首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The heterotrimeric eukaryotic Replication protein A (RPA) is a master regulator of numerous DNA metabolic processes. For a long time, it has been viewed as an inert protector of ssDNA and a platform for assembly of various genome maintenance and signaling machines. Later, the modular organization of the RPA DNA binding domains suggested a possibility for dynamic interaction with ssDNA. This modular organization has inspired several models for the RPA-ssDNA interaction that aimed to explain how RPA, the high-affinity ssDNA binding protein, is replaced by the downstream players in DNA replication, recombination, and repair that bind ssDNA with much lower affinity. Recent studies, and in particular single-molecule observations of RPA-ssDNA interactions, led to the development of a new model for the ssDNA handoff from RPA to a specific downstream factor where not only stability and structural rearrangements but also RPA conformational dynamics guide the ssDNA handoff. Here we will review the current knowledge of the RPA structure, its dynamic interaction with ssDNA, and how RPA conformational dynamics may be influenced by posttranslational modification and proteins that interact with RPA, as well as how RPA dynamics may be harnessed in cellular decision making.  相似文献   

2.
Replication protein A (RPA) is a key regulator of eukaryotic DNA metabolism. RPA is a highly conserved heterotrimeric protein and contains multiple oligonucleotide/oligosaccharide-binding folds. The major RPA function is binding to single-stranded DNA (ssDNA) intermediates forming in DNA replication, repair, and recombination. Although binding ssDNA with high affinity, RPA can rapidly diffuse along ssDNA and destabilizes the DNA secondary structure. A highly dynamic RPA binding to ssDNA allows other proteins to access ssDNA and to displace RPA from the RPA–ssDNA complex. As has been shown recently, RPA in complex with ssDNA is posttranslationally modified in response to DNA damage. These modifications modulate the RPA interactions with its protein partners and control the DNA damage signaling pathways. The review considers up-to-date data on the RPA function as an active coordinator of ssDNA intermediate processing within DNA metabolic pathways, DNA repair in particular.  相似文献   

3.
Replication Protein A (RPA) is a heterotrimeric, single-stranded DNA (ssDNA)–binding complex required for DNA replication and repair, homologous recombination, DNA damage checkpoint signaling, and telomere maintenance. Whilst the larger RPA subunits, Rpa1 and Rpa2, have essential interactions with ssDNA, the molecular functions of the smallest subunit Rpa3 are unknown. Here, we investigate the Rpa3 ortholog Ssb3 in Schizosaccharomyces pombe and find that it is dispensable for cell viability, checkpoint signaling, RPA foci formation, and meiosis. However, increased spontaneous Rad11Rpa1 and Rad22Rad52 nuclear foci in ssb3Δ cells indicate genome maintenance defects. Moreover, Ssb3 is required for resistance to genotoxins that disrupt DNA replication. Genetic interaction studies indicate that Ssb3 has a close functional relationship with the Mms1-Mms22 protein complex, which is required for survival after DNA damage in S-phase, and with the mitotic functions of Mus81-Eme1 Holliday junction resolvase that is required for recovery from replication fork collapse. From these studies we propose that Ssb3 plays a critical role in mediating RPA functions that are required for repair or tolerance of DNA lesions in S-phase. Rpa3 orthologs in humans and other species may have a similar function.  相似文献   

