首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P-glycoprotein (Pgp), an efflux pump, was confirmed the first time to regulate the expressions of miR/gene in cells. Pgp is known to be associated with multidrug resistance. RHepG2 cells, the multidrug resistant subline of human hepatocellular carcinoma HepG2 cells, expressed higher levels of Pgp as well as miR-16, and lower level of Bcl-2 than the parental cells. In addition, RHepG2 cells were more radiation sensitive and showed more pronounced radiation-induced apoptotic cell death than the parental cells. Mechanistic analysis revealed that transfection with mdr1 specific antisense oligos suppressed radiation-induced apoptosis in HepG2 cells. On the other hand, ectopic mdr1 expression enhanced radiation-induced apoptosis in HepG2 cells, SK-HEP-1 cells, MiHa cells, and furthermore, induced miR-16 and suppressed its target gene Bcl-2 in HepG2 cells. Moreover, the enhancement effects of Pgp and miR-16 on radiation-induced apoptosis were counteracted by overexpression of Bcl-2. The Pgp effect on miR-16/Bcl-2 was suppressed by Pgp blocker verapamil indicating the importance of the efflux of Pgp substrates. The present study is the first to reveal the role of Pgp in regulation of miRNA/gene expressions. The findings may provide new perspective in understanding the biological function of Pgp.  相似文献   

2.
P-glycoprotein/ABCB1 (Pgp) is a well known protein of cell defense system. It is localized in cell membrane and pumps different drugs out of various cells using ATP energy. Its overexpression is associated with the development of multidrug resistance (MDR) in cancer cells. The data showing that Pgp also has other functions appeared recently, and this review surveys these data. In particular, (1) Pgp can protect cells from apoptosis; it suppresses the expression of endogenous protein TRAIL and decreases the activity of caspases 8 and 3; (2) Pgp is able to act as an outwardly directed flippase; (3) Pgp participates in a proper development of the innate immune response to intracellular pathogens and in the development of inflammation; (4) functionally active Pgp can be transferred from drug-resistant to drug-sensitive cells by microvesicles (MV). This is a new way of the Pgp-mediated MDR emergence in populations of tumor cells. Thus, Pgp functions as a regulator of some cellular processes. Molecular mechanisms of the Pgp influence on tumor cell viability are related not only with the drug efflux but also with some other functions.  相似文献   

3.
Defects in key components of apoptotic pathways provide a survival advantage to cells and have been implicated as important factors in tumorogenesis. As therapeutic drug-induced apoptosis is a key component in treatment of most cancers, alterations in apoptotic pathways may be critical to drug resistance. The question is: would it be possible to distinguish apoptotic cells and resistant cells with a same radiotracer? In this study, we investigated the ability of sodium phenylacetate (NaPa), a natural cytostatic proapoptotic metabolite, to induce apoptosis in MCF7 human breast cancer cells. Then, we tested the 99mTc-MIBI accumulation in these apoptotic cells. Annexin V-FITC was used to identify apoptotic cells by flow cytometry. Ours results demonstrated that a 72 hr treatment of MCF7 cells with 40 mM NaPa induced apoptosis in 60% of cells. In a parallel way, 99mTc-MIBI accumulation in NaPa treated cells decreased for concentrations higher than 20 mM NaPa. Thus, 99mTc-MIBI accumulation decreased correlatively with the increasing percentage of apoptotic cells obtained by treatment of MCF7 cells with NaPa. These data demonstrate that NaPa induced apoptosis in MCF7 cells and that 99mTc-MIBI is a negative tracer of apoptosis: the more MCF7 cells were engaged in the apoptotic pathway, the more 99mTc-MIBI accumulation decreased in these MCF7 apoptotic cells.  相似文献   

