首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H11 kinase/Hsp22 (Hsp22), a small heat shock protein upregulated by ischemia/reperfusion, provides cardioprotection equal to ischemic preconditioning (IPC) through a nitric oxide (NO)-dependent mechanism. A main target of NO-mediated preconditioning is the mitochondria, where NO reduces O2 consumption and reactive oxygen species (ROS) production during ischemia. Therefore, we tested the hypothesis that Hsp22 overexpression modulates mitochondrial function through an NO-sensitive mechanism. In cardiac mitochondria isolated from transgenic (TG) mice with cardiac-specific overexpression of Hsp22, mitochondrial basal, ADP-dependent, and uncoupled O2 consumption was increased in the presence of either glucidic or lipidic substrates. This was associated with a decrease in the maximal capabilities of complexes I and III to generate superoxide anion in combination with an inhibition of superoxide anion production by the reverse electron flow. NO synthase expression and NO production were increased in mitochondria from TG mice. Hsp22-induced increase in O2 consumption was abolished either by pretreatment of TG mice with the NO synthase inhibitor l-NG-nitroarginine methyl ester (l-NAME) or in isolated mitochondria by the NO scavenger phenyltetramethylimidazoline-1-oxyl-3-oxide. l-NAME pretreatment also restored the reverse electron flow. After anoxia, mitochondria from TG mice showed a reduction in both oxidative phosphorylation and H2O2 production, an effect partially reversed by l-NAME. Taken together, these results demonstrate that Hsp22 overexpression increases the capacity of mitochondria to produce NO, which stimulates oxidative phosphorylation in normoxia and decreases oxidative phosphorylation and reactive oxygen species production after anoxia. Such characteristics replicate those conferred by IPC, thereby placing Hsp22 as a potential tool for prophylactic protection of mitochondrial function during ischemia.  相似文献   

2.
The mechanism of alpha-tocopheryl succinate (TS) cytoprotection against mitochondria-derived oxidative stress was investigated. Incubation of isolated rat hepatocytes with ethyl methanesulfonate (EMS), a mitochondrial alkylating toxicant caused mitochondrial dysfunction and necrotic cell death that was dependent on the production of reactive oxygen species (ROS) and lipid peroxidation. Mitochondria isolated from these cells showed a 3-fold increase in lipid hydroperoxides and a selective depletion of alpha-tocopherol (T), which preceded cell death. The pretreatment of hepatocytes with TS dramatically enriched cells and mitochondria with alpha-tocopherol and provided these membranes with complete protection against EMS-induced oxidative damage. TS pretreatment suppressed EMS-induced cellular ROS production, generated from mitochondrial complex I and III sites. In addition, the treatment with either rotenone (ROT, a complex I inhibitor) or antimycin A (AA, a complex III inhibitor) potentiated EMS-induced lipid peroxidation and necrotic cell death which were again completely prevented by TS treatment. Surprisingly, TS did not protect hepatocytes against thenoyltrifluoroacetone (TTFA), a complex II inhibitor-induced enhancement of EMS-induced toxic oxidative damage. We conclude that the inhibition of mitochondrial ROS production and lipid peroxidation by T released from TS, are the critical events responsible for TS-mediated cytoprotection against toxic oxidative stress derived from both mitochondrial complexes I and III. Our findings suggest that TS treatment may prove useful in combating diseases associated with mitochondrial-derived oxidative stress.  相似文献   

3.
4.
Chronic exposure to polychlorinated biphenyls (PCBs), ubiquitous environmental contaminants, can adversely affect the development and function of the nervous system. Here we evaluated the effect of PCB exposure on mitochondrial function using the PCB mixture Aroclor-1254 (A1254) in SH-SY5Y neuroblastoma cells. A 6-hour exposure to A1254 (5 μg/ml) reduced cellular ATP production by 45%±7, and mitochondrial membrane potential, detected by TMRE, by 49%±7. Consistently, A1254 significantly decreased oxidative phosphorylation and aerobic glycolysis measured by extracellular flux analyzer. Furthermore, the activity of mitochondrial protein complexes I, II, and IV, but not V (ATPase), measured by BN-PAGE technique, was significantly reduced after 6-hour exposure to A1254. The addition of pyruvic acid during exposure to A1254 significantly prevent A1254-induced cell injury, restoring resting mitochondrial membrane potential, ATP levels, oxidative phosphorylation and aerobic glycolysis. Furthermore, pyruvic acid significantly preserved the activity of mitochondrial complexes I, II and IV and increased basal activity of complex V. Collectively, the present results indicate that the neurotoxicity of A1254 depends on the impairment of oxidative phosphorylation, aerobic glycolysis, and mitochondrial complexes I, II, and IV activity and it was counteracted by pyruvic acid.  相似文献   