4.
Human replication protein A (RPA), a heterotrimeric protein complex, was originally defined as a eukaryotic single-stranded DNA binding (SSB) protein essential for the in vitro replication of simian virus 40 (SV40) DNA. Since then RPA has been found to be an indispensable player in almost all DNA metabolic pathways such as, but not limited to, DNA replication, DNA repair, recombination, cell cycle, and DNA damage checkpoints. Defects in these cellular reactions may lead to genome instability and, thus, the diseases with a high potential to evolve into cancer. This extensive involvement of RPA in various cellular activities implies a potential modulatory role for RPA in cellular responses to genotoxic insults. In support, RPA is hyperphosphorylated upon DNA damage or replication stress by checkpoint kinases including ataxia telangiectasia mutated (ATM), ATR (ATM and Rad3-related), and DNA-dependent protein kinase (DNA-PK). The hyperphosphorylation may change the functions of RPA and, thus, the activities of individual pathways in which it is involved. Indeed, there is growing evidence that hyperphosphorylation alters RPA-DNA and RPA-protein interactions. In addition, recent advances in understanding the molecular basis of the stress-induced modulation of RPA functions demonstrate that RPA undergoes a subtle structural change upon hyperphosphorylation, revealing a structure-based modulatory mechanism. Furthermore, given the crucial roles of RPA in a broad range of cellular processes, targeting RPA to inhibit its specific functions, particularly in DNA replication and repair, may serve a valuable strategy for drug development towards better cancer treatment.  相似文献   

5.
6.
Single‐stranded DNA (ssDNA) regions form as an intermediate in many DNA‐associated transactions. Multiple cellular proteins interact with ssDNA via the oligonucleotide/oligosaccharide‐binding (OB) fold domain. The heterotrimeric, multi‐OB fold domain‐containing Replication Protein A (RPA) complex has an essential genome maintenance role, protecting ssDNA regions from nucleolytic degradation and providing a recruitment platform for proteins involved in responses to replication stress and DNA damage. Here, we identify the uncharacterized protein RADX (CXorf57) as an ssDNA‐binding factor in human cells. RADX binds ssDNA via an N‐terminal OB fold cluster, which mediates its recruitment to sites of replication stress. Deregulation of RADX expression and ssDNA binding leads to enhanced replication fork stalling and degradation, and we provide evidence that a balanced interplay between RADX and RPA ssDNA‐binding activities is critical for avoiding these defects. Our findings establish RADX as an important component of cellular pathways that promote DNA replication integrity under basal and stressful conditions by means of multiple ssDNA‐binding proteins.  相似文献   

7.
In eukaryotes, the single strand DNA (ssDNA)-binding protein, replication protein A (RPA), is essential for DNA replication, repair, and recombination. RPA is composed of the following three subunits: RPA1, RPA2, and RPA3. The RPA1 subunit contains four structurally related domains and is responsible for high affinity ssDNA binding. This study uses a depletion/replacement strategy in human cells to reveal the contributions of each domain to RPA cellular functions. Mutations that substantially decrease ssDNA binding activity do not necessarily disrupt cellular RPA function. Conversely, mutations that only slightly affect ssDNA binding can dramatically affect cellular function. The N terminus of RPA1 is not necessary for DNA replication in the cell; however, this region is important for the cellular response to DNA damage. Highly conserved aromatic residues in the high affinity ssDNA-binding domains are essential for DNA repair and cell cycle progression. Our findings suggest that as long as a threshold of RPA-ssDNA binding activity is met, DNA replication can occur and that an RPA activity separate from ssDNA binding is essential for function in DNA repair.  相似文献   

8.
The Fanconi anemia (FA) pathway regulates DNA inter-strand crosslink (ICL) repair. Despite our greater understanding of the role of FA in ICL repair, its function in the preventing spontaneous genome instability is not well understood. Here, we show that depletion of replication protein A (RPA) activates the FA pathway. RPA1 deficiency increases chromatin recruitment of FA core complex, leading to FANCD2 monoubiquitination (FANCD2-Ub) and foci formation in the absence of DNA damaging agents. Importantly, ATR depletion, but not ATM, abolished RPA1 depletion-induced FANCD2-Ub, suggesting that ATR activation mediated FANCD2-Ub. Interestingly, we found that depletion of hSSB1/2-INTS3, a single-stranded DNA-binding protein complex, induces FANCD2-Ub, like RPA1 depletion. More interestingly, depletion of either RPA1 or INTS3 caused increased accumulation of DNA damage in FA pathway deficient cell lines. Taken together, these results indicate that RPA deficiency induces activation of the FA pathway in an ATR-dependent manner, which may play a role in the genome maintenance.  相似文献   

