首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Estrogen receptor α (ER-α) is a key mediator of estrogen actions in breast cancer (BC) cells. Understanding the effects of ligand-activated ER-α in target cells requires identification of the molecular partners acting in concert with this nuclear receptor to transduce the hormonal signal. We applied tandem affinity purification (TAP), glycerol gradient centrifugation and MS analysis to isolate and identify proteins interacting with ligand-activated ER-α in MCF-7 cell nuclei. This led to the identification of 264 ER-associated proteins, whose functions highlight the hinge role of ER-α in the coordination of multiple hormone-regulated nuclear processes in BC cells.  相似文献   

2.
The drug resistance and tumor metastasis have been the main obstacles for the longer-term therapeutic effects of tamoxifen (TAM) on estrogen receptor-positive (ER+) breast cancer, but the mechanisms underlying the TAM resistance are still unclear. Here, we demonstrated that the membrane-associated estrogen receptor ER-α36 signaling, but not the G protein-coupled estrogen receptor 1 (GPER1) signaling, might be involved in the TAM resistance and metastasis of breast cancer cells. In this study, a model of ER+ breast cancer cell MCF-7 that involves the up-regulated expression of ER-α36 and unchanged expression of ER-α66 and GPER1 was established via the removal of insulin from the cell culture medium. The mechanism of TAM resistance in the ER+ breast cancer cell line MCF-7 was investigated, and the results showed that the stimulating effect of insulin on susceptibility of MCF-7 to TAM was mediated by ER-α36 and that the expression level of ER-α36 in TAM-resistant MCF-7 cells was also significantly increased. Both TAM and estradiol (E2) could promote the migration of triple negative (ER-α66?/PR?/HER2?) and ER-α36+/GPER1+ breast cancer cells MDA-MB-231. The migration of MDA-MB-231 cells was inhibited by the down-regulated intracellular expression of ER-α36 by transient transfection of specific small interfering RNA, whereas no effect of GPER1 down-regulation was observed. Meanwhile, the effect of TAM on the migration of ER-α36-down-regulated MDA-MB-231 cells was also reduced. Furthermore, it was found that TAM enhanced the distribution of integrin β1 on the cell surface but did not affect the expression of integrin β1 in MDA-MB-231 cells. Collectively, these data suggested that ER-α36 signaling might play critical roles in acquired and de novo TAM resistance and metastasis of breast cancer, and ER-α36 might present a potential biomarker of TAM resistance in the clinical diagnosis and treatment of ER+ breast cancer.  相似文献   

3.
4.
Estrogen receptors (ERs) belong to the nuclear receptor superfamily, whose members include ER-α66, ER-α36, ER-α46 and ER-β. Each receptor performs specific functions through binding with a specific ligand, such as estrogen. Recently, ER-α36, a novel variant of human estrogen receptor-alpha (ER-α), was identified and cloned. ER-α36 inhibits, in a dominant-negative manner, the transactivation of both the wild-type ER-α (ER-α66) and ER-β. As a predominantly membrane-based ER, ER-α36 mediates nongenomic estrogen signaling and is involved in the resistance of breast cancer to endocrine therapy, i.e., tamoxifen. This review summarizes recent studies on the structure and function of ER-α36 and the relationship of ER-α36 with cancer, with special emphasis on its function in the resistance of breast cancer to endocrine therapy.  相似文献   

5.
6.
Ground breaking clinical therapeutic advances in the treatment of breast cancer (BC) is the introduction of selective estrogen receptor modulators (SERMs). We have expeditiously designed and synthesized indole-xanthendione hybrids by coalescing the indole nucleus with xanthendione. All the compounds were first screened for anti-proliferative activity, cytotoxicity and ER-α binding affinity by utilizing ER-α dominant T47D BC cell lines, PBMCs and ER-α competitor assay kit. From this study, two representative compounds 6e and 6f showing most promising activity were advanced for gene expression studies for targeting ER-α. Cell imaging experiment undoubtedly indicate that both the compounds were able to cross cellular bio membrane and accumulate thus instigating cytotoxicity. RT-PCR and Western blotting experiments further strengthened that both compounds altered the expression of mRNA and receptor protein of ER-α, thereby forestalling downstream transactivation and signalling pathway in T47D cells line. Structural investigation from induced fit simulation study suggest that indole moiety of the compounds 6e and 6f helps in the anchoring of the xanthendione moiety in the hydrophobic region of the cavity thus enabling the compound to bind in antagonistic conformation similar to bazedoxifene by extensive hydrogen bonding and Van der Waals forces. All these finding collectively imply that compound 6e and 6f represents a novel potent ER-α antagonist and in the development of SERMs for the management of BC.  相似文献   