5.
Propionic and methylmalonic acidemic patients have severe neurologic symptoms whose etiopathogeny is still obscure. Since increase of lactic acid is detected in the urine of these patients, especially during metabolic decompensation when high concentrations of methylmalonate (MMA) and propionate (PA) are produced, it is possible that cellular respiration may be impaired in these individuals. Therefore, we investigated the effects of MMA and PA (1, 2.5 and 5 mM), the principal metabolites which accumulate in these conditions, on the mitochondrial respiratory chain complex activities succinate: 2,6-dichloroindophenol (DCIP) oxireductase (complex II); succinate: cytochrome c oxireductase (complexII+CoQ+III); NADH: cytochrome c oxireductase (complex I+CoQ+complex III); and cytochrome c oxidase (COX) (complex IV) from cerebral cortex homogenates of young rats. The effect of MMA on ubiquinol: cytochrome c oxireductase (complex III) and NADH: ubiquinone oxireductase (complex I) activities was also tested. Control groups did not contain MMA and PA in the incubation medium. MMA significantly inhibited complex I+III (32–46%), complex I (61–72%), and complex II+III (15–26%), without affecting significantly the activities of complexes II, III and IV. However, by using 1 mM succinate in the assay instead of the usual 16 mM concentration, MMA was able to significantly inhibit complex II activity in the brain homogenates. In contrast, PA did not affect any of these mitochondrial enzyme activities. The effect of MMA and PA on succinate: phenazine oxireductase (soluble succinate dehydrogenase (SDH)) was also measured in mitochondrial preparations. The results showed significant inhibition of the soluble SDH activity by MMA (11–27%) in purified mitochondrial fractions. Thus, if the in vitro inhibition of the oxidative phosphorylation system is also expressed under in vivo conditions, a deficit of brain energy production might explain some of the neurological abnormalities found in patients with methylmalonic acidemia (MMAemia) and be responsible for the lactic acidemia/aciduria identified in some of them.  相似文献   

6.
Mitochondria have been proposed as the major source of reactive oxygen species in somatic cells and human spermatozoa. However, no data regarding the role of mitochondrial ROS production in stallion spermatozoa are available. To shed light on the role of the mitochondrial electron transport chain in the origin of oxidative stress in stallion spermatozoa, specific inhibitors of complex I (rotenone) and III (antimycin-A) were used. Ejaculates from seven Andalusian stallions were collected and incubated in BWW media at 37°C in the presence of rotenone, antimycin-A or control vehicle. Incubation in the presence of these inhibitors reduced sperm motility and velocity (CASA analysis) (p<0.01), but the effect was more evident in the presence of rotenone (a complex I inhibitor). These inhibitors also decreased ATP content. The inhibition of complexes I and III decreased the production of reactive oxygen species (p<0.01) as assessed by flow cytometry after staining with CellRox deep red. This observation suggests that the CellRox probe mainly identifies superoxide and that superoxide production may reflect intense mitochondrial activity rather than oxidative stress. The inhibition of complex I resulted in increased hydrogen peroxide production (p<0.01). The inhibition of glycolysis resulted in reduced sperm velocities (p<0.01) without an effect on the percentage of total motile sperm. Weak and moderate (but statistically significant) positive correlations were observed between sperm motility, velocity and membrane integrity and the production of reactive oxygen species. These results indicate that stallion sperm rely heavily on oxidative phosphorylation (OXPHOS) for the production of ATP for motility but also require glycolysis to maintain high velocities. These data also indicate that increased hydrogen peroxide originating in the mitochondria is a mechanism involved in stallion sperm senescence.  相似文献   