9.
You JS  Wang M  Lee SH 《Biochemistry》2000,39(42):12953-12958
The 70-kDa subunit of eukaryotic replication protein A (RPA) contains a conserved four cysteine-type zinc-finger motif that has been implicated in regulation of DNA replication and repair. Unlike other zinc-finger proteins, RPA zinc-finger motif is not a DNA-binding component, and deletion of the zinc-finger had very little effect on its ssDNA binding activity. Recently, we described a novel function for the zinc-finger motif in regulation of RPA's ssDNA binding activity through reduction-oxidation (redox). In this study, we carried out a detailed analysis of wild-type RPA and zinc-finger mutants in redox regulation of their ssDNA binding activity. Any mutation at a zinc-finger cysteine abolished its redox role in regulation of RPA-ssDNA interaction, suggesting that all four zinc-finger cysteines are required for redox regulation. Reactivity of cysteine residues to 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) indicated that wild-type RPA contained 8.2 reactive thiols/molecule including all four cysteines in the zinc-finger motif. Zinc-finger cysteines slowly reacted to DTNB as compared to others. Zn(II) was not only essential but also uniquely qualified for redox regulation of RPA-ssDNA interaction, suggesting that Zn(II)-cysteine coordination is crucial for the zinc-finger function. Redox status significantly affected initial interaction of RPA with ssDNA but had no effect after RPA formed a stable complex with DNA. Together, our results suggest that the zinc-finger motif mediates the transition of RPA-ssDNA interaction to a stable RPA-ssDNA complex in a redox-dependent manner.  相似文献   

10.
Eukaryotic replication protein A (RPA) is a single-stranded DNA-binding protein with multiple functions in DNA replication, repair, and genetic recombination. RPA contains an evolutionarily conserved 4-cysteine-type zinc finger motif (X(3)CX(2-4)CX(12-15)CX(2)C) that has a potential role in regulation of DNA replication and repair (Dong, J., Park, J-S., and Lee, S-H. (1999) Biochem. J. 337, 311-317 and Lin, Y.-L., Shivji, M. K. K., Chen, C., Kolodner, R., Wood, R. D., and Dutta, A. (1998) J. Biol. Chem. 273, 1453-1461), even though the zinc finger itself is not essential for its DNA binding activity (Kim, D. K., Stigger, E., and Lee, S.-H. (1996) J. Biol. Chem. 271, 15124-15129). Here, we show that RPA single-stranded DNA (ssDNA) binding activity is regulated by reduction-oxidation (redox) through its zinc finger domain. RPA-ssDNA interaction was stimulated 10-fold by the reducing agent, dithiothreitol (DTT), whereas treatment of RPA with oxidizing agent, diazene dicarboxylic acid bis[N,N-dimethylamide] (diamide), significantly reduced this interaction. The effect of diamide was reversed by the addition of excess DTT, suggesting that RPA ssDNA binding activity is regulated by redox. Redox regulation of RPA-ssDNA interaction was more effective in the presence of 0.2 M NaCl or higher. Cellular redox factor, thioredoxin, was able to replace DTT in stimulation of RPA DNA binding activity, suggesting that redox protein may be involved in RPA modulation in vivo. In contrast to wild-type RPA, zinc finger mutant (cysteine to alanine mutation at amino acid 486) did not require DTT for its ssDNA binding activity and is not affected by redox. Together, these results suggest a novel function for a putative zinc finger in the regulation of RPA DNA binding activity through cellular redox.  相似文献   

