首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numbers of Steinernema sp. (CB2B) and S. carpocapsae (Agriotos) exponentially declined after application into a clay loam soil. Over a 35-day sampling period, Steinernema sp. (CB2B) was more persistent than S. carpocapsae (Agriotos). The presence or absence of the second-stage cuticle on the third-stage juveniles (J3) at the time of application did not alter the rate of population decline of Steinernema sp. (CB2B). Nearly all J3 of Steinernema sp. (CB2B) and S. carpocapsae (Agriotos) lost their cuticle within 24 hours of being in soil. Centrifugal flotation recovered the greatest number of nematodes, with a lower variance than either the live bait or Baermann funnel techniques. A strong positive linear relationship was evident between numbers of nematodes present in the soil and the numbers that established in a bait insect. Approximately 40% of Steinernema sp. (CB2B) and 30% of the S. carpocapsae (Agriotos) present in the soil established in Galleria mellonella larvae. The extraction techniques had different efficiencies and gave different relative estimates of persistence for the two species. Persistence and infectivity was best measured using a combination of live bait and flotation techniques.  相似文献   

2.
Virulence and development of the insect-parasitic nematode, Steinernema carpocapsae (Weiser) (Mexican strain), were evaluated for the immature stages of the western corn rootworm, Diabrotica virgifera virgifera LeConte. Third instar rootworm larvae were five times more susceptible to nematode infection than second instar larvae and 75 times more susceptible than first instar larvae and pupae, based on laboratory bioassays. Rootworm eggs were not susceptible. Nematode development was observed in all susceptible rootworm stages, but a complete life cycle was observed only in second and third instar larvae and pupae. Nematode size was affected by rootworm stage; the smallest infective-stage nematodes were recovered from second instar rootworm larvae. Results of this study suggest that S. carpocapsae should be applied when second and third instar rootworm larvae are predominant in the field.  相似文献   

3.
The efficacies of several entomopathogenic nematodes ofSteinernema andHeterorhabditis spp. were examined against tobacco cutworm,Spodoptera litura Fabricius.H. bacteriophora HY showed 100% mortality after 20 h against 2nd instar of tobacco cutworm. In the case of 3–4th instar,S. carpocapsae PC.,H. bacteriophora HY andS. monticola CR showed 100% mortality after 47 h. In the case of 5–6th instar,S. carpocapsae PC proved more effective than the others. Generally, the number of nematodes harvested increased as their size decreased. Also, the highest number of nematodes was obtained in the 5–6th instar ofS. litura byH. bacteriophora HY, showing about 1.3×106 nematodes per larva.In vitro culturedS. carpocapsae PG showed 100% mortality after 73 h against 5–6th instar tobacco cutworm, indicating that nematodes producedin vitro can be potentially used for the biological control ofS. litura instead of nematodesin vivo.  相似文献   

4.
Injection, contact, and soil assays were used to compare infectivity of Heterorhabditis bacteriophora strain HP88 and Steinernema carpocapsae strain All to final instar Galleria mellonella larvae. Under comparable assay conditions, H. bacteriophora produced less Galleria mortality and showed greater within-assay variability in infectivity than S. carpocapsae. Injection of individual S. carpocapsae or H. bacteriophora infective juveniles into Galleria indicated that a comparatively greater percentage of S. carpocapsae was capable of initiating infection. In addition to nematode species, other major components of variability in assay estimations of nematode infectivity were number of nematodes used in the assay, assay type, date of the assay, and possibly, Galleria age.  相似文献   

5.
Five field surveys for indigenous entomopathogenic nematodes (EPNs) were conducted in 22 semi-natural and 17 small-holder farming habitats across 16 districts of different altitudes in the northern, eastern, southern and Kigali city provinces of Rwanda. In 2014, 216 mixed soil samples were collected and subsamples thereof baited with Galleria mellonella or Tenebrio molitor larvae. Five samples from five locations and habitats were positive for nematodes (2.8%). Nine nematode species/strains were isolated and five successfully maintained. DNA sequence comparisons and morphological examinations revealed Steinernema carpocapsae, Heterorhabditis bacteriophora, as well as two steinernematids and one heterorhabditid with no species designation. The isolates (strains) were named Steinernema sp. RW14-M-C2a-3, Steinernema sp. RW14-M-C2b-1, Steinernema carpocapsae RW14-G-R3a-2, H. bacteriophora RW14-N-C4a and Heterorhabditis sp. RW14-K-Ca. These are the first records of naturally occurring EPNs in Rwanda. It is also the first record of S. carpocapsae from Africa. Finding H. bacteriophora from tropical rather than temperate Africa was surprising. The found nematodes will serve as the basis for efficacy screening, and for mass production in a biocontrol agent factory at Rubona Research Centre of the Rwanda Agriculture Board with the ultimate aim of delivering effective, safe and environmentally benign pest control for soil-inhabiting pests.  相似文献   