7.
DJ‐1 was recently reported to mediate the cardioprotection of delayed hypoxic preconditioning (DHP) by suppressing hypoxia/reoxygenation (H/R)‐induced oxidative stress, but its mechanism against H/R‐induced oxidative stress during DHP is not fully elucidated. Here, using the well‐established cellular model of DHP, we again found that DHP significantly improved cell viability and reduced lactate dehydrogenase release with concurrently up‐regulated DJ‐1 protein expression in H9c2 cells subjected to H/R. Importantly, DHP efficiently improved mitochondrial complex I activity following H/R and attenuated H/R‐induced mitochondrial reactive oxygen species (ROS) generation and subsequent oxidative stress, as demonstrated by a much smaller decrease in reduced glutathione/oxidized glutathione ratio and a much smaller increase in intracellular ROS and malondialdehyde contents than that observed for the H/R group. However, the aforementioned effects of DHP were antagonized by DJ‐1 knockdown with short hairpin RNA but mimicked by DJ‐1 overexpression. Intriguingly, pharmacological inhibition of mitochondria complex I with Rotenone attenuated all the protective effects caused by DHP and DJ‐1 overexpression, including maintenance of mitochondria complex I and suppression of mitochondrial ROS generation and subsequent oxidative stress. Taken together, this work revealed that preserving mitochondrial complex I activity and subsequently inhibiting mitochondrial ROS generation could be a novel mechanism by which DJ‐1 mediates the cardioprotection of DHP against H/R‐induced oxidative stress damage.  相似文献   

8.
Hypoxia upregulates the expression of the cardioprotective peptide adrenomedullin in cardiomyocytes. We characterized this pathway in murine HL-1 cardiomyocytes. Inhibition of mitochondrial complexes I, III, and IV largely, but not completely, reduced hypoxic adrenomedullin mRNA increase in gas-impermeable culture plates. Complex III inhibition was also effective in permeable culture plates, so that this effect is unlikely due to intracellular oxygen redistribution, whereas complex I blockade was ineffective in permeable plates. Complex II does not participate in this effect, as shown by chemical and siRNA inactivation. ROS scavenging by nitroblue tetrazolium and general flavoprotein inhibition by diphenyleniodonium nearly abrogated the hypoxic adrenomedullin mRNA increase. Thus, ROS production by flavoproteins is crucial for hypoxic upregulation of adrenomedullin mRNA in murine HL-1 cardiomyocytes. These ROS originate both from the mitochondrial complex III and from additional, presumably extramitochondrial, sources. Mitochondrial oxygen consumption appears to have impact on oxygen availability at these extramitochondrial sensors.  相似文献   

9.
Compromised mitochondrial function in neurons and glia has been observed in several neurodegenerative disorders, including Huntington's disease and Alzheimer's disease. Chemical/hypoxic preconditioning may afford protection against subsequently more severe oxidative damages. In this study, we tested whether induction of hypoxia inducible factor-1 (HIF-1) may exert cytoprotective effects against mitochondrial dysfunction caused by 3-nitropropionic acid (3-NP) in glial cells. Preconditioning of C6 astroglial cells with cobalt chloride, mimosine (MIM), and desferrioxamine (DFO), all of which known to activate HIF-1, significantly attenuated cytotoxicity induced by 3-NP, an irreversible inhibitor of mitochondrial complex II, and antimycin A, a mitochondrial complex III inhibitor. Application of cadmium chloride capable of neutralizing cobalt-induced HIF-1 activation, HIF-specific oligodeoxynucleotide (ODN) decoy, and antisense phosphorothioate ODN against HIF-1alpha abolished the protective effect mediated by preconditioning with cobalt chloride. Preloading of C6 cells with SN50, PD98059, or SB202190, the respective inhibitor of nuclear factor-kappaB (NF-kappaB), p44/p42 extracellular signal-regulated kinase (ERK), and p38 mitogen-activated protein kinase (MAPK), failed to affect the protection afforded by cobalt preconditioning. Taken together, these results suggest that HIF-1 induction secondary to preconditioning with cobalt chloride or iron chelators may mediate the protective effects against metabolic insult induced by the mitochondrial inhibitor 3-NP in C6 astroglial cells.  相似文献   

