首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We formulate and analyze a theoretical model for the regulation of microtubule (MT) polymerization dynamics by the signaling proteins Rac1 and stathmin. In cells, the MT growth rate is inhibited by cytosolic stathmin, which, in turn, is inactivated by Rac1. Growing MTs activate Rac1 at the cell edge, which closes a positive feedback loop. We investigate both tubulin sequestering and catastrophe promotion as mechanisms for MT growth inhibition by stathmin. For a homogeneous stathmin concentration in the absence of Rac1, we find a switchlike regulation of the MT mean length by stathmin. For constitutively active Rac1 at the cell edge, stathmin is deactivated locally, which establishes a spatial gradient of active stathmin. In this gradient, we find a stationary bimodal MT-length distribution for both mechanisms of MT growth inhibition by stathmin. One subpopulation of the bimodal length distribution can be identified with fast-growing and long pioneering MTs in the region near the cell edge, which have been observed experimentally. The feedback loop is closed through Rac1 activation by MTs. For tubulin sequestering by stathmin, this establishes a bistable switch with two stable states: one stable state corresponds to upregulated MT mean length and bimodal MT length distributions, i.e., pioneering MTs; the other stable state corresponds to an interrupted feedback with short MTs. Stochastic effects as well as external perturbations can trigger switching events. For catastrophe-promoting stathmin, we do not find bistability.  相似文献   

2.
Gangliosides and Other Lipids of the Growth Cone Membrane   总被引:1,自引:1,他引:1  
Growth cone membranes, derived from growth cone particles isolated from 16- to 18-day-old fetal rat brain, were found to be rich in overall lipid content with a lipid-to-protein ratio of 3.5. The phospholipid-to-cholesterol ratio indicated considerably less cholesterol than plasma membranes from mature neurons. All major classes of phospholipid were present in the usual proportions except sphingomyelin, which could not be detected. Gangliosides expressed in relation to protein were present at somewhat higher levels compared to previously reported values for synaptic plasma membranes (73 versus 44 micrograms/mg protein), but when related to phospholipid their level was well below that of the latter (26 versus 62 micrograms/mg phospholipid). The ganglioside pattern was generally similar to that of mature synaptic membranes except for the presence of relatively more GD3 and less GD1a, a phenomenon also observed in whole fetal brain of the same age. Several neutral glycosphingolipids were detected, glucosylceramide being the major one of this group. Their total level in growth cone membranes was roughly comparable to that of gangliosides, but unlike the latter their concentration in whole brain decreased with development. For comparison we analyzed the ganglioside composition of mixed membrane fractions from the same fetal brains and found no significant differences between these and growth cone membranes, suggesting that these glycoconjugates are not localized specifically in the growth cones. Neutral glycosphingolipids, on the other hand, appeared somewhat more concentrated in growth cones than in the mixed membranes.  相似文献   

3.
Coordinated control of the growth cone cytoskeleton underlies axon extension and guidance. Members of the collapsin response mediator protein (CRMP) family of cytosolic phosphoproteins regulate the microtubule and actin cytoskeleton, but their roles in regulating growth cone dynamics remain largely unexplored. Here, we examine how CRMP4 regulates the growth cone cytoskeleton. Hippocampal neurons from CRMP4−/− mice exhibited a selective decrease in axon extension and reduced growth cone area, whereas overexpression of CRMP4 enhanced the formation and length of growth cone filopodia. Biochemically, CRMP4 can impact both microtubule assembly and F-actin bundling in vitro. Through a structure function analysis of CRMP4, we found that the effects of CRMP4 on axon growth and growth cone morphology were dependent on microtubule assembly, whereas filopodial extension relied on actin bundling. Intriguingly, anterograde movement of EB3 comets, which track microtubule protrusion, slowed significantly in neurons derived from CRMP4−/− mice, and rescue of microtubule dynamics required CRMP4 activity toward both the actin and microtubule cytoskeleton. Together, this study identified a dual role for CRMP4 in regulating the actin and microtubule growth cone cytoskeleton.  相似文献   

4.
The in-plane diffusivelike motion of membrane bound proteins on the surface of cells is considered. We suggest, on the basis of theoretical arguments and simulation, that thermally excited undulations of the lipid bilayer may serve as a mechanism for proteins to hop between adjacent regions on the cell surface separated by barriers composed of internal cellular structure (e.g., the cytoskeleton). We specifically investigate the mobility of band 3 dimer on the surface of red blood cells where the spectrin cytoskeletal meshwork defines a series of “corrals” on the cell surface known to hinder protein motion. Previous models of this system have postulated that the cytoskeleton must deform to allow passage of membrane bound proteins out of these corral regions and have ignored fluctuations of the bilayer. Our model provides a complementary mechanism and we posit that the mobility of real proteins in real cells is likely the result of several mechanisms acting in parallel.  相似文献   

