首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
EBT radiochromic films were used to determine skin-dose maps for patients undergone Total Skin Electron Therapy (TSET). Gafchromic EBT radiochromic film is one of the newest radiation-induced auto-developing photon and electron-beam analysis films available for therapeutic radiation dosimetry in radiotherapy applications. EBT films can be particularly useful in TSET; due to patient morphology, underdosed regions typically occur, and the radiochromic film represents a suitable candidate for monitoring them.In this study, TSET was applied to treat cutaneous T-cell lymphoma. The technique for TSET was implemented by using an electron beam with a nominal energy of 6 MeV. The patient was treated in a standing position using dual angled fields in order to obtain the greatest dose uniformity along the patient's longitudinal axis. The electron beam energy was degraded by a PMMA filter. The in vivo dose distribution was determined through the use of EBT films, as well as of thermoluminescent dosimeters for comparison (TLDs). EBT results showed a reasonable agreement with TLDs data.  相似文献   

2.
The aim of this study was to evaluate the maximum skin dose (MSD) in patients undergoing interventional cardiology procedures, obtaining local reference levels and comparing these with the reference levels proposed in the literature.The patients' MSD was measured using Gafchromic XR type R films. In order to evaluate reference levels, the number of images acquired, the fluoroscopy times and the KAPTOTAL were recorded for each procedure.For the evaluation of the MSD, 8 coronary angiography (CA) and 16 percutaneous transluminal coronary angioplasty (PTCA) procedures, carried out in the period from May to June 2008, were analyzed.For the CA procedures the MSD values were below 0.5 Gy.For the PTCA procedures, we found a fairly good correlation between fluoroscopy time and MSD (r = 0.80, p = 0.0002) and between MSD and WFP (r = 0.863, p < 0.0001); there was a strong correlation between KAPTOTAL and MSD (r = 0.904, p < 0.0001). Since the correlation between KAPTOTAL and MSD is more striking than that with fluoroscopic time and the WFP, KAP measurements are suitable for online skin dosimetry and may, therefore, be used to avoid radiation-induced skin injuries. A MSD greater than 3 Gy occurred in only one procedure.For calculus of the local reference levels, we extended the data-gathering to 30 procedure CA and to 40 PTCA: we compared local practice with that in other centers using the guidance levels proposed by Balter et al. Our median KAP values were below these proposed guidance levels; our mean KAP values were above these proposed action levels. From a first application of the proposed reference levels, it appears that, according to the recommendations of Balter et al. an investigation into local practice is not necessary.  相似文献   

3.
There is currently no effective real-time patient dosimeter available for use in interventional radiology (IR). We conducted a feasibility study in a clinical setting to investigate the use of the new dosimeter using photoluminescence sensors during procedures. Reference dosimeters were set at almost the same position of the prototype dosimeter sensors.We found excellent correlations between the reference measurements and those of the prototype dosimeter (r2 = 0.950). The sensor of the new dosimeter does not interfere with the IR procedure. The new dosimeter will be an effective tool for the real-time measurement of patient skin doses during IR.  相似文献   

4.
PurposeValidate the skin dose software within the radiation dose index monitoring system NEXO[DOSE]® (Bracco Injeneering S.A., Lausanne, Switzerland). It provides the skin dose distribution in interventional radiology (IR) procedures.MethodsTo determine the skin dose distribution and the Peak Skin Dose (PSD) in IR procedures, the software uses exposure and geometrical parameters taken from the radiation dose structured report and additional information specific to each angiographic system. To test the accuracy of the software, GafChromic® XR-RV3 films, wrapped under a cylindrical PMMA phantom, were irradiated with different setups. Calculations and films results are compared in terms of absolute dose and geometric accuracy, using two angiographic systems (Philips Integris Allura FD20, Siemens AXIOM-ArtisZeego).ResultsCalculated and film measured PSD values agree with an average difference of 7% ± 5%. The discrepancies in dose evaluation increase up to 33% in lower dose regions, because the algorithm does not consider the out-of-field scatter contribution of the neighboring fields, which is more significant in these areas. Regarding the geometric accuracy, the differences between the simulated dose spatial distributions and the measured ones are<3 mm (4%) in simple tests and 5 mm (5%) in setups closer to clinical practice. Moreover, similar results are obtained for the two studied angiographic system vendors.ConclusionsNEXO[DOSE]® provides an accurate skin dose distribution and PSD estimate. It will allow faster and more accurate monitoring of patient follow-up in the future.  相似文献   