7.
Pan X  Zhou T  Tai YH  Wang C  Zhao J  Cao Y  Chen Y  Zhang PJ  Yu M  Zhen C  Mu R  Bai ZF  Li HY  Li AL  Liang B  Jian Z  Zhang WN  Man JH  Gao YF  Gong WL  Wei LX  Zhang XM 《Nature medicine》2011,17(6):708-714
Endocrine resistance is a major obstacle to hormonal therapy for breast cancers. Although reduced expression of estrogen receptor-α (ER-α) is a known contributing factor to endocrine resistance, the mechanism of ER-α downregulation in endocrine resistance is still not fully understood. Here we report that CUE domain-containing protein-2 (CUEDC2), a ubiquitin-binding motif-containing protein, is a key factor in endocrine resistance in breast cancer. We show that CUEDC2 modulates ER-α protein stability through the ubiquitin-proteasome pathway. Through the study of specimens from a large cohort of subjects with breast cancer, we found a strong inverse correlation between CUEDC2 and ER-α protein expression. Notably, subjects with tumors that highly expressed CUEDC2 had poor responsiveness to tamoxifen treatment and high potential for relapse. We further show that ectopic CUEDC2 expression impaired the responsiveness of breast cancer cells to tamoxifen. Therefore, our findings suggest that CUEDC2 is a crucial determinant of resistance to endocrine therapies in breast cancer.  相似文献   

8.
In the present study, we have designed and synthesized indole derivatives by coalescing the indole nucleus with chromene carbonitrile and dihydropyridine nucleus. Two compounds 5c and 6d were selected from series I and II after sequential combinatorial library generation, docking, absorption, distribution, metabolism and excretion (ADME) filtering, anti-proliferative activity, cytotoxicity, and ER-α competitor assay kit by utilizing estrogen receptor-α (ER-α) dominant T47D BC cells line and PBMCs (Peripheral Blood Mononuclear Cells). Cell imaging experiment suggested that both the compounds successfully cross cellular biomembrane and accumulate in nuclear, cytoplasmic and plasma membrane region. Semiquantitative RT-PCR and Western blotting experiments further supported that both compounds reduced the expression of mRNA and receptor protein of ER-α, thereby preventing downstream transactivation and signaling pathway in T47D cells line. Current findings imply that 5c and 6d represent novel ER-α antagonists and may be used in the development of chemotherapy for the management of BC.  相似文献   

9.
10.
Xie M  Zhu X  Liu Z  Shrubsole M  Varma V  Mayer IA  Dai Q  Chen Q  You S 《PloS one》2012,7(4):e35198
Classically, the actions of progesterone (P4) are attributed to the binding of nuclear progesterone receptor (PR) and subsequent activation of its downstream target genes. These mechanisms, however, are not applicable to PR- or basal phenotype breast cancer (BPBC) due to lack of PR in these cancers. Recently, the function of membrane progesterone receptor alpha (mPRα) in human BPBC cell lines was studied in our lab. We proposed that the signaling cascades of P4→mPRα pathway may play an essential role in controlling cell proliferation and epithelial mesenchymal transition (EMT) of breast cancer. Using human breast cancer tissue microarrays, we found in this study that the average intensity of mPRα expression, but not percentage of breast cancer with high level of mPRα expression (mPRα-HiEx), was significantly lower in the TNM stage 4 patients compared to those with TNM 1-3 patients; and both average intensities of mPRα expression and mPRα-HiEx rates were significantly higher in cancers negative for ER, as compared with those cancers with ER+. However, after adjusting for age at diagnosis and/or TNM stage, only average intensities of mPRα expression were associated with ER status. In addition, we found that the rates of mPRα-HiEx were significantly higher in cancers with epithelial growth factor receptor-1 (EGFR+) and high level of Ki67 expression, indicating positive correlation between mPRα over expression and EGFR or Ki67. Further analysis indicated that both mPRα-HiEx rate and average intensity of mPRα expression were significantly higher in HER2+ subtype cancers (i.e. HER2+ER-PR-) as compared to ER+ subtype cancers. These data support our hypothesis that P4 modulates the activities of the PI3K and cell proliferation pathways through the caveolar membrane bound growth factor receptors such as mPRα and growth factor receptors. Future large longitudinal studies with larger sample size and survival outcomes are necessary to confirm our findings.  相似文献   