10.
The rising prevalence of gestational diabetes mellitus (GDM) affects up to 18% of pregnant women with immediate and long-term metabolic consequences for both mother and infant. Abnormal glucose uptake and lipid oxidation are hallmark features of GDM prompting us to use an exploratory proteomics approach to investigate the cellular mechanisms underlying differences in skeletal muscle metabolism between obese pregnant women with GDM (OGDM) and obese pregnant women with normal glucose tolerance (ONGT). Functional validation was performed in a second cohort of obese OGDM and ONGT pregnant women. Quantitative proteomic analysis in rectus abdominus skeletal muscle tissue collected at delivery revealed reduced protein content of mitochondrial complex I (C-I) subunits (NDUFS3, NDUFV2) and altered content of proteins involved in calcium homeostasis/signaling (calcineurin A, α1-syntrophin, annexin A4) in OGDM (n = 6) vs. ONGT (n = 6). Follow-up analyses showed reduced enzymatic activity of mitochondrial complexes C-I, C-III, and C-IV (−60–75%) in the OGDM (n = 8) compared with ONGT (n = 10) subjects, though no differences were observed for mitochondrial complex protein content. Upstream regulators of mitochondrial biogenesis and oxidative phosphorylation were not different between groups. However, AMPK phosphorylation was dramatically reduced by 75% in the OGDM women. These data suggest that GDM is associated with reduced skeletal muscle oxidative phosphorylation and disordered calcium homeostasis. These relationships deserve further attention as they may represent novel risk factors for development of GDM and may have implications on the effectiveness of physical activity interventions on both treatment strategies for GDM and for prevention of type 2 diabetes postpartum.  相似文献   

11.
目的 :研究低氧预处理提高下丘脑细胞缺氧耐受性与Na 、K 电流的关系。方法 :采用培养的大鼠下丘脑神经元 ,用膜片钳全细胞记录技术 ,观察低氧预处理对其钠电流 (INa)、钾电流 (IK)的影响。结果 :①低氧预处理未明显改变INa,但增加了IK 幅值 ;②急性缺氧导致对照组细胞INa、IK 明显受抑制 ,而经过低氧预处理的细胞INa、IK 受抑制程度显著低于对照组。结论 :低氧预处理提高下丘脑细胞的耐缺氧能力与低氧预处理后K 通道的大量开放有关  相似文献   

12.
Turan NN  Basgut B  Aypar E  Ark M  Iskit AB  Cakici I 《Life sciences》2008,82(17-18):928-933
Short ischemic episodes increase tolerance against subsequent severe ischemia in the heart. Nitropropionate (3-NP), an irreversible inhibitor of succinic dehydrogenase of the mitochondrial complex II, was shown to induce protective effect against ischemic brain injury. The aim of this study was to investigate the possible protective effect of 3-NP on regional ischemia in preconditioned rat heart in vivo. Hearts were assigned into three groups: first, in order to induce ischemic preconditioning (IP) 5 min ischemia separated by 10 min reperfusion protocol was used; second, non-preconditioned group was used as control; and third, 3-NP (20 mg/kg, i.p.) was injected 3 h before the surgical procedure in order to induce chemical preconditioning. In all these groups, 30 min regional ischemia was followed by 60 min reperfusion. Infarct size, bax expression, number of ventricular ectopic beats (VEB), duration of ventricular tachycardia (VT) and ventricular fibrillation (VF) were significantly decreased in ischemic preconditioning and 3-NP pretreatment groups, whereas bcl-2 values were not markedly changed in these groups during occlusion period. These results showed that in the anesthetized rat heart 3-NP induced chemical preconditioning by decreasing infarct size, number of VEB, duration of VT and VF. Protective effect is associated with via decreased production of bax protein expression.  相似文献   

