evolutionary, poorly conserved C-terminal domain for the activity of PCSK9 reflects its overall positive charge and size and not the presence of specific residues involved in protein-protein interactions.  相似文献   

17.
Plasma PCSK9 preferentially reduces liver LDL receptors in mice   总被引:2,自引:0,他引:2  
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secreted protein that regulates the expression of LDL receptor (LDLR) protein. Gain-of-function mutations in PCSK9 cause hypercholesterolemia, and loss-of-function mutations result in lower plasma LDL-cholesterol. Here, we investigate the kinetics and metabolism of circulating PCSK9 relative to tissue levels of LDLRs. The administration of recombinant human PCSK9 (32 microg) to mice by a single injection reduced hepatic LDLRs by approximately 90% within 60 min, and the receptor levels returned to normal within 6 h. The half-life of the PCSK9 was estimated to be approximately 5 min. Continuous infusion of PCSK9 (32 microg/h) into wild-type mice caused a approximately 90% reduction in hepatic LDLRs within 2 h and no associated change in the level of LDLR in the adrenals. Parallel studies were performed using a catalytically inactive form of PCSK9, PCSK9(S386A), and similar results were obtained. Infusion of PCSK9(D374Y), a gain-of-function mutation, resulted in accelerated clearance of the mutant PCSK9 and a greater reduction in hepatic LDLRs. Combined, these data suggest that exogenously administrated PCSK9 in plasma preferentially reduces LDLR protein levels in liver at concentrations found in human plasma and that PCSK9's action on the LDLR is not dependent on catalytic activity in vivo.  相似文献   

18.
PCSK9 has exploded onto center stage plasma cholesterol metabolism, raising hopes for a new strategy to treat hypercholesterolemia. PCSK9 in a plasma protein that triggers increased degradation of the LDL receptor. Gain-of-function mutations in PCSK9 reduce LDL receptor levels in the liver, resulting in high levels of LDL cholesterol in the plasma and increased susceptibility to coronary heart disease. Loss-of-function mutations lead to higher levels of the LDL receptor, lower LDL cholesterol levels and protection from coronary heart disease. Two papers in this issue of the Journal of Lipid Research exemplify the rapid pace of progress in understanding PCSK9 molecular interactions and physiology. Dr. Shilpa Pandit and coworkers from Merck Research Laboratories describe the functional basis for the hypercholesterolemia associated with gain-of-function missense mutations in PCSK9. Dr. Jay Horton's group at UT Southwestern describe the kinetics and metabolism of PCSK9 and the impact of PCSK9 on LDL receptors in the liver and adrenal gland.  相似文献   

19.
20.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a member of a family of proteases that is thought to promote the degradation of the low density lipoprotein receptor (LDLR) through an as yet undefined mechanism. We developed second generation antisense oligonucleotide (ASO) inhibitors targeting murine PCSK9 to determine their potential as lipid-lowering agents. Administration of a PCSK9 ASO to high fat-fed mice for 6 weeks reduced total cholesterol and LDL by 53% and 38%, respectively. Moreover, inhibition of PCSK9 expression resulted in a 2-fold increase in hepatic LDLR protein levels. This phenotype closely resembles that reported previously in Pcsk9-deficient mice. The absence of cholesterol lowering in Ldlr-deficient mice effectively demonstrated a critical role for this receptor in mediating the lipid-lowering effects of PCSK9 inhibition. Antisense inhibition of PCSK9 is an attractive and novel therapeutic approach for treating hypercholesterolemia in human.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号