5.
6.
7.
《Biophysical journal》2020,118(8):1914-1920
The densely packed microtubule (MT) array found in neuronal cell projections (neurites) serves two fundamental functions simultaneously: it provides a mechanically stable track for molecular motor-based transport and produces forces that drive neurite growth. The local pattern of MT polarity along the neurite shaft has been found to differ between axons and dendrites. In axons, the neurons’ dominating long projections, roughly 90% of the MTs orient with their rapidly growing plus end away from the cell body, whereas in vertebrate dendrites, their orientations are locally mixed. Molecular motors are known to be responsible for cytoskeletal ordering and force generation, but their collective function in the dense MT cytoskeleton of neurites remains elusive. We here hypothesized that both the polarity pattern of MTs along the neurite shaft and the shaft’s global extension are simultaneously driven by molecular motor forces and should thus be regulated by the mechanical load acting on the MT array as a whole. To investigate this, we simulated cylindrical bundles of MTs that are cross-linked and powered by molecular motors by iteratively solving a set of force-balance equations. The bundles were subjected to a fixed load arising from actively generated tension in the actomyosin cortex enveloping the MTs. The magnitude of the load and the level of motor-induced connectivity between the MTs have been varied systematically. With an increasing load and decreasing motor-induced connectivity between MTs, the bundles became wider in cross section and extended more slowly, and the local MT orientational order was reduced. These results reveal two, to our knowledge, novel mechanical factors that may underlie the distinctive development of the MT cytoskeleton in axons and dendrites: the cross-linking level of MTs by motors and the load acting on this cytoskeleton during growth.  相似文献   

8.
9.
It was shown that mouse embryo fibroblasts and human foreskin diploid fibroblasts of AGO 1523 line cultivated on specially prepared substrates with narrow (15 ± 3 m) linear adhesive strips were elongated and oriented along the strips, but the mean lengths of the fibroblasts of each type on the strips differed from those on the standard culture substrates. In contrast to the normal fibroblasts, the length of mouse embryonic fibroblasts with inactivated gene-suppressor Rb responsible for negative control of cell proliferation (MEF Rb-/-), ras-transformed mouse embryonic fibroblasts (MEF Rb-/-ras), or normal rat epitheliocytes of IAR2 line significantly exceeded those of the same cells on the standard culture substrates. The results of experiments with the drugs specifically affecting the cytoskeleton (colcemid and cytochalasin D) suggest that the constant mean length of normal fibroblasts is controlled by a dynamic equilibrium between two forces: centripetal tension of contractile actin-myosin microfilaments and centrifugal force generated by growing microtubules. This cytoskeletal mechanism is disturbed in MEF Rb-/- or MEF Rb-/-ras, probably, because of an impaired actin cytoskeleton and also in IAR2 epitheliocytes due to the different organization of the actin-myosin system in these cells, as compared to that in the fibroblasts.  相似文献   

10.
Neural cell differentiation during development is controlled by multiple signaling pathways, in which protein phosphorylation and dephosphorylation play an important role. In this study, we examined the role of pyrophosphatase1 (PPA1) in neuronal differentiation using the loss and gain of function analysis. Neuronal differentiation induced by external factors was studied using a mouse neuroblastoma cell line (N1E115). The neuronal like differentiation in N1E115 cells was determined by morphological analysis based on neurite growth length. In order to analyze the loss of the PPA1 function in N1E115, si-RNA specifically targeting PPA1 was generated. To study the effect of PPA1 overexpression, an adenoviral gene vector containing the PPA1 gene was utilized to infect N1E115 cells. To address the need for pyrophosphatase activity in PPA1, D117A PPA1, which has inactive pyrophosphatase, was overexpressed in N1E115 cells. We used valproic acid (VPA) as a neuronal differentiator to examine the effect of PPA1 in actively differentiated N1E115 cells. Si-PPA1 treatment reduced the PPA1 protein level and led to enhanced neurite growth in N1E115 cells. In contrast, PPA1 overexpression suppressed neurite growth in N1E115 cells treated with VPA, whereas this effect was abolished in D117A PPA1. PPA1 knockdown enhanced the JNK phosphorylation level, and PPA1 overexpression suppressed it in N1E115 cells. It seems that recombinant PPA1 can dephosphorylate JNK while no alteration of JNK phosphorylation level was seen after treatment with recombinant PPA1 D117A. Enhanced neurite growth by PPA1 knockdown was also observed in rat cortical neurons. Thus, PPA1 may play a role in neuronal differentiation via JNK dephosphorylation.  相似文献   

