首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Mitochondrial permeability transition pore (mPTP) plays crucial roles in cell death in a variety of diseases, including ischemia/reperfusion injury in heart attack and stroke, neurodegenerative conditions, and cancer. To date, cyclophilin D is the only confirmed component of mPTP. Under stress, p53 can translocate into mitochondria and interact with CypD, triggering necrosis and cell growth arrest. However, the molecular details of p53/CypD interaction are still poorly understood. Previously, several studies reported that p53 interacts with CypD through its DNA-binding domain (DBD). However, using surface plasmon resonance (SPR), we found that both NTD-DBD, NTD and NTD (1–70) bind to CypD at ~μM KD. In solution NMR, NTD binds CypD with μM affinity and mimics the pattern of FLp53 binding in chemical shift perturbation. In contrast, neither solution NMR nor fluorescence anisotropy detected DBD binding to CypD. Thus, instead of DBD, NTD is the major CypD binding site on p53. NMR titration and MD simulation revealed that NTD binds CypD with broad and dynamic interfaces dominated by electrostatic interactions. NTD 20–70 was further identified as the minimal binding region for CypD interaction, and two NTD fragments, D1 (residues 22–44) and D2 (58–70), can each bind CypD with mM affinity. Our detailed biophysical characterization of the dynamic interface between NTD and CypD provides novel insights on the p53-dependent mPTP opening and drug discovery targeting NTD/CypD interface in diseases.  相似文献   

4.
5.
We have isolated a covalent DNA-protein complex from bacteriophage φ29 particles. Polyacrylamide gel electrophoresis and tryptic peptide analysis showed that the protein present in the complex is very similar or identical to p3, an early induced protein essential for viral DNA replication.When the DNA-protein complex is treated with the restriction endonuclease EcoRI, the protein is specifically associated to the two terminal fragments, A and C. The protein is probably linked to the 5′ termini of the DNA since proteinase K-treated DNA is resistant to phosphorylation with polynucleotide kinase, even after treatment with alkaline phosphatase, while it is sensitive to exonuclease III. By electron microscopy the protein is visualized as a dot located at the ends of unit length DNA molecules.Mixed infection of Bacillus subtilis, at 42 °C, with ts2 mutants in cistrons 2 and 3 only produces ts 2 progeny. This finding suggests that an inactive protein p3 bound to the DNA of the ts 3 mutant is not replaced by a functional protein and, as a consequence, replication of the ts 3 DNA does not occur.  相似文献   

6.
The structured DNA‐binding domain (DBD) of p53 is a well‐known client protein of the chaperone Hsp90. The p53 DBD contains a single zinc ion, coordinated by the side chains of Cys176, His179, Cys238, and Cys242; zinc coordination plays a structural role to stabilize the DBD and is required for its DNA binding. The ambiguous nature of the p53‐Hsp90 interaction, together with the stabilizing role of the zinc in the structure of the DBD, prompted us to examine the interaction of Hsp90 with zinc‐free p53 DBD. NMR spectroscopy and native gel electrophoresis did not show any apparent preference for the interaction of the destabilized zinc‐free form of p53 DBD with Hsp90. Intriguingly, however, at lower protein concentrations, closer to physiological concentrations, the addition of Hsp90, but not other chaperones such as Hsp70, Hsp40, p23, and HOP, appears to slow or prevent the aggregation of zinc‐free p53 DBD. This result suggests that part of the function of the Hsp90‐p53 interaction in the cell may be to stabilize the apoprotein in the absence of zinc.  相似文献   

7.
The p53 protein family is involved in the control of an intricate network of genes implicated in cell cycle, through to germ line integrity and development. Although the role of p53 is well-established, the intrinsic nature of its homologue p73 has yet to be fully elucidated. Here, the biochemical characterization and homology-based modeling of the p73 protein is presented and the implications for its function(s) examined. The DNA binding domains (DBDs) of p53, p63, and p73 bind to the specific target site of a 30-mer gadd45 dsDNA, as tested by EMSA. The monomeric DBDs bind cooperatively forming tetrameric complexes. However, a larger construct consisting of p73 DBD plus TET domain (p73 CT) and the corresponding p53 DBD plus TET domain (p53 CT) bind gadd45 differently than the respective DBDs. Significantly, p73 DBD exhibited enhanced thermodynamic stability relative to the p53 DBD but not compared to p63 DBD as shown by DSC, CD, and equilibrium unfolding. The p73 CT is less stable than p73 DBD. The modeling data show distinct electrostatic surfaces of p73 and p53 dimers when bound to DNA. Specifically, the p73 surface is less complementary for DNA binding, which may account for the differences in affinity and specificity for p53 REs. These stability and DNA binding data for p73 in vitro enhance and complement our understanding of the role of the p73 protein in vivo and could be exploited in designing strategies for cancer therapy in places where p53 is mutated.  相似文献   