6.
Isolation and identification of native nematode-bacterial associations in the field are necessary for successful control of endemic pests in a particular location. No study has yet been undertaken to recover and identify EPN in metropolitan France. In the present paper, we provide results of a survey of EPN and their symbiotic bacteria conducted in Hérault and Gard regions in Southern France. Molecular characterization of isolated nematodes depicted three different Steinernema species and one Heterorhabditis species, H. bacteriophora. Steinernema species recovered were identified as: S. feltiae and S. affine and an undescribed species. Xenorhabdus symbionts were identified as X. bovienii for both S. feltiae and S. affine. Phylogenetic analysis placed the new undescribed Steinernema sp. as closely related to S. arenarium but divergent enough to postulate that it belongs to a new species within the “glaseri-group”. The Xenorhabdus symbiont from this Steinernema sp. was identified as X. kozodoii. All Heterorhabditis isolates recovered were diagnosed as H. bacteriophora and their bacterial symbionts were identified as Photorhabdus luminescens. Molecular characterization of these nematodes enabled the distinction of two different H. bacteriophora strains. Bacterial symbiontic strains of these two H. bacteriophora strains were identified as P. luminescens ssp. kayaii and P. luminescens ssp. laumondii.  相似文献   

7.
《Journal of Asia》2022,25(1):101874
Virulence and invasion efficiency of the three entomopathogenic nematodes, Heterorhabditis bacteriophora, Steinernema carpocapsae and S. feltiae against the potato tuber moth (PTM), Phthorimaea operculella was evaluated. Also evaluated were the sex ratio of Steinernema spp. and host stages to determine if 1) the developmental stage of the host affects sex ratio of nematodes; 2) infective juveniles (IJs) concentration affects sex ratio in host developmental stages and 3) the establishment of IJs is affected by developmental stages of host. The PTM pre-pupa and pupa were exposed to IJs in filter substrate petri dish bioassays. By increasing the IJs concentrations, the number of established Steinernema spp. in both PTM stages increased and only decreased at the highest concentration. No reduction in established nematode numbers at the highest concentration was observed for H. bacteriophora. Sex ratio of S. carpocapsae in pre-pupa was affected by IJ concentration. PTM was more susceptible to Steinernema spp. than H. bacteriophora. Pre-pupa were more susceptible to S. feltiae but S. carpocapsae recorded as the most virulent EPN on pupa. Invasion efficiencies were similar for Steinernema and considerably higher than for H. bacteriophora. Despite a higher invasion efficiency of Steinernema into pupae, mortality was lower compared to pre-pupa No correlation was recorded between the invasion efficiencies of the EPNs and mortalities of PTM. The results showed that the invasion efficiency is not appropriate criterion to reflect the virulence of studied EPNs. Compared to H. bacteriophora both tested Steinernema spp. were good candidates for further studies as biocontrol agents of PTM.  相似文献   

8.
Several factors that influence the activity of steinernematid and heterorhabditid nematodes against adult Japanese beetles were examined in the laboratory. The effect of nematode concentration on mortality of adult beetles was evaluated using a Petri plate bioassay. The adults were exposed to 1,000 to 10,000 infective stage juveniles (J3) ofSteinernema glaseri per 10 beetles with or without food for 24 hr after which they were held with food for an additional 6 days. The LC50s for males with and without food during exposure were 3,435 and 2,854 J3s/10 adults, respectively. The LC50s for mixtures of males and females with and without food were 5,228 and 1,762 J3s/10 adults respectively. Although mortality occurred during and shortly after exposure, significant additional mortality was observed 1–4 days following exposure. Exposure of males and females with food to 10,000 J3s/10 adults for 6, 12, 18 or 24 hr resulted in 47, 58, 72 and 77% mortality, respectively. Comparative activity ofS. glaseri, S. carpocapsae (All strain),S. feltiae (Biosys experimental cold adapted strain=bibionis),S. feltiae (Biosys experimental strain 27),Heterorhabditis bacteriophora, andHeterorhabditis sp. (Terceiran isolate) was evaluated against adult Japanese beetles using a 24 hr exposure to 8,000 J3s/10 adults. The most virulent species wereS. glaseri, S. feltiae (=bibionis), the Terceiran isolate ofHeterorhabditis andS. carpocapsae producing 55, 44, 36 and 34% mortality respectively. Our results indicate that adult Japanese beetles infected with entomopathogenic nematodes could serve as a mechanism for nematode dispersal.  相似文献   