4.
Multidrug resistance (MDR) mediated by overexpression of MDR1 P-glycoprotein (Pgp) is one of the best characterized barriers to chemotherapy in cancer patients. Furthermore, the protective function of Pgp-mediated efflux of xenobiotics in various organs has a profound effect on the bioavailability of drugs in general. Thus, there is an expanding requirement to noninvasively interrogate Pgp transport activity in vivo. We herein report the Pgp recognition properties of a novel 99mTc(I)-tricarbonyl complex, [99mTc(CO)3(MIBI)3]+ (Tc-CO-MIBI). Tc-CO-MIBI showed 60-fold higher accumulation in drug-sensitive KB 3-1 cells compared to colchicine-selected drug-resistant KB 8-5 cells. In KB 8-5 cells, tracer enhancement was observed with the potent MDR modulator LY335979 (EC50 = 62 nM). Similar behavior was observed using drug-sensitive MCF-7 breast adenocarcinoma cells and MCF-7/MDR1 stable transfectants, confirming that Tc-CO-MIBI is specifically excluded by overexpression of MDR1 Pgp. By comparison, net accumulation in control H69 lung tumor cells was 9-fold higher than in MDR-associated protein (MRP1)-expressing H69AR cells, indicating only modest transport by MRP1. Biodistribution analysis following tail vein injection of Tc-CO-MIBI showed delayed liver clearance as well as enhanced brain uptake and retention in mdr1a/1b(-/-) gene deleted mice versus wild-type mice, directly demonstrating that Tc-CO-MIBI is a functional probe of Pgp transport activity in vivo.  相似文献   

5.
The multidrug resistance (MDR) is one of the main reasons for chemotherapeutic failures in cancer patients. The overexpression of mdr1 gene product, P-glycoprotein (Pgp), leads to the appearance of resistant tumor cells. In the previous paper (Erokhina, 1997) we have demonstrated that the first stages of Pgp-mediated MDR are accompanied by the reorganization of cytoskeleton elements and the vacuolar system. These data were true for two independently isolated sublines of Syrian hamster embryo fibroblasts transformed by Raus sarcoma virus. In this study, we continued the investigation of the properties of the vacuolar system in Pgp-expressing cells. Brefeldin A (BFA), which is not a Pgp substrate, affects different elements of the vacuolar system and blocks vesicular transport. Our data demonstrate that BFA has different effects on parental and resistant cells. In parental cells, the Golgi apparatus and vesicular transport are sensitive to BFA, while in resistant sublines, BFA affects the vesicular transport but not the Golgi apparatus structure. We discuss the existence of similar and different BFA targets in parental and resistant cells and their role in the evolution of multidrug resistance mechanisms.  相似文献   

6.
目的研究凋亡相关蛋白Bcl-2、P53和多药耐药相关蛋白Pgp、MRP在结肠癌中的表达,探讨之间的相关性及病理意义。方法用免疫组织化学SP法检测43例结肠癌和16例正常结肠中的Bcl-2、P53、Pgp和MRP的表达。结果Bcl-2、P53、Pgp和MRP在结肠癌组织中的阳性表达率分别为79%、74%、91%和77%,明显高于在正常结肠组织中的表达(P〈0.05)。Bcl-2的表达与结肠癌的分化程度密切相关(P〈0.01),Pgp的表达与结肠癌的淋巴结转移和临床分期密切相关(P〈0.05),MRP的表达则与结肠癌的分化程度、淋巴结转移、临床分期均密切相关(P〈0.05)。结肠癌组织中Bcl—2与P53、Pgp、MRP的表达之间呈显著的正相关(r=0.324,P〈0.05;r=0.330,P〈0.05;r=0.508,P〈0.01)。结论结肠癌中存在Bcl-2、P53、Pgp和MRP蛋白表达的显著上调,提示结肠癌组织可存在多种多药耐药发生机制。Pgp和MRP的阳性表达与临床病理特征密切相关,可将二者阳性表达率的上调作为结肠癌预后不良的指针。结肠癌组织中Bcl—2表达与种多药耐药相关因子P53、Pgp、MRP密切相关,提示结肠癌的发生与笺药耐药相关因子之间可能存在一定内在的联系,而Bcl-2在结肠癌多药耐药发生过程中发挥极其重要的作用。  相似文献   