13.
Echinococcus multilocularis employs aerobic and anaerobic respiration pathways for its survival in the specialized environment of the host. Under anaerobic conditions, fumarate respiration has been identified as a promising target for drug development against E. multilocularis larvae, although the relevance of oxidative phosphorylation in its survival remains unclear. Here, we focused on the inhibition of mitochondrial cytochrome bc1 complex (complex III) and evaluated aerobic respiratory activity using mitochondrial fractions from E. multilocularis protoscoleces. An enzymatic assay revealed that the mitochondrial fractions possessed NADH-cytochrome c reductase (mitochondrial complexes I and III) and succinate-cytochrome c reductase (mitochondrial complexes II and III) activities in the aerobic pathway. Enzymatic analysis showed that atovaquone, a commercially available anti-malarial drug, inhibited mitochondrial complex III at 1.5 nM (IC50). In addition, culture experiments revealed the ability of atovaquone to kill protoscoleces under aerobic conditions, but not under anaerobic conditions, indicating that protoscoleces altered their respiration system to oxidative phosphorylation or fumarate respiration depending on the oxygen supply. Furthermore, combined administration of atovaquone with atpenin A5, a quinone binding site inhibitor of complex II, completely killed protoscoleces in the culture. Thus, inhibition of both complex II and complex III was essential for strong antiparasitic effect on E. multilocularis. Additionally, we demonstrated that oral administration of atovaquone significantly reduced primary alveolar hydatid cyst development in the mouse liver, compared with the untreated control, indicating that complex III is a promising target for development of anti-echinococcal drug.  相似文献   

14.
An aqueous solution of [14C]-L-leucine (specific activity 339 mCi/mmole) was injected in a dose of 7–8 µl into the region of the ventral horn of mature (8–12 months) and old (26–28 months) rats at the level of segments L5–L6 of the spinal cord. Radioactivity of different segments of the corresponding ventral roots was tested after 1–2.5 h. Labeled substances (including protein) were shown to migrate in mature rats in a rapid flow with a velocity of 408±10.9 and 380±22 mm/24 h, respectively, whereas in old rats the velocity was 217±11.3 and 200±40 mm/24 h. Slowing of the axoplasmic current in old rats increases with increasing distance from the neuron body. Uncoupling of oxidation and phosphorylation by injection of 2,4-dinitrophenol, inhibition of glycolysis by sodium fluoride, and hypoxic hypoxia all induce more marked slowing of the axoplasm flow in old rats. Small doses of sodium fluoride, on the other hand, accelerate the flow of axoplasm, and this correlates with elevation of the cAMP level in the ventral roots.Institute of Gerontology, Academy of Medical Sciences of the USSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 2, pp. 189–194, March–April, 1984.  相似文献   

15.
To investigate the potency of the topoisomerase II (topo II) poisons doxorubicin and etoposide to stimulate the DNA damage response (DDR), S139 phosphorylation of histone H2AX (γH2AX) was analyzed using rat cardiomyoblast cells (H9c2). Etoposide caused a dose-dependent increase in the γH2AX level as shown by Western blotting. By contrast, the doxorubicin response was bell-shaped with high doses failing to increase H2AX phosphorylation. Identical results were obtained by immunohistochemical analysis of γH2AX focus formation, comet assay-based DNA strand break analysis, and measuring the formation of the topo II-DNA cleavable complex. At low dose, doxorubicin activated ataxia telangiectasia mutated (ATM) but not ATM and Rad3-related (ATR). Both the lipid-lowering drug lovastatin and the Rac1-specific inhibitor NSC23766 attenuated doxorubicin- and etoposide-stimulated H2AX phosphorylation, induction of DNA strand breaks, and topo II-DNA complex formation. Lovastatin and NSC23766 acted in an additive manner. They did not attenuate doxorubicin-induced increase in p-ATM and p-Chk2 levels. DDR stimulated by topo II poisons was partially blocked by inhibition of type I p21-associated kinases. DDR evoked by the topoisomerase I poison topotecan remained unaffected by lovastatin. The data show that the mechanisms involved in DDR stimulated by topo II poisons are agent-specific with anthracyclines lacking DDR-stimulating activity at high doses. Pharmacological inhibition of Rac1 signaling counteracts doxorubicin- and etoposide-stimulated DDR by disabling the formation of the topo II-DNA cleavable complex. Based on the data we suggest that Rac1-regulated mechanisms are required for DNA damage induction and subsequent activation of the DDR following treatment with topo II but not topo I poisons.  相似文献   