9.
Infective-stage juveniles of Steinernema and Heterorhabditis spp. were cryopreserved using two-stage incubation in glycerol and 70% methanol before storage in cryotubes in liquid nitrogen. Optimal glycerol concentrations and incubation times for survival were determined for different species, but acceptable survival of all species and isolates of entomopathogenic nematodes can be obtained using 15% (w/w) glycerol and incubation for 48 hours. Mean survival was 69% for isolates of Steinernema and 68% for isolates of Heterorhabditis (n = 84). The maximum survival recorded was 97% for S. feltiae K254 stored in liquid nitrogen for 12 months.  相似文献   

10.
There is evidence of competition within and between helminth species, but the mechanisms involved are not well described. In interference competition, organisms prevent each other from using the contested resource through direct negative interactions, either chemical or physical. Steinernema spp. are entomopathogenic nematodes; they enter a living insect host which they kill and consume with the aid of symbiotic bacteria. Several studies have demonstrated intra- and interspecific competition in Steinernema, mediated by a scramble for resources and by incompatibility of the bacterial symbiont. Here we describe a mechanism by which male Steinernema may compete directly for resources, both food (host) and females, by physically injuring or killing members of another species as well as males of their own species. A series of experiments was conducted in hanging drops of insect haemolymph. Males of each of four species (Steinernemalongicaudum, Steinernemacarpocapsae, Steinernemakraussei and Steinernemafeltiae), representing three of the five phylogenetic clades of the genus, killed each other. Within 48 h, up to 86% of pairs included at least one dead male, compared with negligible mortality in single male controls. There was evidence of intraspecific difference: one strain of S. feltiae (4CFMO) killed while another (UK76) did not. Males also killed both females and males of other Steinernema spp. There was evidence of a hierarchy of killing, with highest mortality due to S. longicaudum followed by S. carpocapsae, S. kraussei and S. feltiae. Wax moth larvae were co-infected with members of two Steinernema spp. to confirm that killing also takes place in the natural environment of an insect cadaver. When insects were co-infected with one infective juvenile of each species, S. longicaudum males killed both S. feltiae UK76 and Steinernema hermaphroditum. Wax moths co-infected with larger, equal numbers of S. longicaudum and S. feltiae UK76 produced mainly S. longicaudum progeny, as expected based on hanging drop experiments.  相似文献   

11.
Infectivity of entomopathogenic nematode (EPN) Steinernema carpocapsae Pocheon strain on the green peach aphid Myzus persicae and its parasitic wasps (e.g., Aphidius colemani, Aphidius gifuensis and Diaeretiella rapae) was evaluated under laboratory conditions. Infective juveniles (IJs) of S. carpocapsae Pocheon strain had low infectivity against nymph and adult stages of M. persicae, showing 2% and 6.7% of mortality, respectively. Application of the EPNs had little effect on mummies caused by the three parasitoid species, allowing them to remain intact. No IJ invaded the host, regardless of EPN application rate. The parasitoid emergence from mummies ranged from 80% to 85% in the presence of EPN while 79–86% was recorded in the absence of EPN. However, the presence of the IJs reduced oviposition by the three parasitoid species, decreasing the rate up to 59% when the nematodes were applied before parasitoid release, while little difference in oviposition was observed when nematodes were applied after parasitoid release.  相似文献   