11.
12.
13.
14.
Triple-negative breast cancer (TNBC) was regarded as the most aggressive and mortal subtype of breast cancer (BC) since the molecular subtype system has been established. Abundant studies have revealed that epithelial-mesenchymal transition (EMT) played a pivotal role during breast cancer metastasis and progression, especially in TNBC. Herein, we showed that inhibition the expression of replication factor C subunit 3 (RFC3) significantly attenuated TNBC metastasis and progression, which was associated with EMT signal pathway. In TNBC cells, knockdown of RFC3 can down-regulate mesenchymal markers and up-regulate epithelial markers, significantly attenuated cell proliferation, migration and invasion. Additionally, silencing RFC3 expression can decrease nude mice tumor volume, weight and relieve lung metastasis in vivo. Furthermore, we also demonstrated that overexpression of RFC3 in TNBC showed increased metastasis, progression and poor prognosis. We confirmed all of these results by immunohistochemistry analysis in 127 human TNBC tissues and found that RFC3 expression was significantly associated with poor prognosis in TNBC. Taken all these findings into consideration, we can conclude that up-regulation of RFC3 promotes TNBC progression through EMT signal pathway. Therefore, RFC3 could be an independent prognostic factor and therapeutic target for TNBC.  相似文献   

15.
16.
Triple-negative breast cancer (TNBC) is clinically defined by the absence of estrogen and progesterone receptors and the lack of membrane overexpression or gene amplification of receptor tyrosine kinase ErbB-2/HER2. Due to TNBC heterogeneity, clinical biomarkers and targeted therapies for this disease remain elusive. We demonstrated that ErbB-2 is localized in the nucleus (NErbB-2) of TNBC cells and primary tumors, from where it drives growth. We also discovered that TNBC expresses both wild-type ErbB-2 (WTErbB-2) and alternative ErbB-2 isoform c (ErbB-2c). Here, we revealed that the inhibitors of the retrograde transport Retro-2 and its cyclic derivative Retro-2.1 evict both WTErbB-2 and ErbB-2c from the nucleus of BC cells and tumors. Using BC cells from several molecular subtypes, as well as normal breast cells, we demonstrated that Retro-2 specifically blocks proliferation of BC cells expressing NErbB-2. Importantly, Retro-2 eviction of both ErbB-2 isoforms from the nucleus resulted in a striking growth abrogation in multiple TNBC preclinical models, including tumor explants and xenografts. Our mechanistic studies in TNBC cells revealed that Retro-2 induces a differential accumulation of WTErbB-2 at the early endosomes and the plasma membrane, and of ErbB-2c at the Golgi, shedding new light both on Retro-2 action on endogenous protein cargoes undergoing retrograde transport, and on the biology of ErbB-2 splicing variants. In addition, we revealed that the presence of a functional signal peptide and a nuclear export signal (NES), both located at the N-terminus of WTErbB-2, and absent in ErbB-2c, accounts for the differential subcellular distribution of ErbB-2 isoforms upon Retro-2 treatment. Our present discoveries provide evidence for the rational repurposing of Retro-2 as a novel therapeutic agent for TNBC.Subject terms: Breast cancer, Protein translocation, Oncogenes, Nuclear transport, Targeted therapies  相似文献   