11.
Checkpoint kinase 1 (Chk1) responds to disruption of DNA replication to maintain the integrity of stalled forks, promote homologous recombination-mediated repair of replication fork lesions, and control inappropriate firing of replication origins. This response is essential for viability as replication inhibitors trigger apoptosis in S-phase cells depleted of Chk1. Given the complex network of cellular responses controlled by Chk1, our aim was to determine which of these protect cells from apoptosis following replication stress. Work with cell-free systems has shown that RPA-ssDNA complex forms following replication inhibition through the uncoupling of replication and helicase complexes. Here we show that replication protein A (RPA) foci form in cells treated with replication inhibitors and that the number of foci dramatically increases together with hyperphosphorylation of RPA34 in Chk1-depleted cells in advance of the induction of apoptosis. RPA foci, RPA34 hyperphosphorylation, and apoptosis were suppressed by siRNA-mediated knockdown of Cdc45, an essential replication helicase cofactor required for both the initiation and elongation steps of DNA replication. In contrast, loss of p21, a negative effector of origin firing, stimulates both the accumulation of RPA foci and apoptosis. Taken together, these results suggest that the loss of control of replication origin firing following Chk1 depletion triggers the accumulation of the RPA-ssDNA complex and apoptosis when replication is blocked.  相似文献   

12.
Genotoxins and other factors cause replication stress that activate the DNA damage response (DDR), comprising checkpoint and repair systems. The DDR suppresses cancer by promoting genome stability, and it regulates tumor resistance to chemo- and radiotherapy. Three members of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, ATM, ATR, and DNA-PK, are important DDR proteins. A key PIKK target is replication protein A (RPA), which binds single-stranded DNA and functions in DNA replication, DNA repair, and checkpoint signaling. An early response to replication stress is ATR activation, which occurs when RPA accumulates on ssDNA. Activated ATR phosphorylates many targets, including the RPA32 subunit of RPA, leading to Chk1 activation and replication arrest. DNA-PK also phosphorylates RPA32 in response to replication stress, and we demonstrate that cells with DNA-PK defects, or lacking RPA32 Ser4/Ser8 targeted by DNA-PK, confer similar phenotypes, including defective replication checkpoint arrest, hyper-recombination, premature replication fork restart, failure to block late origin firing, and increased mitotic catastrophe. We present evidence that hyper-recombination in these mutants is ATM-dependent, but the other defects are ATM-independent. These results indicate that DNA-PK and ATR signaling through RPA32 plays a critical role in promoting genome stability and cell survival in response to replication stress.  相似文献   

13.
ATR associates with the regulatory protein ATRIP that has been proposed to localize ATR to sites of DNA damage through an interaction with single-stranded DNA (ssDNA) coated with replication protein A (RPA). We tested this hypothesis and found that ATRIP is required for ATR accumulation at intranuclear foci induced by DNA damage. A domain at the N terminus of ATRIP is necessary and sufficient for interaction with RPA-ssDNA. Deletion of the ssDNA-RPA interaction domain of ATRIP greatly diminished accumulation of ATRIP into foci. However, the ATRIP-RPA-ssDNA interaction is not sufficient for ATRIP recognition of DNA damage. A splice variant of ATRIP that cannot bind to ATR revealed that ATR association is also essential for proper ATRIP localization. Furthermore, the ATRIP-RPA-ssDNA interaction is not absolutely essential for ATR activation because ATR phosphorylates Chk1 in cells expressing only a mutant of ATRIP that does not bind to RPA-ssDNA. These data suggest that binding to RPA-ssDNA is not the essential function of ATRIP in ATR-dependent checkpoint signaling and ATR has an important function in properly localizing the ATR-ATRIP complex.  相似文献   

14.
Proper activation of DNA repair pathways in response to DNA replication stress is critical for maintaining genomic integrity. Due to the complex nature of the replication fork (RF), problems at the RF require multiple proteins, some of which remain unidentified, for resolution. In this study, we identified the N-methyl-D-aspartate receptor synaptonuclear signaling and neuronal migration factor (NSMF) as a key replication stress response factor that is important for ataxia telangiectasia and Rad3-related protein (ATR) activation. NSMF localizes rapidly to stalled RFs and acts as a scaffold to modulate replication protein A (RPA) complex formation with cell division cycle 5-like (CDC5L) and ATR/ATR-interacting protein (ATRIP). Depletion of NSMF compromised phosphorylation and ubiquitination of RPA2 and the ATR signaling cascade, resulting in genomic instability at RFs under DNA replication stress. Consistently, NSMF knockout mice exhibited increased genomic instability and hypersensitivity to genotoxic stress. NSMF deficiency in human and mouse cells also caused increased chromosomal instability. Collectively, these findings demonstrate that NSMF regulates the ATR pathway and the replication stress response network for genome maintenance and cell survival.  相似文献   

