首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron- and proton-transfer reactions in bacterial nitric oxide reductase (NOR) have been investigated by optical spectroscopy and electrometry. In liposomes, NOR does not show any generation of an electric potential during steady-state turnover. This electroneutrality implies that protons are taken up from the same side of the membrane as electrons during catalysis. Intramolecular electron redistribution after photolysis of the partially reduced CO-bound enzyme shows that the electron transfer in NOR has the same pathway as in the heme-copper oxidases. The electron is transferred from the acceptor site, heme c, via a low-spin heme b to the binuclear active site (heme b3/FeB). The electron-transfer rate between hemes c and b is (3 +/- 2) x 10(4) s(-1). The rate of electron transfer between hemes b and b3 is too fast to be resolved (>10(6) s(-1)). Only electron transfer between heme c and heme b is coupled to the generation of an electric potential. This implies that the topology of redox centers in NOR is comparable to that in the heme-copper cytochrome oxidases. The optical and electrometric measurements allow identification of the intermediate states formed during turnover of the fully reduced enzyme, as well as the associated proton and electron movement linked to the NO reduction. The first phase (k = 5 x 10(5) s(-1)) is electrically silent, and characterized by the disappearance of absorbance at 433 nm and the appearance of a broad peak at 410 nm. We assign this phase to the formation of a ferrous NO adduct of heme b3. NO binding is followed by a charge separation phase (k = 2.2 x 10(5) s(-1)). We suggest that the formation of this intermediate that is not linked to significant optical changes involves movement of charged side chains near the active site. The next step creates a negative potential with a rate constant of approximately 3 x 10(4) s(-1) and a weak optical signature. This is followed by an electrically silent phase with a rate constant of 5 x 10(3) s(-1) leading to the last intermediate of the first turnover (a rate constant of approximately 10(3) s(-1)). The fully reduced enzyme has four electrons, enough for two complete catalytic cycles. However, the protons for the second turnover must be taken from the bulk, resulting in the generation of a positive potential in two steps. The optical measurements also verify two phases in the oxidation of low-spin hemes. Based on these results, we present mechanistic models of NO reduction by NOR. The results can be explained with a trans mechanism rather than a cis model involving FeB. Additionally, the data open up the possibility that NOR employs a P450-type mechanism in which only heme b3 functions as the NO binding site during turnover.  相似文献   

2.
CO photolysis from fully reduced Paracoccus denitrificans aa(3)-type cytochrome c oxidase in the absence of O(2) was studied by time-resolved potential electrometry. Surprisingly, photo dissociation of the uncharged carbon monoxide results in generation of a small-amplitude electric potential with the same sign as the physiological charge separation during activity. The number of electrogenic events after CO photolysis depends on the state of the enzyme. CO photolysis following immediately after activation by an enzymatic turnover, showed a two-component potential development. A fast (~1.5μs) phase was followed by slower potential generation with a time constant varying from 8μs at pH 7 to 250μs at pH 10. The amplitude of the fast phase was independent of the time of incubation after enzyme activation, whereas the slower phase vanished with a time constant of ~25min. CO photolysis from enzyme that had not undergone a prior single turnover showed the fast phase, but the amplitude of the slow phase was reduced to 10-30%. The amplitude of the fast phase corresponds to charge movement of 0.83? perpendicular to the membrane dielectric, and is independent of the time after enzyme activation. Thus it can be used as an internal ruler for normalization of the electrogenic responses of CcO. The slow phase was absent in the K354M mutant with a blocked proton-conducting K channel. We propose that CO photolysis increases the pK of the K354 residue, which results in its partial protonation, and generation of electric potential.  相似文献   