12.
Studies with last instar larvae of the fall armyworm, Spodoptera frugiperda (J. E. Smith), the black cutworm, Agrotis ipsilon (Hufnagel), and the greater wax moth, Galleria mellonella (L.) were used to quantify the invasive ability of two strains (All and Mexican) of Steinernema carpocapsae and to determine how factors in the bioassay procedure affect both nematode invasion and host mortality. Nematode invasive ability was variable, with 10-50% of nematodes successfully infecting the host. The percentage of infectives invading the host (invasion efficiency) was positively related to increases in length of host exposure time and number of hosts per arena, negatively related to increases in substrate surface area per host, and not affected by nematode concentration. There was a direct relationship between concentration applied and the number of nematodes invading the host. Mortality was less affected than invasion efficiency by bioassay conditions and appears to be a much less sensitive index of nematode activity than invasive ability.  相似文献   

13.
Steinernema scapterisci n. sp., isolated in Uruguay from the mole cricket Scapteriscus vicinus, can be distinguished from other members in the genus by the presence of prominent cheilorhabdions, an elliptically shaped structure associated with the excretory duct, and a double-flapped epitygma in the first-generation female. The spicules of the male are pointed, tapering smoothly to a small terminus, and the shaft (calomus) is long, bearing a sheath. The gubernaculum has a long, upward-bent anterior part. The ratio of head to excretory pore divided by tail length of the third-stage juvenile is greater for S. scapterisci n. sp. than for S. carpocapsae. Steinernema scapterisci n. sp. did not hybridize with S. carpocapsae strain Breton. In laboratory tests, S. scapterisci n. sp. killed 10% or less of non-orthopteran insects, including the wax moth larva, a universal host for other species of Steinernema.  相似文献   

14.
Previous studies indicated that dispersal of S. carpocapsae may be enhanced in soil with earthworms. The objective of this research was to determine and compare the effects of earthworms on dispersal of other Steinernema spp. Vertical dispersal of Steinernema carpocapsae, S. feltiae, and S. glaseri was tested in soil columns in the presence and absence of earthworms (Lumbricus terrestris). Dispersal was evaluated by a bioassay and by direct extraction of nematodes from soil. Upward dispersal of S. carpocapsae and S. feltiae increased in the presence of earthworms, whereas upward dispersal of S. glaseri was not affected by earthworms. No significant differences were detected in downward dispersal of S. carpocapsae and S. feltiae in soil with earthworms compared to soil without earthworms. Downward dispersal of S. glaseri, however, was greater in soil without earthworms relative to soil with earthworms. In soil void of earthworms, dispersal of S. glaseri was greatest followed by dispersal of S. carpocapsae. The presence of earthworm burrows in soil did not influence nematode dispersal. Nematodes were recovered from the surface, interior, and casts of earthworms. Therefore, nematodes may have a phoretic association with earthworms.  相似文献   

15.
Otto Nielsen 《BioControl》2003,48(4):431-446
Isolates of different Steinernema species (S. affine, S. bicornutum, S. feltiae and Steinernema C1) were used in mortality assays with third instar larvae of Delia radicum (L.) (Diptera: Anthomyiidae). The nematode isolates had been obtained by baiting soil regularly grown with cabbage. One isolate (S. feltiae) was the result of a natural infection of a D. radicum puparium. The highest mortality (77%) was obtained with an isolate of S. feltiae (DK1). The isolate DK1 was also used in tests with all larval stages of D. radicum. Mortality around 60% was observed for second and third instar larvae, while first instar larvae showed very low or no susceptibility. Maximum mortality of second and third instar larvae was reached applying only 25 nematodes per larva. Observations of larvae that pupated revealed that some of these puparia contained nematodes. Experiments with hatching puparia showed that a high proportion was infected by nematodes if the flies were prevented from leaving nematode-containing soil. In addition to mortality, the ability of the nematodes to successfully reproduce in the insects was studied. It was found that the species S. feltiae and S. bicornutum reproduced in D. radicum larvae and adults with S. feltiae being the most successful.  相似文献   