15.
RPA (replication protein A), the eukaryotic ssDNA (single-stranded DNA)-binding protein, participates in most cellular processes in response to genotoxic insults, such as NER (nucleotide excision repair), DNA, DSB (double-strand break) repair and activation of cell cycle checkpoint signalling. RPA interacts with XPA (xeroderma pigmentosum A) and functions in early stage of NER. We have shown that in cells the RPA-XPA complex disassociated upon exposure of cells to high dose of UV irradiation. The dissociation required replication stress and was partially attributed to tRPA hyperphosphorylation. Treatment of cells with CPT (camptothecin) and HU (hydroxyurea), which cause DSB DNA damage and replication fork collapse respectively and also leads to the disruption of RPA-XPA complex. Purified RPA and XPA were unable to form complex in vitro in the presence of ssDNA. We propose that the competition-based RPA switch among different DNA metabolic pathways regulates the dissociation of RPA with XPA in cells after DNA damage. The biological significances of RPA-XPA complex disruption in relation with checkpoint activation, DSB repair and RPA hyperphosphorylation are discussed.  相似文献   

16.
Maintaining the integrity of the genome requires the high fidelity duplication of the genome and the ability of the cell to recognize and repair DNA lesions. The heterotrimeric single stranded DNA (ssDNA) binding complex Replication Protein A (RPA) is central to multiple DNA processes, which are coordinated by RPA through its ssDNA binding function and through multiple protein-protein interactions. Many RPA interacting proteins have been reported through large genetic and physical screens; however, the number of interactions that have been further characterized is limited. To gain a better understanding of how RPA functions in DNA replication, repair, and cell cycle regulation and to identify other potential functions of RPA, a yeast two hybrid screen was performed using the yeast 70 kDa subunit, Replication Factor A1 (Rfa1), as a bait protein. Analysis of 136 interaction candidates resulted in the identification of 37 potential interacting partners, including the cell cycle regulatory protein and DNA damage clamp loader Rad24. The Rfa1-Rad24 interaction is not dependent on ssDNA binding. However, this interaction appears affected by DNA damage. The regions of both Rfa1 and Rad24 important for this interaction were identified, and the region of Rad24 identified is distinct from the region reported to be important for its interaction with Rfc2 5. This suggests that Rad24-Rfc2-5 (Rad24-RFC) recruitment to DNA damage substrates by RPA occurs, at least partially, through an interaction between the N terminus of Rfa1 and the C terminus of Rad24. The predicted structure and location of the Rad24 C-terminus is consistent with a model in which RPA interacts with a damage substrate, loads Rad24-RFC at the 5’ junction, and then releases the Rad24-RFC complex to allow for proper loading and function of the DNA damage clamp.  相似文献   

17.
Faithful repair of DNA double-strand breaks is vital to the maintenance of genome integrity and proper cell functions. Histone modifications, such as reversible acetylation, phosphorylation, methylation, and ubiquitination, which collectively contribute to the establishment of distinct chromatin states, play important roles in the recruitment of repair factors to the sites of double-strand breaks. Here we report that histone acetyltransferase 1 (HAT1), a classical B type histone acetyltransferase responsible for acetylating the N-terminal tail of newly synthesized histone H4 in the cytoplasm, is a key regulator of DNA repair by homologous recombination in the nucleus. We found that HAT1 is required for the incorporation of H4K5/K12-acetylated H3.3 at sites of double-strand breaks through its HIRA-dependent histone turnover activity. Incorporated histones with specific chemical modifications facilitate subsequent recruitment of RAD51, a key repair factor in mammalian cells, to promote efficient homologous recombination. Significantly, depletion of HAT1 sensitized cells to DNA damage compromised the global chromatin structure, inhibited cell proliferation, and induced cell apoptosis. Our experiments uncovered a role for HAT1 in DNA repair in higher eukaryotic organisms and provide a mechanistic insight into the regulation of histone dynamics by HAT1.  相似文献   