5.
IntroductionThe International Atomic Energy Agency (IAEA) organized the 3rd international conference on radiation protection (RP) of patients in December 2017. This paper presents the conclusions on the interventional procedures (IP) session.Material and methodsThe IAEA conference was conducted as a series of plenary sessions followed by various thematic sessions. “Radiation protection of patients and staff in interventional procedures” session keynote speakers presented information on: 1) Risk management of skin injuries, 2) Occupational radiation risks and 3) RP for paediatric patients. Then, a summary of the session-related papers was presented by a rapporteur, followed by an open question-and-answer discussion.ResultsSixty-seven percent (67%) of papers came from Europe. Forty-four percent (44%) were patient studies, 44% were occupational and 12% were combined studies. Occupational studies were mostly on eye lens dosimetry. The rest were on scattered radiation measurements and dose tracking. The majority of patient studies related to patient exposure with only one study on paediatric patients. Automatic patient dose reporting is considered as a first step for dose optimization. Despite efforts, paediatric IP radiation dose data are still scarce. The keynote speakers outlined recent achievements but also challenges in the field. Forecasting technology, task-specific targeted education from educators familiar with the clinical situation, more accurate estimation of lens doses and improved identification of high-risk professional groups are some of the areas they focused on.ConclusionsManufacturers play an important role in making patients safer. Low dose technologies are still expensive and manufacturers should make these affordable in less resourced countries. Automatic patient dose reporting and real-time skin dose map are important for dose optimization. Clinical audit and better QA processes together with more studies on the impact of lens opacities in clinical practice and on paediatric patients are needed.  相似文献   

6.
PurposePoint detectors are frequently used to measure patient's maximum skin dose (MSD) in fluoroscopically-guided interventional procedures (IP). However, their performance and ability to detect the actual MSD are rarely evaluated. The present study investigates the sampling uncertainty associated with the use of grids of point detectors to measure MSD in IP.MethodChemoembolisation of the liver (CE), percutaneous coronary intervention (PCI) and neuroembolisation (NE) procedures were studied. Spatial dose distributions were measured with XR-RV3 Gafchromic® films for 176 procedures. These distributions were used to simulate measurements performed using grids of detectors such as thermoluminescence detectors, with detector spacing from 1.4 up to 10 cm.ResultsThe sampling uncertainty was the highest in PCI and NE procedures. With 40 detectors covering the film area (36 cm × 44 cm), the maximum dose would be on average 86% and 63% of the MSD measured with Gafchromic® films in CE and PCI procedures, respectively. In NE procedures, with 27 detectors covering the film area (14 cm × 35 cm), the maximum dose measured would be on average 82% of the MSD obtained with the Gafchromic® films.ConclusionThermoluminescence detectors show good energy and dose response in clinical beam qualities. However the poor spatial resolution of such point-like dosimeters may far outweigh their good dosimetric properties. The uncertainty from the sampling procedure should be estimated when point detectors are used in IP because it may lead to strong underestimation of the MSD.  相似文献   

7.
For long, complex procedures in interventional radiology (IR) or in interventional cardiology (IC), the skin dose can be high and induce skin injuries. To improve patient follow-up, it is essential to measure and locate the peak skin dose (PSD). PSD can be measured using dosimeters or computed by skin dose calculation software solutions. Recently, a study was published (e.g. Malchair F et al Phys Med 2020; 80:75–83) listing all the software solutions developed and available and compared them in operation as regards accuracy of the calculated PSD and generated dose map. Similarities and differences exist between these different software packages, which are discussed here. The accuracy of PSD calculated on phantom studies with these software solutions are within ± 25% and poorer in patient studies. Improvements are therefore required for manufacturers of both software and IR systems. The medical physicists also have an important role to play in setting up and monitoring the dose in these software solutions to ensure the accuracy of the calculated PSD.  相似文献   