7.
Sanguinarine is a benzophenanthridine alkaloid derived from the root of Sanguinaria canadensis and other poppy-fumaria species, possessing potent antibacterial, antifungal, and anti-inflammatory activities. In this study, we investigated the underling mechanisms by which sanguinarine induce apoptosis in human breast cancer MDA-231 cells. Treatment of MDA-231 cells with sanguinarine induced remarkable apoptosis accompanying the generation of ROS. Consistently, sanguinarine-induced apoptosis was mediated by the increased reproductive cell death. Pretreatment with NAC or GSH attenuated sanguinarine-induced apoptosis, suggesting the involvement of ROS in this cell death. During sanguinarin-induced apoptosis, protein levels of pro-caspase-3, Bcl-2, cIAP2, XIAP, and c-FLIPs were reduced. Sanguinarine-mediated apoptosis was substantially blocked by ectopic expression of Bcl-2 and cFLIPs. Additionally, we found that sub-lethal doses of sanguinarine remarkably sensitized breast cancer cells to TRAIL-mediated apoptosis, but the cell death induced by sanguinarine and TRAIL in combination was not blocked by overexpression of Bcl-2 or Akt. Therefore, combinatory treatment of sanguinarine and TRAIL may overcome the resistance of breast cancer cells due to overexpression of Akt or Bcl-2.  相似文献   

8.
Metadherin (MTDH), the newly discovered gene, is overexpressed in more than 40% of breast cancers. Recent studies have revealed that MTDH favors an oncogenic course and chemoresistance. With a number of breast cancer cell lines and breast tumor samples, we found that the relative expression of MTDH correlated with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitivity in breast cancer. In this study, we found that knockdown of endogenous MTDH cells sensitized the MDA-MB-231 cells to TRAIL-induced apoptosis both in vitro and in vivo. Conversely, stable overexpression of MTDH in MCF-7 cells enhanced cell survival with TRAIL treatment. Mechanically, MTDH down-regulated caspase-8, decreased caspase-8 recruitment into the TRAIL death-inducing signaling complex, decreased caspase-3 and poly(ADP-ribose) polymerase-2 processing, increased Bcl-2 expression, and stimulated TRAIL-induced Akt phosphorylation, without altering death receptor status. In MDA-MB-231 breast cancer cells, sensitization to TRAIL upon MTDH down-regulation was inhibited by the caspase inhibitor Z-VAD-fmk (benzyloxycarbonyl-VAD-fluoromethyl ketone), suggesting that MTDH depletion stimulates activation of caspases. In MCF-7 breast cancer cells, resistance to TRAIL upon MTDH overexpression was abrogated by depletion of Bcl-2, suggesting that MTDH-induced Bcl-2 expression contributes to TRAIL resistance. We further confirmed that MTDH may control Bcl-2 expression partly by suppressing miR-16. Collectively, our results point to a protective function of MTDH against TRAIL-induced death, whereby it inhibits the intrinsic apoptosis pathway through miR-16-mediated Bcl-2 up-regulation and the extrinsic apoptosis pathway through caspase-8 down-regulation.  相似文献   

9.
Chemotherapy is the main strategy for the treatment of cancer. However, the main problem limiting the success of chemotherapy is the development of multidrug resistance. The resistance can be intrinsic or acquired. The resistance phenotype is associated with the tumor cells that gain a cross-resistance to a large range of drugs that are structurally and functionally different. Multidrug resistance arises via many unrelated mechanisms, such as overexpression of energy-dependent efflux proteins, decrease in uptake of the agents, increase or alteration in drug targets, modification of cell cycle checkpoints, inactivation of the agents, compartmentalization of the agents, inhibition of apoptosis and aberrant bioactive sphingolipid metabolism. Exact elucidation of resistance mechanisms and molecular and biochemical approaches to overcome multidrug resistance have been a major goal in cancer research. This review comprises the mechanisms guiding multidrug resistance in cancer chemotherapy and also touches on approaches for reversing the resistance.  相似文献   