18.
《BBA》2022,1863(5):148554
Mitochondria is a unique cellular organelle involved in multiple cellular processes and is critical for maintaining cellular homeostasis. This semi-autonomous organelle contains its circular genome – mtDNA (mitochondrial DNA), that undergoes continuous cycles of replication and repair to maintain the mitochondrial genome integrity. The majority of the mitochondrial genes, including mitochondrial replisome and repair genes, are nuclear-encoded. Although the repair machinery of mitochondria is quite efficient, the mitochondrial genome is highly susceptible to oxidative damage and other types of exogenous and endogenous agent-induced DNA damage, due to the absence of protective histones and their proximity to the main ROS production sites. Mutations in replication and repair genes of mitochondria can result in mtDNA depletion and deletions subsequently leading to mitochondrial genome instability. The combined action of mutations and deletions can result in compromised mitochondrial genome maintenance and lead to various mitochondrial disorders. Here, we review the mechanism of mitochondrial DNA replication and repair process, key proteins involved, and their altered function in mitochondrial disorders. The focus of this review will be on the key genes of mitochondrial DNA replication and repair machinery and the clinical phenotypes associated with mutations in these genes.  相似文献   

19.
ATR autophosphorylation as a molecular switch for checkpoint activation   总被引:1,自引:0,他引:1  
The ataxia telangiectasia-mutated and Rad3-related (ATR) kinase is a master checkpoint regulator safeguarding the genome. Upon DNA damage, the ATR-ATRIP complex is recruited to sites of DNA damage by RPA-coated single-stranded DNA and activated by an elusive process. Here, we show that ATR is transformed into a hyperphosphorylated state after DNA damage, and that a single autophosphorylation event at Thr 1989 is crucial for ATR activation. Phosphorylation of Thr 1989 relies on RPA, ATRIP, and ATR kinase activity, but unexpectedly not on the ATR stimulator TopBP1. Recruitment of ATR-ATRIP to RPA-ssDNA leads to congregation of ATR-ATRIP complexes and promotes Thr 1989 phosphorylation in trans. Phosphorylated Thr 1989 is directly recognized by TopBP1 via the BRCT domains 7 and 8, enabling TopBP1 to engage ATR-ATRIP, to stimulate the ATR kinase, and to facilitate ATR substrate recognition. Thus, ATR autophosphorylation on RPA-ssDNA is a molecular switch to launch robust checkpoint response.  相似文献   

20.
Correct repair of damaged DNA is critical for genomic integrity. Deficiencies in DNA repair are linked with human cancer. Here we report a novel mechanism by which a virus manipulates DNA damage responses. Infection with murine polyomavirus sensitizes cells to DNA damage by UV and etoposide. Polyomavirus large T antigen (LT) alone is sufficient to sensitize cells 100 fold to UV and other kinds of DNA damage. This results in activated stress responses and apoptosis. Genetic analysis shows that LT sensitizes via the binding of its origin-binding domain (OBD) to the single-stranded DNA binding protein replication protein A (RPA). Overexpression of RPA protects cells expressing OBD from damage, and knockdown of RPA mimics the LT phenotype. LT prevents recruitment of RPA to nuclear foci after DNA damage. This leads to failure to recruit repair proteins such as Rad51 or Rad9, explaining why LT prevents repair of double strand DNA breaks by homologous recombination. A targeted intervention directed at RPA based on this viral mechanism could be useful in circumventing the resistance of cancer cells to therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号