11.
12.
Accurate response to external directional signals is essential for many physiological functions such as chemotaxis or axonal guidance. It relies on the detection and amplification of gradients of chemical cues, which, in eukaryotic cells, involves the asymmetric relocalization of signaling molecules. How molecular events coordinate to induce a polarity at the cell level remains however poorly understood, particularly for nerve chemotaxis. Here, we propose a model, inspired by single-molecule experiments, for the membrane dynamics of GABA chemoreceptors in nerve growth cones (GCs) during directional sensing. In our model, transient interactions between the receptors and the microtubules, coupled to GABA-induced signaling, provide a positive-feedback loop that leads to redistribution of the receptors towards the gradient source. Using numerical simulations with parameters derived from experiments, we find that the kinetics of polarization and the steady-state polarized distribution of GABA receptors are in remarkable agreement with experimental observations. Furthermore, we make predictions on the properties of the GC seen as a sensing, amplification and filtering module. In particular, the growth cone acts as a low-pass filter with a time constant ∼10 minutes determined by the Brownian diffusion of chemoreceptors in the membrane. This filtering makes the gradient amplification resistent to rapid fluctuations of the external signals, a beneficial feature to enhance the accuracy of neuronal wiring. Since the model is based on minimal assumptions on the receptor/cytoskeleton interactions, its validity extends to polarity formation beyond the case of GABA gradient sensing. Altogether, it constitutes an original positive-feedback mechanism by which cells can dynamically adapt their internal organization to external signals.  相似文献   

13.
微管是细胞骨架的主要成分之一,几乎存在于所有真核生物细胞之中,参与细胞众多生理功能。PP2A是真核生物体内存在最广泛的蛋白磷酸酶之一,可以调控大部分细胞生命活动,其中,包括微管所介导的许多生命活动。该文从以下方面介绍了PP2A在微管功能行使中的重要作用,包括PP2A参与微管蛋白翻译后修饰、调控分子马达和微管相关蛋白的活性、维持细胞周期中微管的动态平衡以及PP2A异常与微管类疾病的相关性。  相似文献   

14.
Polarization, whereby a cell defines a spatial axis by segregating specific determinants to distinct regions, is an essential and highly conserved biological process. The process of polarization is initiated by a cue that breaks an initially symmetric distribution of determinants, allowing for a spatially asymmetric redistribution. The nature of this cue is currently not well understood. Utilizing the conservation of polarization process and its determinants, we theoretically investigate the nature of the cue and the regulation of contractility that enables the establishment of polarity in early embryos of the nematode worm Caenorhabditis elegans (C. elegans). Our biologically based model, which consists of coupled partial differential equations, suggests that a biochemical but not mechanical cue is sufficient for symmetry breaking, and inhibition of contractile elements by specific determinants is needed for sustained spatial redistribution.  相似文献   