10.
Two decades ago, the overexpression of P-glycoprotein (Pgp) was first demonstrated to mediate the energy-dependent efflux of a variety of chemotherapeutic agents from tumor cells, resulting in the development of multidrug resistance (MDR). Not surprisingly, this discovery triggered an ongoing search for agents that would inhibit Pgp function, with the hope that by doing so the MDR phenotype could be reversed. As our understanding of Pgp function and pharmacokinetics has increased, this quest has become more urgent, as well as more complex.  相似文献   

11.
12.
The phenomenon of multidrug resistance in cancer is often associated with the overexpression of the ABC (ATP-binding cassette) transporters Pgp (P-glycoprotein) (ABCB1), MRP1 (multidrug resistance-associated protein 1) (ABCC1) and ABCG2 [BCRP (breast cancer resistance protein)]. Since the discovery of Pgp over 35 years ago, studies have convincingly linked ABC transporter expression to poor outcome in several cancer types, leading to the development of transporter inhibitors. Three generations of inhibitors later, we are still no closer to validating the 'Pgp hypothesis', the idea that increased chemotherapy efficacy can be achieved by inhibition of transporter-mediated efflux. In this chapter, we highlight the difficulties and past failures encountered in the development of clinical inhibitors of ABC transporters. We discuss the challenges that remain in our effort to exploit decades of work on ABC transporters in oncology. In learning from past mistakes, it is hoped that ABC transporters can be developed as targets for clinical intervention.  相似文献   

13.
The overexpression of P-glycoprotein (Pgp), an ATP-driven membrane exporter of hydrophobic xenobiotics, is one of the major causes of multidrug resistance (MDR) in cancer cells. Through extensive screening we have found that the extracts of Peucedanum praeruptorum Dunn. and one of the major components (+/-)-praeruptorin A (PA) may reverse Pgp-mediated multidrug resistance. Studies on novel PA derivatives have shown that (+/-)-3'-O,4'-O-dicinnamoyl-cis-khellactone (DCK) is more active than PA or verapamil and is a non-competitive inhibitor of Pgp. Here, we report that methoxylation of the cinnamoyl groups on DCK may further enhance its bioactivity. The structure-activity relationship is demonstrated by comparing two new pyranocoumarins (+/-)-3'-O,4'-O-bis(3,4-dimethoxycinnamoyl)-cis-khellactone (DMDCK) and (+/-)-3'-O,4'-O-bis(4-methoxycinnamoyl)-cis-khellactone (MMDCK). While the co-existence of 3- and 4-methoxy groups on cinnamoyl remarkably enhanced the Pgp-inhibitory activity, the lone existence of the 4-methoxy group on cinnamoyl reduced the activity. Contrary to DCK, DMDCK promoted the binding of UIC2 antibody to Pgp which signifies a conformational change of Pgp similar to that induced by transport substrates. While DCK moderately stimulated the basal Pgp-ATPase activity, DMDCK inhibited the activity. A pharmacophore search with verapamil-based template revealed that four functional groups of DMDCK could be simultaneously involved in interaction with Pgp whereas for DCK or MMDCK only three groups were involved. It is speculated that the additional 3-methoxy group on cinnamoyl allows DMDCK to interact more efficiently with Pgp substrate site(s). If DMDCK was tightly bind to Pgp substrate site(s) the complexes could be inactive with regard to transportation and ATP hydrolysis could also be inhibited.  相似文献   