8.
Butler JS  Loh SN 《Biochemistry》2003,42(8):2396-2403
The p53 DNA binding domain (DBD) contains a single bound zinc ion that is essential for activity. Zinc remains bound to wild-type DBD at temperatures below 30 degrees C; however, it rapidly dissociates at physiological temperature. The resulting zinc-free protein (apoDBD) is folded and stable. NMR spectra reveal that the DNA binding surface is altered in the absence of Zn(2+). Fluorescence anisotropy studies show that Zn(2+) removal abolishes site-specific DNA binding activity, although full nonspecific DNA binding affinity is retained. Surprisingly, the majority of tumorigenic mutations that destabilize DBD do not appreciably destabilize apoDBD. The R175H mutation instead substantially accelerates the rate of Zn(2+) loss. A considerable fraction of cellular p53 may therefore exist in the folded zinc-free form, especially when tumorigenic mutations are present. ApoDBD appears to promote aggregation of zinc-bound DBD via a nucleation-growth process. These data provide an explanation for the dominant negative phenotype exhibited by many mutations. Through a combination of induced p53 aggregation and diminished site-specific DNA binding activity, Zn(2+) loss may represent a significant inactivation pathway for p53 in the cell.  相似文献   

9.
10.
11.
BackgroundMutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in > 50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a posttranslational increase in wildtype and mutant p53 restoring functionality. We use mutation analyses to explore which elements of secondary structure may be critical to p28 binding.MethodsMolecular modeling, Raman spectroscopy, Atomic Force Spectroscopy (AFS) and Surface Plasmon Resonance (SPR) were used to identify which secondary structure of site-directed and naturally occurring mutant DBDs are potentially altered by discrete changes in hydrophobicity and the molecular interaction with p28.ResultsWe show that specific point mutations that alter hydrophobicity within non-mutable and mutable regions of the p53 DBD alter specific secondary structures. The affinity of p28 was positively correlated with the β-sheet content of a mutant DBD, and reduced by an increase in unstructured or random coil that resulted from a loss in hydrophobicity and redistribution of surface charge.ConclusionsThese results help refine our knowledge of how mutations within p53-DBD alter secondary structure and provide insight on how potential structural alterations in p28 or similar molecules improve their ability to restore p53 function.General significanceRaman spectroscopy, AFS, SPR and computational modeling are useful approaches to characterize how mutations within the p53DBD potentially affect secondary structure and identify those structural elements prone to influence the binding affinity of agents designed to increase the functionality of p53.  相似文献   

12.
Hepatitis B virus (HBV) may contribute to hepatocarcinogenesis by blocking p53 function. A p53 response element-like binding sequences, TGCCT?TGCCT, was found in HBV genome. To clarify whether HBV DNA can, like some other DNA viruses, bind to P53 protein and form a DNA-protein complex, we used a series of plasmids encoding full-length or mutant HBV or p53 fragments to determine the binding ability of HBV DNA after cotransfected into cells by electrophoretic mobility shift (and supershift) assay. We found that HBV DNA could bind to P53 protein and form DNA-protein complexes in human hepatoma cell lines. Cotransfection with p53 and HBV DNA increased the replication of HBV, CAT activity, tumor cell apoptosis, and cytoplasmic P53 accumulation in the hepatoma cells. In conclusions, our observations suggest that the interaction of HBV and p53 at the levels of protein-protein and DNA-protein, which resulted in inactivation of p53 transactivation.  相似文献   

13.

Background

The p28 peptide, derived from the blue copper protein Azurin, exerts an anticancer action due to interaction with the tumor suppressor p53, likely interfering with its down-regulators. Knowledge of both the kinetics and topological details of the interaction, could greatly help to understand the peptide anticancer mechanism.

Methods

Fluorescence and Förster resonance energy transfer (FRET) were used to determine both the binding affinity and the distance between the lone tryptophan (FRET donor) of DNA Binding Domain (DBD) of p53 and the Iaedens dye (FRET acceptor) bound to the p28 peptide. Docking, Molecular Dynamic simulations and free energy binding calculations were used to single out the best complex model, compatible with the distance measured by FRET.