8.
AimBlood irradiators (BI) initial acceptance testing and routine annual dosimetry checks require radiation dose measurements in order to comply with regulatory requirements.BackgroundTraditionally thermo-luminescence dosimeters (TLD) have been used to measure the dose. The EBT3 film is reported to be a better dosimeter for low energy X-rays than its predecessors EBT2 and EBT. To the best of our knowledge, the use of EBT3 films to perform dosimetry on X-ray based BI has not been reported yet.Materials and methodsWe performed routine radiation dosimetry checks using EBT3 films on a new X-ray based BI and compared the results with TLD dosimetry. Calibration films were irradiated with radiation beam from a Co-60 Gamma Knife (GK) radiosurgery machine and, alternatively, using an Ir-192 high dose rate (HDR) brachytherapy device. The films were calibrated to cover a wide dose range from 1 to 40 Gy. Such a wide dose range has not been reported yet in BI film dosimetry.ResultsWe obtained a relative difference of about 6.6% between doses measured using TLD and those measured using EBT3 films. Both irradiation methods using GK or HDR were found to be adequate for the calibration of the EBT3 Gafchromic films.ConclusionsWe recommend the use of EBT3 films in routine X-ray based BI dosimetry checks. The presented method takes advantage of available radiotherapy equipment that can be efficiently used for EBT3 films calibration. The method is fast, reproducible and saves valuable medical physicist's time.  相似文献   

9.
Interventional radiology and hemodynamic procedures have rapidly grown in number in the past decade, increasing the importance of personnel dosimetry not only for patients but also for medical staff. The optimization of the absorbed dose during operations is one of the goals that fostered the development of real-time dosimetric systems. Indeed, introducing proper procedure optimization, like correlating dose rate measurements with medical staff position inside the operating room, the absorbed dose could be reduced. Real-time dose measurements would greatly facilitate this task through real-time monitoring and automatic data recording. Besides real-time dose monitoring could allow automatic data recording. In this work, we will describe the calibration and validation of a wireless real-time prototype dosimeter based on a new sensor device (CMOS imager). The validation measurement campaign in clinical conditions has demonstrated the prototype capability of measuring dose-rates with a frequency in the range of few Hz, and an uncertainty smaller than 10%.  相似文献   

10.
We develop a new method with a global optimization for registering films to calculate doses for intensity-modulated radiation therapy (IMRT) and intensity-modulated radiosurgery (IMRS) quality assurance (QA). Both absolute point dosimetry and two-dimensional (2D) film dosimetry are performed through the IMRT and IMRS using Clinac 21EX's 120 millenium MLC and BrainLab's micro-MLC, respectively. The measured and calculated dose distributions are superimposed by coincidence of their origins, followed by comparison of the point doses at all matched positions. Then, with the optimization algorithm the setup error of the dosimeter is corrected. An example of IMRT cases shows that the average percentage showing 3% of dose difference for 10 patients has been reduced from 19% to 9%, before and after optimization and weight, respectively. Similar results are obtained for IMRS. This method dramatically reduces the difference between measured and calculated dose distributions in all cases investigated.  相似文献   

11.
PurposeIntraoperative radiation therapy (IORT) using electron beam is commonly done by mobile dedicated linacs that have a variable range of electron energies. This paper focuses on the evaluation of the EBT2 film response in the green and red colour channels for IORT quality assurance (QA).MethodsThe calibration of the EBT2 films was done in two ranges; 0–8 Gy for machine QA by red channel and 8–24 Gy for patient-specific QA by green channel analysis. Irradiation of calibration films and relative dosimetries were performed in a water phantom. To evaluate the accuracy of the film response in relative dosimetry, gamma analysis was used to compare the results of the Monte Carlo simulation and ionometric dosimetry. Ten patients with early stage breast cancer were selected for in-vivo dosimetry using the green channel of the EBT2 film.ResultsThe calibration curves were obtained by linear fitting of the green channel and a third-order polynomial function in the red channel (R2 = 0.99). The total dose uncertainty was up to 4.2% and 4.7% for the red and green channels, respectively. There was a good agreement between the relative dosimetries of films by the red channel, Monte Carlo simulations and ionometric values. The mean dose difference of the in-vivo dosimetry by green channel of this film and the expected values was about 1.98% ± 0.75.ConclusionThe results of this study showed that EBT2 film can be considered as an appropriate tool for machine and patient-specific QA in IORT.  相似文献   