3.
Heme-copper oxidases are membrane-bound proteins that catalyze the reduction of O(2) to H(2)O, a highly exergonic reaction. Part of the free energy of this reaction is used for pumping of protons across the membrane. The ba(3) oxidase from Thermus thermophilus presumably uses a single proton pathway for the transfer of substrate protons used during O(2) reduction as well as for the transfer of the protons that are pumped across the membrane. The pumping stoichiometry (0.5 H(+)/electron) is lower than that of most other (mitochondrial-like) oxidases characterized to date (1?H(+)/electron). We studied the pH dependence and deuterium isotope effect of the kinetics of electron and proton transfer reactions in the ba(3) oxidase. The results from these studies suggest that the movement of protons to the catalytic site and movement to a site located some distance from the catalytic site [proposed to be a "proton-loading site" (PLS) for pumped protons] are separated in time, which allows individual investigation of these reactions. A scenario in which the uptake and release of a pumped proton occurs upon every second transfer of an electron to the catalytic site would explain the decreased proton pumping stoichiometry compared to that of mitochondrial-like oxidases.  相似文献   

4.
Electrons were discretely injected into oxidized cytochrome c oxidase in liposomes by laser flash excitation of bound ruthenium [II] bispyridyl, and the membrane potential was recorded by time-resolved electrometry. Membrane potential is generated in a fast phase when an electron is transferred from the excited dye, via the CuA center, to heme a at a relative dielectric depth d inside the membrane [Zaslavsky, D., Kaulen, A. D., Smirnova, I. A., Vygodina, T., and Konstantinov, A. A. (1993) FEBS Lett. 336, 389-393]. Subsequently, membrane potential may develop further in a slower event, which is due to proton transfer into the enzyme from the opposite side of the membrane [Ruitenberg, M., Kannt, A., Bamberg, E., Ludwig, B., Michel, H., and Fendler, K. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 4632-4636]. Here, we confirm that injection of the first electron into the fully oxidized cytochrome c oxidase from Paracoccus denitrificans is associated with a fast electrogenic 11 micros phase, but there is no further electrogenic phase up to 100 milliseconds when special care is taken to ensure that only fully oxidized enzyme is present initially. A slower electrogenic 135 micros phase only becomes apparent and grows in amplitude upon increasing the number of light flashes. This occurs in parallel with a decrease in amplitude of the 11 micros phase and correlates with the number of enzyme molecules that are already reduced by one electron before the flash. The electrogenic 135 micros phase does not appear with increasing flash number in the K354M mutant enzyme, where electron and proton transfer into the binuclear center is delayed. We conclude that the 135 micros phase, and its associated proton uptake, take place on electron injection into enzyme molecules where the binuclear heme a3-CuB site is already reduced by one electron, and that it is accompanied by oxidation of heme a with a similar time constant. Reduction of heme a is not associated with electrogenic proton uptake into the enzyme, neither in the fully oxidized nor in the one-electron-reduced enzyme. The extent of the electrogenic 135 micrcos phase also rules out the possibility that reduction of the binuclear center by the second electron would be coupled to proton translocation in addition to the electrogenic uptake of a proton.  相似文献   

5.
Changes in pH during the reactions of the fully reduced and mixed-valence cytochrome oxidase with molecular oxygen have been followed in flow-flash experiments, using the pH indicator phenol red. Solubilized enzyme as well as enzyme reconstituted into phospholipid vesicles has been studied. With the solubilized enzyme, a biphasic uptake of one proton from the medium was observed, whereas the reconstituted enzyme gave release of 1.3 protons to the extravesicular medium. It is concluded from these results that a total of two to three protons are taken up during oxidation of the fully reduced enzyme. Kinetic analysis suggests that the proton uptake is initiated by the transfer of the third electron to the oxygen binding site. A reaction scheme that integrates proton transfers and oxygen chemistry is presented.  相似文献   

6.
The D-pathway in A-type cytochrome c oxidases conducts protons from a conserved aspartate on the negatively charged N-side of the membrane to a conserved glutamic acid at about the middle of the membrane dielectric. Extensive work in the past has indicated that all four protons pumped across the membrane on reduction of O(2) to water are transferred via the D-pathway, and that it is also responsible for transfer of two out of the four "chemical protons" from the N-side to the binuclear oxygen reduction site to form product water. The function of the D-pathway has been discussed in terms of an apparent pK(a) of the glutamic acid. After reacting fully reduced enzyme with O(2), the rate of formation of the F state of the binuclear heme-copper active site was found to be independent of pH up to pH~9, but to drop off at higher pH with an apparent pK(a) of 9.4, which was attributed to the glutamic acid. Here, we present an alternative view, according to which the pH-dependence is controlled by proton transfer into the aspartate residue at the N-side orifice of the D-pathway. We summarise experimental evidence that favours a proton pump mechanism in which the proton to be pumped is transferred from the glutamic acid to a proton-loading site prior to proton transfer for completion of oxygen reduction chemistry. The mechanism is discussed by which the proton-pumping activity is decoupled from electron transfer by structural alterations of the D-pathway. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.  相似文献   