Results

Tryptophan fluorescence quenching provided a 105?M?1 binding affinity for the complex. Both FRET donor fluorescence quenching and acceptor enhancement are consistent with a donor-acceptor distance of about 2.6?nm. Docking and molecular dynamics simulations allowed us to select the best complex, enlightening the contact regions between p28 and DBD.

Conclusions

p28 binds to DBD partially engaging the L1 loop, at the same region of the p53 down-regulator COP1, leaving however the DNA binding site available for functional interactions.

General significance

Elucidation of the DBD-p28 complex gets insights into the functional role of p28 in regulating the p53 anticancer activity, also offering new perspectives to design new drugs able to protect the p53 anticancer function.  相似文献   

14.
15.
16.
XPA (xeroderma pigmentosum group A) protein is an essential factor for NER (nucleotide excision repair) which is believed to be involved in DNA damage recognition/verification, NER factor recruiting and stabilization of repair intermediates. Past studies on the structure of XPA have focused primarily on XPA interaction with damaged DNA. However, how XPA interacts with other DNA structures remains unknown though recent evidence suggest that these structures could be important for its roles in both NER and non-NER activities. Previously, we reported that XPA recognizes undamaged DNA ds/ssDNA (double-strand/single-strandDNA) junctions with a binding affinity much higher than its ability to bind bulky DNA damage. To understand how this interaction occurs biochemically we implemented a structural determination of the interaction using a MS-based protein footprinting method and limited proteolysis. By monitoring surface accessibility of XPA lysines to NHS-biotin modification in the free protein and the DNA junction-bound complex we show that XPA physically interacts with the DNA junctions via two lysines, K168 and K179, located in the previously known XPA(98–219) DBD (DNA-binding domain). Importantly, we also uncovered new lysine residues, outside of the known DBD, involved in the binding. We found that residues K221, K222, K224 and K236 in the C-terminal domain are involved in DNA binding. Limited proteolysis analysis of XPA–DNA interactions further confirmed this observation. Structural modelling with these data suggests a clamp-like DBD for the XPA binding to ds/ssDNA junctions. Our results provide a novel structure-function view of XPA–DNA junction interactions.  相似文献   

17.
18.
19.
Integrase Interactor 1 (INI1/hSNF5) is a component of the hSWI/SNF chromatin remodeling complex. The INI1 gene is either deleted or mutated in rhabdoid cancers like ATRT (Atypical terratoid and rhabdoid tumor). INI1 is also a host factor for HIV-1 replication. INI1 binds DNA non-specifically. However, the mechanism of DNA binding and its biological role are unknown. From agarose gel retardation assay (AGRA), Ni-NTA pull-down and atomic force microscopy (AFM) studies we show that amino acids 105–183 of INI1 comprise the minimal DNA binding domain (DBD). The INI1 DBD is absent in plants and in yeast SNF5. It is present in Caenorhabditis elegans SNF5, Drosophila melanogaster homologue SNR1 and is a highly conserved domain in vertebrates. The DNA binding property of this domain in SNR1, that is only 58% identical to INI1/hSNF5, is conserved. Analytical ultracentrifugation studies of INI1 DBD and INI1 DBD:DNA complexes at different concentrations show that the DBD exists as a monomer at low protein concentration and two molecules of monomer binds one molecule of DNA. At high protein concentration, it exists as a dimer and binds two DNA molecules. Furthermore, isothermal calorimetry (ITC) experiments demonstrate that the DBD monomer binds DNA with a stoichiometry (N) of ∼0.5 and Kd  = 0.94 µM whereas the DBD dimer binds two DNA molecules sequentially with K’d1 = 222 µM and K’d2 = 1.16 µM. Monomeric DBD binding to DNA is enthalpy driven (ΔH = –29.9 KJ/mole). Dimeric DBD binding to DNA is sequential with the first binding event driven by positive entropy (ΔH’1 = 115.7 KJ/mole, TΔS’1 = 136.8 KJ/mole) and the second binding event driven by negative enthalpy (ΔH’2 = –106.3 KJ/mole, TΔS’2 = –75.7 KJ/mole). Our model for INI1 DBD binding to DNA provides new insights into the mechanism of DNA binding by INI1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号