12.
The management of radiation injuries following a catastrophic event where large numbers of people may have been exposed to life-threatening doses of ionizing radiation will rely critically on the availability and use of suitable biodosimetry methods. In vivo electron paramagnetic resonance (EPR) tooth dosimetry has a number of valuable and unique characteristics and capabilities that may help enable effective triage. We have produced a prototype of a deployable EPR tooth dosimeter and tested it in several in vitro and in vivo studies to characterize the performance and utility at the state of the art. This report focuses on recent advances in the technology, which strengthen the evidence that in vivo EPR tooth dosimetry can provide practical, accurate, and rapid measurements in the context of its intended use to help triage victims in the event of an improvised nuclear device. These advances provide evidence that the signal is stable, accurate to within 0.5 Gy, and can be successfully carried out in vivo. The stability over time of the radiation-induced EPR signal from whole teeth was measured to confirm its long-term stability and better characterize signal behavior in the hours following irradiation. Dosimetry measurements were taken for five pairs of natural human upper central incisors mounted within a simple anatomic mouth model that demonstrates the ability to achieve 0.5 Gy standard error of inverse dose prediction. An assessment of the use of intact upper incisors for dose estimation and screening was performed with volunteer subjects who have not been exposed to significant levels of ionizing radiation and patients who have undergone total body irradiation as part of bone marrow transplant procedures. Based on these and previous evaluations of the performance and use of the in vivo tooth dosimetry system, it is concluded that this system could be a very valuable resource to aid in the management of a massive radiological event.  相似文献   

13.
The aim of this study is to propose national diagnostic reference levels (DRL) for updating in the field of interventional cardiology and to include technical details to help plan optimization.Medical physics experts and interventional cardiologists from 14 hospitals provided patient dose indicators from coronary angiography and percutaneous coronary interventions. Information about X-ray system dose settings and image quality was also provided.The dose values from 30,024 procedures and 26 interventional laboratories were recorded. The national DRLs proposed for coronary angiography and percutaneous coronary interventions were respectively 39 and 78 Gy·cm2 for air kerma area product (PKA), 530 and 1300 mGy for air kerma at reference point (Ka,r), 6.7 and 15 min of fluoroscopy time and 760 and 1300 cine images. 36% of the KAP meters required correction factors from 10 to 35%. The dose management systems should allow these corrections to be included automatically. The dose per image in cine in reference conditions differed in a factor of 5.5.Including X-ray system dose settings in the methodology provides an insight into the differences between hospitals. The DRLs proposed for Spain in this work were similar to those proposed in the last European survey. The poor correlation between X-ray systems dose settings and patient dose indicators highlights that other factors such as operation protocols and complexity may have more impact in patient dose indicators, which allows a wide margin for optimization. Dose reduction technology together with appropriate training programs will be determinant in the future reduction of patient dose indicators.  相似文献   

14.
PurposeIndividual dosimetry is undoubtedly one of the best methods of assessing the exposure of personnel to ionizing radiation, however in case of nuclear medicine, the method applied to measure the dose does not always present a picture of the worker’s actual exposure. The highly non-homogeneous dose distribution on the hand means that the ring dosimeter, routinely used to measure the Hp(0.07), provides only approximate dose values received by fingertips, the body part most exposed to ionizing radiation. This paper is an attempt to answer the question whether the wrist dosimeter used as a replacement for the ring dosimeter is able to provide information on doses for the most exposed fragments of the hand of an employee during handling procedures with the use of radiopharmaceuticals.MaterialsThroughout measurements performed in five nuclear medicine facilities, high-sensitivity thermoluminescent detectors were used.ResultsCorrection coefficients have been determined, which constitute an amendment to be made to move from the dose recorded by the wrist dosimeter to the doses received by the most exposed hand fragments. The fingertips received on average 25 times higher doses, compared to the values recorded by the wrist dosimeter.ConclusionsA wrist dosimeter can be used to measure the Hp(0.07) in nuclear medicine, including as a gauge of the most exposed parts of the hand – the fingertips. However, the applicability of correction coefficients makes it necessary to ensure a stable position of the wrist dosimeter during routine procedures.  相似文献   