14.
Growth of human breast adenocarcinoma MCF-7 cells as a tumor on nude mice is dependent on estrogen. It has been shown that estrogen withdrawal (EW) induces a partial regression of the tumor via an inhibition of cell proliferation and an induction of apoptosis. We investigated in this in vivo model the underlying molecular mechanisms of the hormone-dependent regulation of cell cycle machinery and apoptosis. We found that, 2 days after EW, the tumor protein levels of p21 rose, whereas those of Rb proteins decreased in parallel with the decrease in the proportion of tumor cells in S phase and the increase of the tumor apoptotic index. Between 3 and 7 days after EW, apoptosis was inhibited and tumor proliferation returned to the control value. There was a concomitant decline in p21 and an elevation of Rb tumor protein content. Slight variations of cyclin D protein level were observed in MCF-7 tumors over the time course following EW treatment. Bcl-2 overexpression not only inhibited apoptosis induced by EW but also modulated hormone-dependent cell cycle regulation. First, the analysis of phosphorylation status of Rb protein and the measurement of the proportion of tumor cells in S phase indicated that Bcl-2 overexpression results in a decrease of DNA synthesis induced by estradiol. Furthermore, after EW, Bcl-2-induced inhibition of hormone-dependent apoptosis was associated with an inhibition of Rb protein downregulation, a sustained level of p21 protein, and a prolonged inhibition of cell cycle progression. These results suggest that, in human hormone-dependent breast cancers, cross-talk exists between the signaling pathways which lead to regulation of cell cycle progression and apoptosis.  相似文献   

15.
The multidrug resistance of cancer cells can be mediated by an overexpression of the human MDR1 and MRP genes, which encode the transmembrane efflux pumps, the 170 kDa P-glycoprotein (Pgp) and the 190 kDa multidrug resistance-associated protein (MRP), respectively. In this study, we investigate which protein is preferentially overexpressed in the function of doxorubicin concentrations in the acute myelogenous leukemia cell line (OCI/AML-2). Multidrug-resistant AML-2 sublines were isolated in doxorubicin concentrations of 20, 100, 250, and 500 ng/ml. MRP was at first expressed at low concentrations of less than 5 x IC50 (100 ng/ml) of doxorubicin followed by the overexpression of Pgp with concentrations of more than 12.5 x IC50 (250 ng/ml) of doxorubicin. In addition, it appeared that increased amounts of MRP and its mRNA in AML-2/DX20 and /DX100 decreased gradually in both AML-2/DX250 and /DX500 overexpressing Pgp. In conclusion, it is thought that the overexpression of MRP or Pgp is dependent upon drug concentrations. It could be implicated that the overexpression of MRP might be negatively related to that of Pgp.  相似文献   

16.
Salinomycin is a polyether antibiotic isolated from Streptomyces albus that acts in different biological membranes as a ionophore with a preference for potassium. It is widely used as an anticoccidial drug in poultry and is fed to ruminants to improve nutrient absorption and feed efficiency. Salinomycin has recently been shown to selectively deplete human breast cancer stem cells from tumorspheres and to inhibit breast cancer growth and metastasis in mice. We show here that salinomycin induces massive apoptosis in human cancer cells of different origin, but not in normal cells such as human T lymphocytes. Moreover, salinomycin is able to induce apoptosis in cancer cells that exhibit resistance to apoptosis and anticancer agents by overexpression of Bcl-2, P-glycoprotein or 26S proteasomes with enhanced proteolytic activity. Salinomycin activates a distinct apoptotic pathway that is not accompanied by cell cycle arrest and that is independent of tumor suppressor protein p53, caspase activation, the CD95/CD95L system and the proteasome. Thus, salinomycin should be considered as a novel and effective anticancer agent that overcomes multiple mechanisms of apoptosis resistance in human cancer cells.  相似文献   

17.
A multidrug resistant (MDR) cell line, derived from the human leukaemic cell K562 and selected for its resistance to Vincristine, was shown to be resistant to Thapsigargin (TG). A concentration of 50 nM TG was toxic to K562 cells whereas the MDR cell line, known as Lucena I cells, survived unaffected for up to seven days in culture. Similarly, no intracellular Ca2+ mobilization was observed in the MDR cell line treated with TG. This effect was not a result of TG extrusion by P glycoprotein (Pgp), as no mobilization was observed even in the presence of the Pgp inhibitors Verapamil (5 M) and Cyclosporin A (0.16 M). In the present study, both cell lines expressed comparable levels of Bcl-2 making it unlikely that Bcl-2 was involved in this process. Similarly, no overexpression of the endoplasmic reticulum Ca2+ ATPase (SERCA) could be detected in the MDR cell line and Ca2+ uptake by vesicles of the two cell types were equally sensitive to TG. These results confirm that MDR cells do not mobilize Ca2+ in the presence of TG but go against the possibility that this might be due to TG extrusion or to the overexpression of a resistant SERCA isoform.  相似文献   