15.
16.
Stathmin is an important regulator of microtubule polymerization and dynamics. When unphosphorylated it destabilizes microtubules in two ways, by reducing the microtubule polymer mass through sequestration of soluble tubulin into an assembly-incompetent T2S complex (two α:β tubulin dimers per molecule of stathmin), and by increasing the switching frequency (catastrophe frequency) from growth to shortening at plus and minus ends by binding directly to the microtubules. Phosphorylation of stathmin on one or more of its four serine residues (Ser16, Ser25, Ser38, and Ser63) reduces its microtubule-destabilizing activity. However, the effects of phosphorylation of the individual serine residues of stathmin on microtubule dynamic instability have not been investigated systematically. Here we analyzed the effects of stathmin singly phosphorylated at Ser16 or Ser63, and doubly phosphorylated at Ser25 and Ser38, on its ability to modulate microtubule dynamic instability at steady-state in vitro. Phosphorylation at either Ser16 or Ser63 strongly reduced or abolished the ability of stathmin to bind to and sequester soluble tubulin and its ability to act as a catastrophe factor by directly binding to the microtubules. In contrast, double phosphorylation of Ser25 and Ser38 did not affect the binding of stathmin to tubulin or microtubules or its catastrophe-promoting activity. Our results indicate that the effects of stathmin on dynamic instability are strongly but differently attenuated by phosphorylation at Ser16 and Ser63 and support the hypothesis that selective targeting by Ser16-specific or Ser63-specific kinases provides complimentary mechanisms for regulating microtubule function.Stathmin is an 18-kDa ubiquitously expressed microtubule-destabilizing phosphoprotein whose activity is modulated by phosphorylation of its four serine residues, Ser16, Ser25, Ser38, and Ser63 (17). Several classes of kinases have been identified that phosphorylate stathmin, including kinases associated with cell growth and differentiation such as members of the mitogen-activated protein kinase (MAPK)2 family, cAMP-dependent protein kinase (15, 811), and kinases associated with cell cycle regulation such as cyclin-dependent kinase 1 (3, 1214). Phosphorylation of stathmin is required for cell cycle progression through mitosis and for proper assembly/function of the mitotic spindle (3, 1316). Inhibition of stathmin phosphorylation produces strong mitotic phenotypes characterized by disassembly and disorganization of mitotic spindles and abnormal chromosome distributions (3, 1314).Stathmin is known to destabilize microtubules in two ways. One is by binding to soluble tubulin and forming a stable complex that cannot polymerize into microtubules, consisting of one molecule of stathmin and two molecules of tubulin (T2S complex) (1724). Addition of stathmin to microtubules in equilibrium with soluble tubulin results in sequestration of the tubulin and a reduction in the level of microtubule polymer (1718, 22, 2528). In addition to reducing the amount of assembled polymer, tubulin sequestration by stathmin has been shown to increase the switching frequency at microtubule plus ends from growth to shortening (called the catastrophe frequency) as the microtubules relax to a new steady state (17, 29). The second way is by binding directly to microtubules (2730). The direct binding of stathmin to microtubules increases the catastrophe frequency at both ends of the microtubules and considerably more strongly at minus ends than at plus ends (27). Consistent with its strong catastrophe-promoting activity at minus ends, stathmin increases the treadmilling rate of steady-state microtubules in vitro (27). These results have led to the suggestion that stathmin might be an important cellular regulator of minus-end microtubule dynamics (27).Phosphorylation of stathmin diminishes its ability to regulate microtubule polymerization (3, 14, 2526). Phosphorylation of Ser16 or Ser63 appears to be more critical than phosphorylation of Ser25 and Ser38 for the ability of stathmin to bind to soluble tubulin and to inhibit microtubule assembly in vitro (3, 25). Inhibition of stathmin phosphorylation induces defects in spindle assembly and organization (3, 14) suggesting that not only soluble tubulin-microtubule levels are regulated by phosphorylation of stathmin, but the dynamics of microtubules could also be regulated in a phosphorylation-dependent manner.It is not known how phosphorylation at any of the four serine residues of stathmin affects its ability to regulate microtubule dynamics and, specifically, its ability to increase the catastrophe frequency at plus and minus ends due to its direct interaction with microtubules. Thus, we determined the effects of stathmin individually phosphorylated at either Ser16 or Ser63 and doubly phosphorylated at both Ser25 and Ser38 on dynamic instability at plus and minus ends in vitro at microtubule polymer steady state and physiological pH (pH 7.2). We find that phosphorylation of Ser16 strongly reduces the direct catastrophe-promoting activity of stathmin at plus ends and abolishes it at minus ends, whereas phosphorylation of Ser63 abolishes the activity at both ends. The effects of phosphorylation of individual serines correlated well with stathmin''s reduced abilities to form stable T2S complexes, to inhibit microtubule polymerization, and to bind to microtubules. In contrast, double phosphorylation of Ser25 and Ser38 did not alter the ability of stathmin to modulate dynamic instability at the microtubule ends, its ability to form a stable T2S complex, or its ability to bind to microtubules. The data further support the hypotheses that phosphorylation of stathmin on either Ser16 or Ser63 plays a critical role in regulating microtubule polymerization and dynamics in cells.  相似文献   

17.
It is generally assumed that microtubules in tissue culture cells extend from the centrosome to cell periphery, and the length of individual microtubules averages several dozens of microns. However, direct electron-microscopic measurements have cast some doubt on this assumption. In this study, the average length of microtubules in cultured Vero cells was estimated using a combined approach. The length of free cytoplasmic and centrosomal microtubules was determined by means of electron microscopy in serial sections; concurrently, the length of free microtubules in the lamella was measured in preparations stained with tubulin antibodies (an indirect immunofluorescent method), by tracing saltatory particle movements along the microtubules in living cells. According to the data of immunofluorescent microscopy, microtubule length in the lamella averaged 4.57 ± 3.69 m. However, since two or more microtubules can overlap, their length may be slightly overestimated by this method. On the other hand, saltatory movements are easy to monitor and measure fairly accurately, but their range may be shorter than the actual microtubule length because of a limited processiveness of motors (kinesin and dynein). On average, the trajectories of saltatory movements in living cells were 3.85 ± 0.72 m long. At the electron-microscopic level, microtubule length was analyzed using pseudo-three-dimensional reconstructions of the microtubule systems around the centrosome and in the lamella. The length of free microtubules in the lamella reached 18 m, averaging 3.33 ± 2.43 m; the average length of centrosomal microtubules was 1.49 ± 0.82 m. Good correspondence between the data on microtubule length and arrangement obtained by different methods allows the conclusion that most of the free microtubules in Vero cells actually have a length of 2–5 m; i.e., they are much shorter than the cell radius (about 25 m). Microtubules extending from the centrosome are shorter still and do not reach the cell periphery. Thus, most microtubules in the lamella of Vero cells are free and their ordered arrangement is not associated with their attachment to the centrosome.  相似文献   