15.
PurposeThe purpose of this study was to compare the delivered dose to the expected intraoperative radiation therapy (IORT) dose with in vivo dosimetry. For IORT using electrons in accelerated partial breast irradiation, this is especially relevant since a high dose is delivered in a single fraction.MethodsFor 47 of breast cancer patients, in vivo dosimetry was performed with MOSFETs and/or GAFCHROMIC EBT2 films. A total dose of 23.33 Gy at dmax was given directly after completing the lumpectomy procedure with electron beams generated with an IORT dedicated mobile accelerator. A protection disk was used to shield the thoracic wall.ResultsThe results of in vivo MOSFET dosimetry for 27 patients and GAFROMIC film dosimetry for 20 patients were analysed. The entry dose for the breast tissue, measured with MOSFETs, (mean value 22.3 Gy, SD 3.4%) agreed within 1.7% with the expected dose (mean value 21.9 Gy). The dose in breast tissue, measured with GAFCHROMIC films (mean value 23.50 Gy) was on average within 0.7% (SD = 3.7%, range −5.5% to 5.6%) of the prescribed dose of 23.33 Gy.ConclusionsThe dose measured with MOSFETs and GAFROMIC EBT2 films agreed well with the expected dose. For both methods, the dose to the thoracic wall, lungs and heart for left sided patents was lower than 2.5 Gy even when 12 MeV was applied. The positioning time of GAFCHROMIC films is negligible and based on our results we recommend its use as a standard tool for patient quality assurance during breast cancer IORT.  相似文献   

16.
ObjectivesThe purpose of this study was to dosimetrically benchmark gel dosimetry measurements in a dynamically deformable abdominal phantom for intrafraction image guidance through a multi-dosimeter comparison. Once benchmarked, the study aimed to perform a proof-of-principle study for validation measurements of an ultrasound image-guided radiotherapy delivery system.MethodsThe phantom was dosimetrically benchmarked by delivering a liver VMAT plan and measuring the 3D dose distribution with DEFGEL dosimeters. Measured doses were compared to the treatment planning system and measurements acquired with radiochromic film and an ion chamber. The ultrasound image guidance validation was performed for a hands-free ultrasound transducer for the tracking of liver motion during treatment.ResultsGel dosimeters were compared to the TPS and film measurements, showing good qualitative dose distribution matches, low γ values through most of the high dose region, and average 3%/5 mm γ-analysis pass rates of 99.2%(0.8%) and 90.1%(0.8%), respectively. Gel dosimeter measurements matched ion chamber measurements within 3%. The image guidance validation study showed the measurement of the treatment delivery improvements due to the inclusion of the ultrasound image guidance system. Good qualitative matching of dose distributions and improvements of the γ-analysis results were observed for the ultrasound-gated dosimeter compared to the ungated dosimeter.ConclusionsDEFGEL dosimeters in phantom showed good agreement with the planned dose and other dosimeters for dosimetric benchmarking. Ultrasound image guidance validation measurements showed good proof-of-principle of the utility of the phantom system as a method of validating ultrasound-based image guidance systems and potentially other image guidance methods.  相似文献   

17.
PurposeIn interventional cardiology, patients may be exposed to high doses to the skin resulting in skin burns following single or multiple procedures. Reviewing and analysing available software (online or offline) may help medical physicists assessing the maximum skin dose to the patient together with the dose distribution during (or after) these procedures.Method and resultsCapabilities and accuracy of available software were analysed through an extensive bibliography search and contacts with both vendor and authors. Their markedly differed among developers.In total, 22 software were identified and reviewed according to their algorithms and their capabilities. Special attention was dedicated to their main features and limitations of interest for the intended clinical use.While the accuracy of the 12 software products validated with measurements on phantoms was acceptable (within ± 25%), the agreement was poor for the two products validated on patients (within ± 43% and ± 76%, respectively). In addition, no software has been validated on angiographic units from all manufacturers, though several software developers claimed vendor-independent transportability. Only one software allows for multiple procedures dose calculation.ConclusionLarge differences among vendors made it clear that work remains to be done before an accurate and reliable skin dose mapping is available for all patients.  相似文献   