7.
The pH dependence of binding and oxidation of Mn2+ in highly oxidizing reaction centers with designed metal-binding sites was characterized by light-minus-dark optical difference spectroscopy and direct measurements of proton uptake/release. These mutants bind a Mn2+ ion that can efficiently transfer an electron to the oxidized bacteriochlorophyll dimer, as described earlier [Thielges et al. (2005) Biochemistry 44, 7389-7394]. The dissociation constant, KD, significantly increased with decreasing pH. The pH dependence of KD between pH 7 and pH 8 was consistent with the binding of Mn2+ being stabilized by the electrostatic release of two protons. The strong pH dependence of proton release upon Mn2+ binding, with a maximal release of 1.4 H+ per reaction center, was interpreted as being a result of a shift in the pKa values of the coordinating residues and possibly other nearby residues. A small amount of proton release associated with Mn2+ oxidation was observed upon illumination. These results show that functional metal-binding sites can be incorporated into proteins upon consideration of both the metal coordination and protonation states of the ligands.  相似文献   

8.
Enzyme-catalysed electron transfer reactions are often controlled by protein motions and coupled to chemical change such as proton transfer. We have investigated the nature of this control in the blue copper-dependent nitrite reductase from Alcaligenes xylosoxidans (AxNiR). Inter-Cu electron transfer from the T1Cu site to the T2Cu catalytic site in AxNiR occurs via a proton-coupled electron transfer mechanism. Here we have studied the kinetics of both electron and proton transfer independently using laser-flash photolysis for native AxNiR and its proton-channel mutant N90S. In native AxNiR, both inter-Cu electron transfer and proton transfer exhibit similar rates, and show an unusual dependence on the nitrite concentration. An initial decrease in the observed rates at low nitrite concentrations is followed by an increase in the observed rates at high nitrite concentrations (> 5 mm). In N90S, in which the T1Cu reduction potential is elevated by 60 mV, no inter-Cu electron transfer or proton transfer was observed in the absence of nitrite. Only in the presence of nitrite were both processes detected, with similar [nitrite] dependence, but the nitrite dependence was different compared with native enzyme. The substrate dependence in N90S was similar to that observed in steady-state assays, suggesting that this substitution resulted in proton-coupled electron transfer becoming rate-limiting. A pH perturbation experiment with native AxNiR revealed that protonation triggers inter-Cu electron transfer and generation of NO. Our results show a strong coupling of inter-Cu electron transfer and proton transfer for both native AxNiR and N90S, and provide novel insights into the controlled delivery of electrons and protons to the substrate-utilization T2Cu active site of AxNiR.  相似文献   

9.
We have investigated the CO-recombination kinetics after flash photolysis of CO from the "half-reduced" cytochrome c oxidase as a function of pH. In addition, the reaction was investigated in mutant enzymes in which Lys(I-362) and Ser(I-299), located approximately in the middle of the K-pathway and near the enzyme surface, respectively, were modified. Laser-flash induced dissociation of CO is followed by rapid internal electron transfer from heme a(3) to a. At pH>7 this electron transfer is associated with proton release to the bulk solution (tau congruent with 1 ms at pH 8). Thus, the CO-recombination kinetics reflects protonation events at the catalytic site. In the wild-type enzyme, below pH approximately 7, the main component in the CO-recombination displayed a rate of approximately 20 s(-1). Above pH approximately 7, a slow CO-recombination component developed with a rate that decreased from approximately 8 s(-1) at pH 8 to approximately 1 s(-1) at pH 10. This slow component was not observed with KM(I-362), while with the SD(I-299)/SG(I-299) mutant enzymes at each pH it was slower than with the wild-type enzyme. The results are interpreted in terms of proton release from H(2)O in the catalytic site after CO dissociation, followed by OH(-) binding to the oxidized heme a(3). The CO-recombination kinetics is proposed to be determined by the protonation rate of OH(-) and not dissociation of OH(-), i.e. the K-pathway transfers protons and not OH(-). With the KM(I-362) mutant enzyme the proton is not released, i.e. OH(-) is not formed. With the SD(I-299)/SG(I-299) mutant enzymes the proton is released, but both the release and uptake are slowed by the mutations. During reaction of the reduced enzyme with O(2), the H(2)O at the binuclear center is most likely involved as a proton donor in the O-O cleavage reaction.  相似文献   

