首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For centuries, fermented soy foods have been dietary staples in Asia and, now, in response to consumer demand, they are available throughout the world. Fermentation bestows unique flavors, boosts nutritional values and increases or adds new functional properties. In this review, we describe the functional properties and underlying action mechanisms of soy-based fermented foods such as Natto, fermented soy milk, Tempeh and soy sauce. When possible, the contribution of specific bioactive components is highlighted. While numerous studies with in vitro and animal models have hinted at the functionality of fermented soy foods, ascribing health benefits requires well-designed, often complex human studies with analysis of diet, lifestyle, family and medical history combined with long-term follow-ups for each subject. In addition, the contribution of the microbiome to the bioactivities of fermented soy foods, possibly mediated through direct action or bioactive metabolites, needs to be studied. Potential synergy or other interactions among the microorganisms carrying out the fermentation and the host's microbial community may also contribute to food functionality, but the details still require elucidation. Finally, safety evaluation of fermented soy foods has been limited, but is essential in order to provide guidelines for consumption and confirm lack of toxicity.  相似文献   

2.
The purposeful application of fermentation in food and beverage preparation, as a means to provide palatability, nutritional value, preservative, and medicinal properties, is an ancient practice. Fermented foods and beverages continue to make a significant contribution to the overall patterns of traditional dietary practices. As our knowledge of the human microbiome increases, including its connection to mental health (for example, anxiety and depression), it is becoming increasingly clear that there are untold connections between our resident microbes and many aspects of physiology. Of relevance to this research are new findings concerning the ways in which fermentation alters dietary items pre-consumption, and in turn, the ways in which fermentation-enriched chemicals (for example, lactoferrin, bioactive peptides) and newly formed phytochemicals (for example, unique flavonoids) may act upon our own intestinal microbiota profile. Here, we argue that the consumption of fermented foods may be particularly relevant to the emerging research linking traditional dietary practices and positive mental health. The extent to which traditional dietary items may mitigate inflammation and oxidative stress may be controlled, at least to some degree, by microbiota. It is our contention that properly controlled fermentation may often amplify the specific nutrient and phytochemical content of foods, the ultimate value of which may associated with mental health; furthermore, we also argue that the microbes (for example, Lactobacillus and Bifidobacteria species) associated with fermented foods may also influence brain health via direct and indirect pathways.  相似文献   

3.
4.
Gut microbiome has received significant attention for its influences on a variety of host functions, especially immune modulation. With the next-generation sequencing methodologies, more knowledge is gathered about gut microbiome and its irreplaceable role in keeping the balance between human health and diseases is figured out. Immune checkpoint inhibitors (ICIs) are one of the most innovational cancer immunotherapies across cancer types and significantly expand the therapeutic options of cancer patients. However, a proportion of patients show no effective responses or develop immune-related adverse events when responses do occur. More important, it is demonstrated that the therapeutic response or treatment-limiting toxicity of cancer immunotherapy can be ameliorated or diminished by gut microbiome modulation. In this review, we first introduce the relationship between gut microbiome and cancer immunotherapy. And then, we expound the impact of gut microbiome on efficacy and toxicity of cancer immunotherapy. Further, we review approaches to manipulating gut microbiome to regulate response to ICIs. Finally, we discuss the current challenges and propose future directions to improve cancer immunotherapy via gut microbiome manipulation.  相似文献   

5.
The gastrointestinal tract of pigs is densely populated with microorganisms that closely interact with the host and with ingested feed. Gut microbiota benefits the host by providing nutrients from dietary substrates and modulating the development and function of the digestive and immune systems. An optimized gastrointestinal microbiome is crucial for pigs’ health, and establishment of the microbiome in piglets is especially important for growth and disease resistance. However, the microbiome in the gastrointestinal tract of piglets is immature and easily influenced by the environment. Supplementing the microbiome of piglets with probiotic bacteria such as Lactobacillus could help create an optimized microbiome by improving the abundance and number of lactobacilli and other indigenous probiotic bacteria. Dominant indigenous probiotic bacteria could improve piglets’ growth and immunity through certain cascade signal transduction pathways. The piglet body provides a permissive habitat and nutrients for bacterial colonization and growth. In return, probiotic bacteria produce prebiotics such as short-chain fatty acids and bacteriocins that benefit piglets by enhancing their growth and reducing their risk of enteric infection by pathogens. A comprehensive understanding of the interactions between piglets and members of their gut microbiota will help develop new dietary interventions that can enhance piglets’ growth, protect piglets from enteric diseases caused by pathogenic bacteria, and maximize host feed utilization.  相似文献   

6.
A complex and heterogeneous microflora performs sugar and lactic acid fermentations in food products. Depending on the fermentable food matrix (dairy, meat, vegetable etc.) as well as on the species composition of the microbiota, specific combinations of molecules are produced that confer unique flavor, texture, and taste to each product. Bacterial populations within such "fermented food microbiota" are often of environmental origin, they persist alive in foods ready for consumption, eventually reaching the gastro-intestinal tract where they can interact with the resident gut microbiota of the host. Although this interaction is mostly of transient nature, it can greatly contribute to human health, as several species within the food microbiota also display probiotic properties. Such an interplay between food and gut microbiota underlines the importance of the microbiological quality of fermented foods, as the crowded environment of the gut is also an ideal site for genetic exchanges among bacteria. Selection and spreading of antibiotic resistance genes in foodborne bacteria has gained increasing interest in the past decade, especially in light of the potential transferability of antibiotic resistance determinants to opportunistic pathogens, natural inhabitants of the human gut but capable of acquiring virulence in immunocompromised individuals. This review aims at describing major findings and future prospects in the field, especially after the use of antibiotics as growth promoters was totally banned in Europe, with special emphasis on the application of genomic technologies to improve quality and safety of fermented foods.  相似文献   