18.
Cone photoreceptors function under daylight conditions and are essential for color perception and vision with high temporal and spatial resolution. A remarkable feature of cones is that, unlike rods, they remain responsive in bright light. In rods, light triggers a decline in intracellular calcium, which exerts a well studied negative feedback on phototransduction that includes calcium-dependent inhibition of rhodopsin kinase (GRK1) by recoverin. Rods and cones share the same isoforms of recoverin and GRK1, and photoactivation also triggers a calcium decline in cones. However, the molecular mechanisms by which calcium exerts negative feedback on cone phototransduction through recoverin and GRK1 are not well understood. Here, we examined this question using mice expressing various levels of GRK1 or lacking recoverin. We show that although GRK1 is required for the timely inactivation of mouse cone photoresponse, gradually increasing its expression progressively delays the cone response recovery. This surprising result is in contrast with the known effect of increasing GRK1 expression in rods. Notably, the kinetics of cone responses converge and become independent of GRK1 levels for flashes activating more than ∼1% of cone pigment. Thus, mouse cone response recovery in bright light is independent of pigment phosphorylation and likely reflects the spontaneous decay of photoactivated visual pigment. We also find that recoverin potentiates the sensitivity of cones in dim light conditions but does not contribute to their capacity to function in bright light.  相似文献   

19.
Regulation of polarised cell growth is essential for many cellular processes including spatial coordination of cell morphology changes during the division cycle. We present a mathematical model of the core mechanism responsible for the regulation of polarised growth dynamics during the fission yeast cell cycle. The model is based on the competition of growth zones localised at the cell tips for a common substrate distributed uniformly in the cytosol. We analyse the bifurcations in this model as the cell length increases, and show that the growth activation dynamics provides an explanation for the new-end take-off (NETO) as a saddle-node bifurcation at which the cell sharply switches from monopolar to bipolar growth. We study the parameter sensitivity of the bifurcation diagram and relate qualitative changes of the growth pattern, e.g. delayed or absent NETO, to previously observed mutant phenotypes. We investigate the effects of imperfect asymmetric cell division, and show that this leads to distinct growth patterns that provide experimentally testable predictions for validating the presented competitive growth zone activation model. Finally we discuss extension of the model for describing mutant cells with more than two growth zones.  相似文献   

20.
Basonuclin is a zinc finger protein that was thought to be restricted to keratinocytes of stratified squamous epithelia. In epidermis, basonuclin is associated with the nuclei of mitotically active basal cells but not in terminally differentiating keratinocytes. We report here the isolation of a novel form of basonuclin, which we show is also expressed in stratified epithelia. Most unexpectedly, we find both forms in testis, where a surprising localization pattern was uncovered. While basonuclin RNA expression occurs in mitotically active germ cells, protein was not detected until the meiotic stage, where basonuclin localized to the appendage of the distal centriole of spermatocytes and spermatids. Near the end of spermiogenesis, basonuclin also accumulated in the acrosome and mitochondrial sheath surrounding the flagellum. Intriguingly, a perfect six– amino acid residue mitochondrial targeting sequence (Komiya, T., N. Hachiya, M. Sakaguchi, T. Omura, and K. Mihara. 1994. J. Biol. Chem. 269:30893–30897; Shore, G.C., H.M. McBride, D.G. Millar, N.A. Steenaart, and M. Nguyen. 1995. Eur. J. Biochem. 227: 9–18; McBride, H.M., I.S. Goping, and G.C. Shore. 1996. J. Cell. Biol. 134:307–313) is present in basonuclin 1a but not in the 1b form. Moreover, three distinct affinity-purified peptide antibodies gave this unusual pattern of basonuclin antibody staining, which was confirmed by cell fractionation studies. Our findings suggest a unique role for basonuclin in centrosomes within the developing spermatid, and a role for one of the protein forms in germ cell mitochondrial function. Its localization with the acrosome suggests that it may also perform a special function during or shortly after fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号