16.
The infectivities of Steinernema carpocapsae, S. glaseri, S. scapterisci, and Heterorhabditis bacteriophora to Japanese beetle larvae, Popillia japonica, and house cricket adults, Acheta domesticus, were compared using external exposure and hemocoelic injection. Only H. bacteriophora and S. glaseri caused high P. japonica mortality after external exposure. When nematodes were injected, P. japonica had a strong encapsulation and melanization response to all species except S. glaseri. Heterorhabditis bacteriophora and S. carpocapsae were able to overcome the immune response, but S. scapterisci was not. All species except S. scapterisci were able to kill and reproduce within the host. Only S. scapterisci and S. carpocapsae caused A. domesticus mortality after external exposure. When nematodes were injected, A. domesticus had a strong immune response to all species except S. scapterisci. Steinernema carpocapsae effectively overcame the strong immune response and caused high host mortality, but S. glaseri and H. bacteriophora did not. Steinernema scapterisci caused high host mortality and reproduced, S. glaseri and H. bacteriophora caused low host mortality but only S. glaseri reproduced, and S. carpocapsae was able to kill the host but reproduced poorly. Most (ca. 90%) of the S. carpocapsae in the hemocoel of P. japonica became encapsulated and melanized within 8 hours postinjection. The symbiotic bacterium, Xenorhabduf nematophilus, was often released before this encapsulation and melanization.  相似文献   

17.
Three native Egyptian nematode isolates; Heterorhabditis taysearae and Heterorhabditis sp. S1 (Heterorhabditidae) and Steinernema carpocapsae S2 (Steinernematidae) as well as H. bacteriophora Hp88 as an imported species, were used in the present work to evaluate their activities against larvae and adults of the melon ladybird, Epilachna chrysomelina. The target pest was found to be susceptible to all tested entomopathogenic nematodes under laboratory conditions of 30±5°C.

In the greenhouse, a single spray of nematode suspension (1000 infective juveniles per ml) of each of H. taysearae, H. bacteriophora Hp88 and Steinernema carpocapsae S2 on squash seedlings was enough to give a reasonable mortality of 4th larval instar E. chrysomelina, reaching 65.2, 44.0 and 84.0%, respectively, one week after application. This gives evidence that the Egyptian nematode isolates could tolerate high temperature and could be recommended for application in the control programmes of E. chrysomelina larvae in cucurbit fields.  相似文献   

18.
Single infective juveniles of Heterorhabditis bacteriophora, H. megidis (Nematoda: Heterorhabditidae), Steinernema arenarium, S. carpocapsae and S. feltiae (Nematoda: Steinernematidae) were used to infect single Galleria mellonella (Lepidoptera: Pyralidae) larvae. Four parameters of entomopathogenic nematodes pathogenicity were assessed: the mortality of insects, infectivity of nematodes, number of nematodes established per single G. mellonella, and degree of infective juveniles colonization (percent of infective juveniles which intestine was colonized by symbiotic bacteria). The accuracy, repeatability, and versatility for different species of EPNs in bioassay arenas were compared. Our modifications of the original methods yielded ~ 50% higher efficiency of infective juveniles in cell culture plates and > 20% higher efficiency in centrifuge test tubes. The efficiency of nematodes in cell culture plates (39–77%) was relatively low, especially in the case of Heterorhabditis spp. In the bioassay arena, infective juveniles migrated between cells. The results of our studies indicate that the pathogenicity of EPNs should be assessed in centrifuge test tubes. In these arenas, the infectivity of single IJs was ~ 90% for Heterorhabditis spp. and ~ 95% for Steinernema spp. The degree of colonization of the EPN isolates by symbiotic bacteria was in the range of 96–98%.  相似文献   

19.
The virulence of different entomopathogenic nematode strains of the families Steinernematidae and Heterorhabditidae, isolates from Catalonia (NE Iberian Peninsula), and their symbiotic bacteria was assessed with regard to the larvae and adults of the hazelnut weevil, Curculio nucum L. (Coleoptera: Curculionidae). The nematode strains screened included one Steinernema affine, five Steinernema feltiae, one Steinernema carpocapsae, one Steinernema sp. (a new species not yet described) and one Heterorhabditis bacteriophora. The pathogenicity of all the strains of nematodes was tested on larvae and only four of them on adults of the hazelnut weevil. Larval mortality ranged from 10% with S. affine to 79% with Steinernema sp. Adult mortality was higher in S. carpocapsae, achieving 100% adult weevil mortality. The pathogenicity of the symbiotic bacteria Xenorhabdus bovienii, X. kozodoii, X. nematophila and Photorhabdus luminescens was studied in larvae and adults of C. nucum. In the larvae, X. kozodoii showed a LT50 of 22.7 h, and in the adults, it was 20.5 h. All nematodes species except S. affine tested against larvae showed great potential to control the insect, whereas S. carpocapsae was the most effective for controlling adults.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号