10.
Flock U  Watmough NJ  Adelroth P 《Biochemistry》2005,44(31):10711-10719
The respiratory nitric oxide reductase (NOR) from Paracoccus denitrificans catalyzes the two-electron reduction of NO to N(2)O (2NO + 2H(+) + 2e(-) --> N(2)O + H(2)O), which is an obligatory step in the sequential reduction of nitrate to dinitrogen known as denitrification. NOR has four redox-active cofactors, namely, two low-spin hemes c and b, one high-spin heme b(3), and a non-heme iron Fe(B), and belongs to same superfamily as the oxygen-reducing heme-copper oxidases. NOR can also use oxygen as an electron acceptor; this catalytic activity was investigated in this study. We show that the product in the steady-state reduction of oxygen is water. A single turnover of the fully reduced NOR with oxygen was initiated using the flow-flash technique, and the progress of the reaction monitored by time-resolved optical absorption spectroscopy. Two major phases with time constants of 40 micros and 25 ms (pH 7.5, 1 mM O(2)) were observed. The rate constant for the faster process was dependent on the O(2) concentration and is assigned to O(2) binding to heme b(3) at a bimolecular rate constant of 2 x 10(7) M(-)(1) s(-)(1). The second phase (tau = 25 ms) involves oxidation of the low-spin hemes b and c, and is coupled to the uptake of protons from the bulk solution. The rate constant for this phase shows a pH dependence consistent with rate limitation by proton transfer from an internal group with a pK(a) = 6.6. This group is presumably an amino acid residue that is crucial for proton transfer to the catalytic site also during NO reduction.  相似文献   

11.
Cytochrome c oxidase is a membrane-bound enzyme, which catalyses the one-electron oxidation of four molecules of cytochrome c and the four-electron reduction of O(2) to water. Electron transfer through the enzyme is coupled to proton pumping across the membrane. Protons that are pumped as well as those that are used for O(2) reduction are transferred though a specific intraprotein (D) pathway. Results from earlier studies have shown that replacement of residue Asn139 by an Asp, at the beginning of the D pathway, results in blocking proton pumping without slowing uptake of substrate protons used for O(2) reduction. Furthermore, introduction of the acidic residue results in an increase of the apparent pK(a) of E286, an internal proton donor to the catalytic site, from 9.4 to ~11. In this study we have investigated intramolecular electron and proton transfer in a mutant cytochrome c oxidase in which a neutral residue, Thr, was introduced at the 139 site. The mutation results in uncoupling of proton pumping from O(2) reduction, but a decrease in the apparent pK(a) of E286 from 9.4 to 7.6. The data provide insights into the mechanism by which cytochrome c oxidase pumps protons and the structural elements involved in this process.  相似文献   