17.
We reported previously that tumor necrosis factor α (TNFα) inhibited proliferation and invasiveness of human malignant glial cells. Because tamoxifen, an estrogen antagonist, has also been shown to inhibit growth of such cells, we hypothesized that a combination of tamoxifen and TNFα might be more effective than either reagent alone. TNFα (1–100 ng/ml) or tamoxifen (80 ng/ml-2 μg/ml) alone inhibited proliferation of a human glioblastoma cell line (WITG3) in a dose-dependent fashion; in combination, tamoxifen and TNFα yielded additive growth inhibition. Apoptotic cells characterized by nuclear fragmentation were detectable after 48 h of TNFα or tamoxifen exposure and were significantly increased by combination treatment. In non-neoplastic human astroglia and fibroblasts, proliferation was unaffected by tamoxifen, and enhanced by TNFα as previously reported. Staurosporine (2–50 nM), which has been reported to augment the effects of TNFα, was less effective than tamoxifen against WITG3 and, in addition, was markedly inhibitory to non-neoplastic glial cells. Binding studies yielded no evidence of WITG3 estrogen or progesterone receptors, nor of tamoxifen effects on TNFα receptors. Data suggest that TNFα and tamoxifen in combination display growth-regulatory properties, which (a) are more inhibitory to human glioblastoma cells than either agent alone, (b) do not affect non-neoplastic glia, (c) do not require either estrogen/ progesterone receptors or alteration of external TNFα receptors, and (d) may involve apoptosis.  相似文献   

18.
Triple-negative breast cancer (TNBC) is defined by the lack of the expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2). It is characterized by aggressive behavior, poor prognosis and lack of targeted therapies. MicroRNA (miRNA) as a novel modulator of gene expression has played an important regulatory role in the malignancy. Dysregulation and/or mutation of the miRNAs may also contribute to the TNBC susceptibility since it is associated with the expression of ER, PR and HER2. Single nucleotide polymorphisms (SNPs) in miRNAs may be extremely relevant for TNBC. We tried to validate the hypothesis that genetic variations in miRNA are associated with TNBC development, and identify candidate biomarkers for TNBC susceptibility and clinical treatment. We screened the genetic variants in all miRNA genes listed in the public database miRBase and NCBI. A total of 23 common SNPs in 22 miRNAs, which tagged the known common variants in the Chinese Han people with a minor allele frequency greater than 0.05, were genotyped. This case-control study involved 191 patients with TNBC and 192 healthy female controls. Frequencies of SNPs were compared between cases and controls to identify the SNPs associated with TNBC susceptibility. No significant association was found between TNBC risk and the SNPs in the miRNA genes in the Chinese Han people (P>0.05), but this warrants further studies.  相似文献   

19.
Currently, traditional predictors of prognosis (tumor size, nodal status, progesterone receptor [PR], estrogen receptor [ER], or human epidermal growth factor receptor-2 [HER2]) are insufficient for precise survival prediction for triple-negative breast cancer (TNBC). Long noncoding RNAs (lncRNAs) have been observed to exert critical functions in cancer, including in TNBC. Nevertheless, systematically tracking expression-based lncRNA biomarkers based on the sequence data for the prediction of prognosis in TNBC has not yet been investigated. To ascertain whether biomarkers exist that can distinguish TNBC from adjacent normal tissue or nTNBC, we implemented a comprehensive analysis of lncRNA expression profiles and clinical data of 1097 BC samples from The Cancer Genome Atlas database. A total of 1510 differentially expressed lncRNAs in normal and TNBC samples were extracted. Similarly, 672 differentially expressed lncRNAs between nTNBC and TNBC samples were detected. The receiver operating characteristic curve analysis indicated that three upregulated lncRNAs (AC091043.1, AP000924.1, and FOXCUT) may be of strong diagnostic value for predicting the existence of TNBC in the training and validation sets (area under the curve (AUC > 0.85). Kaplan-Meier analysis demonstrated that the other three lncRNAs (AC010343.3, AL354793.1, and FGF10-AS1) were associated with the prognosis of TNBC patients (P < 0.05). We used the three overall survival (OS)-related lncRNAs to establish a three-lncRNA signature. Multivariate Cox regression analysis suggested that the three-lncRNA signature was a prognostic factor independent of other clinical variables ( P < 0.01) for predicting OS in TNBC patients that could be utilized to classify patients into high- or low-risk subgroups. Our results might provide efficient signatures for clinical diagnosis and prognostic evaluation of TNBC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号