16.
Hypoxia and warm ischemia are primary concerns in ischemic heart disease and transplant and trauma. Hypoxia impacts tissue ATP supply and can induce mitochondrial dysfunction that elevates reactive species release. The epaulette shark, Hemiscyllum ocellatum, is remarkably tolerant of severe hypoxia at temperatures up to 34°C, and therefore provides a valuable model to study warm hypoxia tolerance. Mitochondrial function was tested in saponin permeabilised ventricle fibres using high-resolution respirometry coupled with purpose-built fluorospectrometers. Ventricular mitochondrial function, stability and reactive species production of the epaulette shark was compared with that of the hypoxia-sensitive shovelnose ray, Aptychotrema rostrata. Fibres were prepared from each species acclimated to normoxic water conditions, or following a 2 h, acute hypoxic exposure at levels representing 40% of each species’ critical oxygen tension. Although mitochondrial respiratory fluxes for normoxia-acclimated animals were similar for both species, reactive species production in the epaulette shark was approximately half that of the shovelnose ray under normoxic conditions, even when normalised to tissue oxidative phosphorylation flux. The hypoxia-sensitive shovelnose ray halved oxidative phosphorylation flux and cytochrome c oxidase flux was depressed by 34% following hypoxic stress. In contrast, oxidative phosphorylation flux of the epaulette shark ventricular fibres isolated from acute hypoxia exposed the animals remained similar to those from normoxia-acclimated animals. However, uncoupling of respiration revealed depressed electron transport systems in both species following hypoxia exposure. Overall, the epaulette shark ventricular mitochondria showed greater oxidative phosphorylation stability and lower reactive species outputs with hypoxic exposure, and this may protect cardiac bioenergetic function in hypoxic tropical waters.  相似文献   

17.
High resolution respirometry in combination with the skinned fiber technique offers the possibility to study mitochondrial function routinely in small amounts of human muscle. During a period of 2 years, we investigated mitochondrial function in skeletal muscle tissue of 13 patients (average age = 5.8 years). In all of them, an open muscle biopsy was performed for diagnosis of their neuromuscular disorder. Mitochondrial oxidation rates were measured with a highly sensitive respirometer. Multiple substrate-inhibitor titration was applied for investigation of mitochondrial function. About 50 mg fibers were sufficient to obtain maximal respiratory rates for seven different substrates (pyruvate/malate, glutamate/malate, octanoylcarnitine/malate, palmitoylcarnitine /malate, succinate, durochinol and ascorbate/TMPD). Decreased respiration rates with reference to the wet weight of the permeabilized fiber could immediately be detected during the course of measurements.In 4 patients with mitochondrial encephalomyopathy (MEM) the respiration pattern indicated a specific mitochondrial enzyme defect, which was confirmed in every patient by measurements of the individual enzymes (one patient with PDHC deficiency, one with complex I deficiency and two patients with combined complex I and IV deficiency). In the 6 patients with spinal muscular atrophy (SMA) oxidation rates were found to be decreased to 23 ± 5% of controls. The normalized respiration pattern was comparable to that of the controls indicating a decreased content of mitochondria in SMA muscle with normal functional properties. Also in the 3 patients with Duchenne muscular dystrophy (DMD) decreased oxidation rates (42 ± 5%) were detected. In addition a low RCI (1.2) indicated a loose coupling of oxidative phosphorylation in the mitochondria of these patients.It is concluded that investigation of mitochondrial function in saponin skinned muscle fibers using high resolution respirometry in combination with multiple substrate titration offers a valuable tool for evaluation of mitochondrial alterations in muscle biopsies of children suffering from neuromuscular disorders. (Mol Cell Biochem 174: 71–78, 1997)  相似文献   