12.
Arginine 54 in subunit I of cytochrome c oxidase from Paracoccus denitrificans interacts with the formyl group of heme a. Mutation of this arginine to methionine (R54M) dramatically changes the spectral properties of heme a and lowers its midpoint redox potential [Kannt et al. (1999) J. Biol. Chem. 274, 37974-37981; Lee et al. (2000) Biochemistry 39, 2989-2996; Riistama et al. (2000) Biochim. Biophys. Acta 1456, 1-4]. During anaerobic reduction of the mutant enzyme, a small fraction of heme a is reduced first along with heme a(3), while most of heme a is reduced later. This suggests that electron transfer is impaired thermodynamically due to the low redox potential of heme a but that it still takes place from Cu(A) via heme a to the binuclear site as in wild-type enzyme, with no detectable bypass from Cu(A) directly to the binuclear site. Consistent with this, the proton translocation efficiency is unaffected at 1 H(+)/e(-) in the mutant enzyme, although turnover is strongly inhibited. Time-resolved electrometry shows that when the fully reduced enzyme reacts with O(2), the fast phase of membrane potential generation during the P(R )()--> F transition is unaffected by the mutation, whereas the slow phase (F --> O transition) is strongly decelerated. In the 3e(-)-reduced mutant enzyme heme a remains oxidized due to its lowered midpoint potential, whereas Cu(A) and the binuclear site are reduced. In this case the reaction with O(2) proceeds via the P(M) state because transfer of the electron from Cu(A) to the binuclear site is delayed. The single phase of membrane potential generation in the 3e(-)-reduced mutant enzyme, which thus corresponds to the P(M)--> F transition, is decelerated, but its amplitude is comparable to that of the P(R)--> F transition. From this we conclude that the completely (4e(-)) reduced enzyme is fully capable of proton translocation.  相似文献   

13.
Proton and electron transfer events during the reaction of solubilized fully reduced bovine heart cytochrome c oxidase with molecular oxygen were investigated using the flow-flash technique. Time-resolved spectral changes resulting from ligand binding and electron transfer events were detected simultaneously with pH changes in the bulk. The kinetics and spectral changes in the visible region (450-750 nm) were probed by optical multichannel detection, allowing high spectral resolution on time scales from 50 ns to 50 ms. Experiments were carried out in the presence and absence of pH-sensitive dyes (carboxyfluorescein at pH 6.5, phenol red at pH 7.5, and m-cresol purple at pH 8.5) which permitted separation of spectral changes due to proton transfer from those caused by ligand binding and electron transfer. The transient spectra recorded in the absence of dye were analyzed by singular-value decomposition and multiexponential fitting. Five apparent lifetimes (0.93 microseconds, 10 microseconds, 36 microseconds, 90 microseconds, and 1.3 ms at pH 7.5) could consistently be distinguished and provided a basis for a reaction mechanism consistent with our most recent kinetic model [Sucheta, A., Szundi, I., and Einarsdóttir, O. (1999) Biochemistry 37, 17905-17914]. The dye response indicated that proton uptake occurred concurrently with the two slowest electron transfer steps, in agreement with previous results based on single-wavelength detection [Hallén, S., and Nilsson, T. (1992) Biochemistry 31, 11853-11859]. The stoichiometry of the proton uptake reactions was approximately 1.3 +/- 0.3, 1.4 +/- 0.3, and 1.6 +/- 0.5 protons per enzyme at pH 6.5, 7.5, and 8.5, respectively. The electron transfer between heme a and CuA was limited by proton uptake on a 90 microseconds time scale. We have established the lower limit of the true rate constant for the electron transfer between CuA and heme a to be approximately 2 x 10(5) s-1.  相似文献   

14.
Proton release by flash excitations was measured with right-side-out vesicles prepared from Rhodopseudomonas sphaeroides by lysozyme-EDTA treatment followed by hypotonic treatment. Absorbance change at 586 nm in the presence of bromcresol purple was measured to monitor the pH change. In the presence of horse heart cytochrome c, which catalyzes the electron transfer from the cytochrome b-c1 complex to the primary electron donor, the single-turnover flash elicited release of about two protons per primary electron donor, which was rereduced rapidly by the added cytochrome c. The halftime of the proton release was about 70 ms at pH 6.3 and at a redox potential of about 150 mV. The rate was considerably lower than that of the electron transfer from the cytochrome b-c1 complex to cytochrome c. However, multiple flashes with intervals of 60 ms caused release of the same amount of protons as that by flashes with longer intervals. This indicated that the proton release itself was rapid, but delocalization was slower. Antimycin A inhibited the proton release, and myxothiazol almost completely abolished it.  相似文献   