18.
Alanine EPR dosimetry has been applied successfully when measuring intermediate and high radiation doses. Although the performance of alanine dosimetry is being improved, the sensitivity of the material is too low for a fast and simple low- dose determination. Here we present the results using ammonium formate as an EPR dosimeter material. Ammonium formate is seven times more sensitive than alanine, using spectrometer settings optimized for the latter. Deuterated ammonium formate is found to be more than eight times more sensitive than alanine. Analysis of signal stability with time shows that the ammonium formate signal is stable by 5 min after irradiation and that no change in signal intensity is found during 8 days. The atomic composition of ammonium formate is closer to that of tissue than alanine, and thus the energy dependence is smaller than that of alanine at photon energies below 200 keV. Power saturation studies indicate that the energy transfer between the spins and the lattice is fast in ammonium formate, which gives the possibility of using high microwave power without saturation to further increase the sensitivity. These results suggest that ammonium formate has some important properties required of an EPR dosimeter for applications in dosimetry in the dose range typical for radiation therapy.  相似文献   

19.
PurposeInterventional radiology techniques cause radiation exposure both to patient and personnel. The radiation dose to the operator is usually measured with dosimeters located at specific points above or below the lead aprons. The aim of this study is to develop and validate two fast Monte Carlo (MC) codes for radiation transport in order to improve the assessment of individual doses in interventional radiology. The proposed methodology reduces the number of required dosemeters and provides immediate dose results.MethodsTwo fast MC simulation codes, PENELOPE/penEasyIR and MCGPU-IR, have been developed. Both codes have been validated by comparing fast MC calculations with the multipurpose PENELOPE MC code and with measurements during a realistic interventional procedure.ResultsThe new codes were tested with a computation time of about 120 s to estimate operator doses while a standard simulation needs several days to obtain similar uncertainties. When compared with the standard calculation in simple set-ups, MCGPU-IR tends to underestimate doses (up to 5%), while PENELOPE/penEasyIR overestimates them (up to 18%). When comparing both fast MC codes with experimental values in realistic set-ups, differences are within 25%. These differences are within accepted uncertainties in individual monitoring.ConclusionThe study highlights the fact that computational dosimetry based on the use of fast MC codes can provide good estimates of the personal dose equivalent and overcome some of the limitations of occupational monitoring in interventional radiology. Notably, MCGPU-IR calculates both organ doses and effective dose, providing a better estimate of radiation risk.  相似文献   

20.
PurposeTo perform a complete evaluation on radiation doses, received by primary and assistant medical staff, while performing different vascular interventional radiology procedures.Materials and methodsWe evaluated dose received in different body regions during three categories of vascular procedures: lower limb angiography (Angiography), lower limb percutaneous transluminal angioplasty (Angioplasty) and stent graft placement for abdominal aortic aneurysm treatment (A. A. A. Treatment). We positioned the dosimeters near the eye lens, thyroid, chest, abdomen, hands, and feet of the interventional physicians. Equivalent dose was compared with annual dose limits for workers in order to determine the maximum number of procedures per year that each physician could perform. We assessed 90 procedures.ResultsWe found the highest equivalent doses in the A. A. A. Treatment, in which 90% of the evaluations indicated at least one region receiving more than 1 mSv per procedure. Angioplasty was the only procedural modality that provided statistically different doses for different professionals, which is an important aspect on regards to radiological protection strategies. In comparison with the dose limits, the most critical region in all procedures was the eye lens.ConclusionsSince each body region of the interventionist is exposed to different radiation levels, dose distribution measurements are essential for radiological protection strategies. These results indicate that dosimeters placed in abdomen instead of chest may represent more accurately the whole body doses received by the medical staff. Additional dosimeters and a stationary shield for the eye lens are strongly recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号