18.
The best characterized mechanism of multidrug resistance (MDR) in cancer involves the MDR1 efflux transporter P-glycoprotein (Pgp). The positron-emitting radiotracer hexakis(2-methoxyisobutylisonitrile)-(94m)Tc ((94m)Tc-MIBI) was synthesized and validated in cell transport studies as a substrate for MDR1 Pgp. In vivo small-scale PET imaging and biodistribution studies of mdr1a/1b (-/-) gene deleted and wild-type mice demonstrated the use of (94m)Tc-MIBI to detect Pgp function. The reversal effect of a Pgp modulator was shown in tissue distribution studies of KB 3-1 (Pgp-) and KB 8-5 (Pgp+) tumor-bearing nude mice. The current (94m)Tc-MIBI experiments parallel previous studies employing (99m)Tc-MIBI, showing essentially identical performance of the two technetium radiotracers and providing biological validation of (94m)Tc-MIBI for PET imaging of multidrug resistance.  相似文献   

19.
Natural products from plants such as flavonoids are potential drugs to overcome multidrug resistance (MDR) in cancer treatments. However, their modes of action are still unclear. In this study, the effects of quercetin on mitochondrial membrane potential (DeltaPsim) change as well as quercetin's ability to induce apoptosis and inhibit Pgp-mediated efflux of 99mTc-MIBI in K562/adr cells were investigated. Quercetin exhibits cytotoxicity against erythroleukemic cells: IC50 are 11.0 +/- 2.0 micromol/L and 5.0 +/- 0.4 micromol/L for K562 and K562/adr, respectively. Quercetin induces cell death via apoptosis in both K562 and K562/adr cells and does not inhibit Pgp-mediated efflux of 99mTc-MIBI. Quercetin (10 micromol/L, 3 h) and etoposide (100 micromol/L, 24 h) induce similar levels of apoptosis in K562 and K562/adr cells. Quercetin induces an increase followed by a decrease in |DeltaPsim| value depending on its concentration. A decrease in the |DeltaPsim| value is associated with an increase in the percentage of early apoptotic cells. It is clearly shown that quercetin results in a spontaneous DeltaPsim change during apoptotic induction. Therefore, quercetin is potentially an apoptotic-inducing agent, which reacts at the mitochondrial level.  相似文献   

20.
Multidrug resistance (MDR) mediated by over-expression of P-glycoprotein (Pgp) is one of the major causes of failure of chemotherapy in cancer treatment. Colchicine, a naturally occurring alkaloid, is a Pgp substrate and acts as an antimitotic agent by binding to microtubules. Hence, Colchicine and its analogues radiolabeled with 99mTc may have potential for visualization of MDR in tumors. Here we report 99mTc-labeling of colchicine derivatives using [99mTc(CO)3(H2O)3]+ and [99mTc triple bond N]2+ cores. Trimethylcolchicinic acid synthesized from colchicine was used as the precursor to prepare iminodiacetic acid and dithiocarbamate derivatives which were then radiolabeled with [99mTc(CO)3(H2O)3]+ and [99mTc triple bond N]2+ cores, respectively. Radiolabeling yield for both the complexes was > 98% as observed by HPLC and TLC patterns. In vitro studies in tumor cell lines showed significant uptake for 99mTc-carbonyl as well as for 99mTc-nitrido colchicine complexes. Biodistribution studies in Swiss mice bearing fibrosarcoma tumor showed 4.1 +/- 1.2% ID/g of uptake at 30 min pi for 99mTc(CO)3-complex as against 0.42 +/- 0.24% ID/g for the 99mTcN-complex. 99mTc(CO)3-colchicine complex exhibited better pharmacokinetics with lower liver accumulation as compared to the 99mTcN-complex. Thus, colchicine radiolabeled with [99mTc(CO)3(H2O)3]+ core is more promising with respect to in vivo distribution characteristics in tumor model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号