15.
We have investigated the dynamics of proton equilibration within the proton-transfer pathway of cytochrome c oxidase from bovine heart that is used for the transfer of both substrate and pumped protons during reaction of the reduced enzyme with oxygen (D-pathway). The kinetics of the slowest phase in the oxidation of the enzyme (the oxo-ferryl --> oxidized transition, F --> O), which is associated with proton uptake, were studied by monitoring absorbance changes at 445 nm. The rate constant of this transition, which is 800 s(-)(1) in H(2)O (at pH approximately 7.5), displayed a kinetic deuterium isotope effect of approximately 4 (i.e., the rate was approximately 200 s(-)(1) in 100% D(2)O). To investigate the kinetics of the onset of the deuterium isotope effect, fully reduced, solubilized CO-bound cytochrome c oxidase in H(2)O was mixed rapidly at a ratio of 1:5 with a D(2)O buffer saturated with oxygen. After a well-defined time period, CO was flashed off using a short laser flash. The time between mixing and flashing off CO was varied within the range 0. 04-10 s. The results show that for the bovine enzyme, the onset of the deuterium isotope effect takes place within two time windows of O transition is internal proton transfer from a site, proposed to be Glu (I-286) (R. sphaeroides amino acid residue numbering), to the binuclear center. The spontaneous equilibration of protons/deuterons with this site in the interior of the protein is slow (approximately 1 s).  相似文献   

16.
Fabian M  Palmer G 《Biochemistry》2001,40(6):1867-1874
In the absence of any external electron donor, the "peroxy" intermediate of cytochrome c oxidase (CcO-607) is converted to the ferryl form (CcO-580) and subsequently to oxidized enzyme. The rate of conversion of CcO-607 to the CcO-580 form is pH dependent between pH 3.0 and pH 7.6. A plot of the logarithm of the rate constant for this conversion is a linear function of pH with a slope of -0.92, implying the involvement of a single proton in the transition. Upon rapidly lowering the pH from 8.1 to 5.8, the uptake of one proton was observed by direct pH measurement, and the kinetics of proton uptake coincide with the spectral conversion of CcO-607 to CcO-580. We interpret the slow endogenous decay of CcO-607 to CcO-580 to be the result of proton transfer to a deprotonated group generated in the binuclear cavity during CcO-607 formation. This group is not freely accessible to protons from the medium, and its pK(a) is probably higher than 9.0.  相似文献   

17.
Cytochrome bd is a quinol oxidase from Escherichia coli, which is optimally expressed under microaerophilic growth conditions. The enzyme catalyzes the two-electron oxidation of either ubiquinol or menaquinol in the membrane and scavenges O2 at low concentrations, reducing it to water. Previous work has shown that, although cytochrome bd does not pump protons, turnover is coupled to the generation of a proton motive force. The generation of a proton electrochemical gradient results from the release of protons from the oxidation of quinol to the periplasm and the uptake of protons used to form H2O from the cytoplasm. Because the active site has been shown to be located near the periplasmic side of the membrane, a proton channel must facilitate the delivery of protons from the cytoplasm to the site of water formation. Two conserved glutamic acid residues, E107 and E99, are located in transmembrane helix III in subunit I and have been proposed to form part of this putative proton channel. In the current work, it is shown that mutations in either of these residues results in the loss of quinol oxidase activity and can result in the loss of the two hemes at the active site, hemes d and b595. One mutant, E107Q, while being totally inactive, retains the hemes. Fourier transform infrared (FTIR) redox difference spectroscopy has identified absorption bands from the COOH group of E107. The data show that E107 is protonated at pH 7.6 and that it is perturbed by the reduction of the heme d/heme b595 binuclear center at the active site. In contrast, mutation of an acidic residue known to be at or near the quinol-binding site (E257A) also inactivates the enzyme but has no substantial influence on the FTIR redox difference spectrum. Mutagenesis shows that there are several acidic residues, including E99 and E107 as well as D29 (in CydB), which are important for the assembly or stability of the heme d/heme b595 active site.  相似文献   