18.
The contribution of mitochondrial free radical production towards the initiation of lipid peroxidation (LPO) and functional injury in the post-ischemic heart is unclear. Using the isolated rat heart model, the effects of the uncoupler of mitochondrial oxidative phosphorylation dinitrophenol (DNP, 50 M final) on post-ischemic lipid peroxidation-derived free radical production and functional recovery were assessed. Hearts were subjected to 30 min total global ischemia followed by 15 min of reperfusion in the presence of DNP. As expected, DNP enhanced oxygen consumption before (11.3 ± 0.9 mol/min, p < 0.001) and during reperfusion (at 10 min: 7.9 ± 0.7 umol/min), compared to the heart with control treatment (8.2 ± 0.5 and 6.7 ± 0.3, respectively). This effect was only associated with a higher incidence of ventricular tachycardia during reperfusion (80 vs. 50% for control treatment, p < 0.05). Electron spin resonance spectroscopy (ESR) and spin trapping with u.-phenyl-tert-butylnitrone (PBN, 3 mM final) were used to monitor free radical generation during reperfusion. The vascular concentration of PBN-radical adducts (untreated: 6.4 ±1.0 nM, at 10 min) decreased in the presence of DNP (1.7 ± 0.4 nM, p < 0.01). The radical concentration inversely correlated with myocardial oxygen consumption. Total liberation of free radical adducts during the initial 10 min of reperfusion was reduced by DNP (0.59 ± 0.09 nmol, p < 0.01) compared to the respective control treatment (1.26 ± 0.16 nmol). Similar effects, prevention of PBN adduct formation and unchanged viability in the presence of DNP, were obtained with endothelial cells during post-hypoxic reoxygenation. Since inhibition of mitochondrial phosphorylation can inhibit the formation of LPO-derived free radicals after an ischemic/hypoxic interval, mitochondria may represent an important source of free radicals capable of initiating lipid peroxidative injury during reperfusion/reoxygenation. (Mol Cell Biochem 160/161: 167–177, 1996)  相似文献   

19.
Proper coordination between glycolysis and respiration is essential, yet the regulatory mechanisms involved in sensing respiratory chain defects and modifying mitochondrial functions accordingly are unclear. To investigate the nature of this regulation, we introduced respiratory bypass enzymes into cultured human (HEK293T) cells and studied mitochondrial responses to respiratory chain inhibition. In the absence of respiratory chain inhibitors, the expression of alternative respiratory enzymes did not detectably alter cell physiology or mitochondrial function. However, in permeabilized cells NDI1 (alternative NADH dehydrogenase) bypassed complex I inhibition, whereas alternative oxidase (AOX) bypassed complex III or IV inhibition. In contrast, in intact cells the effects of the AOX bypass were suppressed by growth on glucose, whereas those produced by NDI1 were unaffected. Moreover, NDI1 abolished the glucose suppression of AOX-driven respiration, implicating complex I as the target of this regulation. Rapid Complex I down-regulation was partly released upon prolonged respiratory inhibition, suggesting that it provides an “emergency shutdown” system to regulate metabolism in response to dysfunctions of the oxidative phosphorylation. This system was independent of HIF1, mitochondrial superoxide, or ATP synthase regulation. Our findings reveal a novel pathway for adaptation to mitochondrial dysfunction and could provide new opportunities for combatting diseases.  相似文献   

20.
We reported previously that the robust protection against renal ischemia/reperfusion (I/R) injury in mice by fasting was largely initiated before the induction of renal I/R. In addition, we found that preoperative fasting downregulated the gene expression levels of complexes I, IV, and V of the mitochondrial oxidative phosphorylation (OXPHOS) system, while it did not change those of complexes II and III. Hence, we now investigated the effect of 3 days of fasting on the functioning of renal mitochondria in order to better understand our previous findings. Fasting did not affect mitochondrial density. Surprisingly, fasting significantly increased the protein expression of complex II of the mitochondrial OXPHOS system by 19%. Complex II‐driven state 3 respiratory activity was significantly reduced by fasting (46%), which could be partially attributed to the significant decrease in the enzyme activity of complex II (16%). Fasting significantly inhibited Ca2+‐dependent mitochondrial permeability transition pore opening that is directly linked to protection against renal I/R injury. The inhibition of the mitochondrial permeability transition pore did not involve the expression of the voltage‐dependent anion channel by fasting. In conclusion, 3 days of fasting clearly induces the inhibition of complex II‐driven mitochondrial respiration state 3 in part by decreasing the amount of functional complex II, and inhibits mitochondrial permeability transition pore opening. This might be a relevant sequence of events that could contribute to the protection of the kidney against I/R injury. J. Cell. Biochem. 114: 230–237, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号