18.
Proton translocation in the catalytic cycle of cytochrome c oxidase (CcO) proceeds sequentially in a four-stroke manner. Every electron donated by cytochrome c drives the enzyme from one of four relatively stable intermediates to another, and each of these transitions is coupled to proton translocation across the membrane, and to uptake of another proton for production of water in the catalytic site. Using cytochrome c oxidase from Paracoccus denitrificans we have studied the kinetics of electron transfer and electric potential generation during several such transitions, two of which are reported here. The extent of electric potential generation during initial electron equilibration between CuA and heme a confirms that this reaction is not kinetically linked to vectorial proton transfer, whereas oxidation of heme a is kinetically coupled to the main proton translocation events during functioning of the proton pump. We find that the rates and amplitudes in multiphase heme a oxidation are different in the OH-->EH and PM-->F steps of the catalytic cycle, and that this is reflected in the kinetics of electric potential generation. We discuss this difference in terms of different driving forces and relate our results, and data from the literature, to proposed mechanisms of proton pumping in cytochrome c oxidase.  相似文献   

19.
In the membrane-bound redox-driven proton pump cytochrome c oxidase, electron- and proton-transfer reactions must be coupled, which requires controlled modulation of the kinetic and/or thermodynamic properties of proton-transfer reactions through the membrane-spanning part of the protein. In this study we have investigated proton-transfer reactions through a pathway that is used for the transfer of both substrate and pumped protons in cytochrome c oxidase from Rhodobacter sphaeroides. Specifically, we focus on the formation of the so-called F intermediate, which is rate limited by an internal proton-transfer reaction from a possible branching point in the pathway, at a glutamic-acid residue (E(I-286)), to the binuclear center. We have also studied the reprotonation of E(I-286) from the bulk solution. Evaluation of the data in terms of a model presented in this work gives a rate of internal proton transfer from E(I-286) to the proton acceptor at the catalytic site of 1.1 x 10(4) s(-1). The apparent pK(a) of the donor (E(I-286)), determined from the pH dependence of the F-formation kinetics, was found to be 9.4, while the pK(a) of the proton acceptor at the catalytic site is likely to be > or = 2.5 pH units higher. In the pH range up to pH 10 the proton equilibrium between the bulk solution and E(I-286) was much faster than 10(4) s(-1), while in the pH range above pH 10 the proton uptake from solution is rate limiting for the overall reaction. The apparent second-order rate constant for proton transfer from the bulk solution to E(I-286) is >10(13) M(-1) s(-1), which indicates that the proton uptake is assisted by a local buffer consisting of protonatable residues at the protein surface.  相似文献   

20.
Cytochrome c oxidase (CcO) is the terminal enzyme in the respiratory electron transport chain of aerobic organisms. It catalyses the reduction of atmospheric oxygen to water, and couples this reaction to proton pumping across the membrane; this process generates the electrochemical gradient that subsequently drives the synthesis of ATP. The molecular details of the mechanism by which electron transfer is coupled to proton pumping in CcO is poorly understood. Recent calculations from our group indicate that His291, a ligand of the Cu(B) center of the enzyme, may play the role of the pumping element. In this paper we describe calculations in which a DFT/continuum electrostatic method is used to explore the coupling of the conformational changes of Glu242 residue, the main proton donor of both chemical and pump protons, to its pKa, and the pKa of His291, a putative proton loading site of our pumping model. The computations are done for several redox states of metal centers, different protonation states of Glu242 and His291, and two well-defined conformations of the Glu242 side chain. Thus, in addition to equilibrium redox/protonation states of the catalytic cycle, we also examine the transient and intermediate states. Different dielectric models are employed to investigate the robustness of the results, and their viability in the light of the proposed proton pumping mechanism of CcO. The main results are in agreement with the experimental measurements and support the proposed pumping mechanism. Additionally, the present calculations indicate a possibility of gating through conformational changes of Glu242; namely, in the pumping step, we find that Glu242 needs to be reprotonated before His291 can eject a proton to the P-site of membrane. As a result, the reprotonation of Glu can control proton release from the proton loading site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号