7.
Gut microbiota is regarded as a crucial regulator of the immune system. Healthy gut microbiota plays a specialized role in host xenobiotics, nutrition, drug metabolism, regulation of the structural integrity of the gut mucosal barrier, defense against infections, and immunomodulation. It is now understood that any imbalance in gut microbiota composition from that present in a healthy state is linked to genetic susceptibility to a number of metabolic disorders, including diabetes, autoimmunity, and cancer. Recent research has suggested that immunotherapy can treat many different cancer types with fewer side effects and better ability to eradicate tumors than conventional chemotherapy or radiotherapy. However, a significant number of patients eventually develop immunotherapy resistance. A strong correlation was observed between the composition of the gut microbiome and the effectiveness of treatment by examining the variations between populations that responded to immunotherapy and those that did not. Therefore, we suggest that modulating the microbiome could be a potential adjuvant therapy for cancer immunotherapy and that the architecture of the gut microbiota may be helpful in explaining the variation in treatment response. Herein, we focus on recent research on the interactions among the gut microbiome, host immunity, and cancer immunotherapy. In addition, we highlighted the clinical manifestations, future opportunities, and limitations of microbiome manipulation in cancer immunotherapy.  相似文献   

8.
The gut microbiome functions like an endocrine organ, generating bioactive metabolites, enzymes or small molecules that can impact host physiology. Gut dysbacteriosis is associated with many intestinal diseases including (but not limited to) inflammatory bowel disease, primary sclerosing cholangitis-IBD, irritable bowel syndrome, chronic constipation, osmotic diarrhoea and colorectal cancer. The potential pathogenic mechanism of gut dysbacteriosis associated with intestinal diseases includes the alteration of composition of gut microbiota as well as the gut microbiota–derived signalling molecules. The many correlations between the latter and the susceptibility for intestinal diseases has placed a spotlight on the gut microbiome as a potential novel target for therapeutics. Currently, faecal microbial transplantation, dietary interventions, use of probiotics, prebiotics and drugs are the major therapeutic tools utilized to impact dysbacteriosis and associated intestinal diseases. In this review, we systematically summarized the role of intestinal microbiome in the occurrence and development of intestinal diseases. The potential mechanism of the complex interplay between gut dysbacteriosis and intestinal diseases, and the treatment methods are also highlighted.  相似文献   

9.
The gut microbiome has emerged as a critical regulator of human physiology. Deleterious changes to the composition or number of gut bacteria, commonly referred to as gut dysbiosis, has been linked to the development and progression of numerous diet-related diseases, including cardiovascular disease (CVD). Most CVD risk factors, including aging, obesity, certain dietary patterns, and a sedentary lifestyle, have been shown to induce gut dysbiosis. Dysbiosis is associated with intestinal inflammation and reduced integrity of the gut barrier, which in turn increases circulating levels of bacterial structural components and microbial metabolites that may facilitate the development of CVD. The aim of the current review is to summarize the available data regarding the role of the gut microbiome in regulating CVD function and disease processes. Particular emphasis is placed on nutrition-related alterations in the microbiome, as well as the underlying cellular mechanisms by which the microbiome may alter CVD risk.  相似文献   

10.
As an alternative to pharmacological treatment to diseases, lifestyle interventions, such as dietary changes and physical activities, can help maintain healthy metabolic conditions. Recently, the emerging analyses of volatile organic compounds (VOCs) from breath and short-chain fatty acids (SCFAs) from plasma/feces have been considered as useful tools for the diagnosis and mechanistic understanding of metabolic diseases. Furthermore, diet-induced changes of SCFAs in individuals with diagnosed metabolic abnormalities have been correlated with the composition changes of the gut microbiome. More interestingly, the analysis of exhaled breath (breathomics) has gained attention as a useful technique to measure the human VOC profile altered as a result of dietary interventions. In this mini-review, we examined recent clinical trials that performed promising dietary interventions, SCFAs analysis in plasma/feces, and VOC profile analysis in exhaling breath to understand the relationship between dietary intervention and metabolic health.  相似文献   

11.
Colorectal cancer (CRC) is the malignant tumor with the highest incidence in the digestive system, and the gut microbiome plays a crucial role in CRC tumorigenesis and therapy. The gastrointestinal tract is the organ harboring most of the microbiota in humans. Changes in the gut microbiome in CRC patients suggest possible host–microbe interactions, thereby hinting the potential tumorigenesis, which provides new perspective for preventing, diagnosing, or treating CRC. In this review, we discuss the effects of gut microbiome dysbiosis on CRC, and reveal the mechanisms by which gut microbiome dysbiosis leads to CRC. Gut microbiome modulation with the aim to reverse the established gut microbial dysbiosis is a novel strategy for the prevention and treatment of CRC. In addition, this review summarizes that probiotic antagonize CRC tumorigenesis by protecting intestinal barrier function, inhibiting cancer cell proliferation, resisting oxidative stress, and enhancing host immunity. Finally, we highlight clinical applications of the gut microbiome, such as gut microbiome analysis-based biomarker screening and prediction, and microbe modulation-based CRC prevention, treatment enhancement, and treatment side effect reduction. This review provides the reference for the clinical application of gut microbiome in the prevention and treatment of CRC.  相似文献   

12.
In recent decades, human–wildlife interaction and associated anthropogenic food provisioning has been increasing and becoming more severe due to fast population growth and urban development. Noting the role of the gut microbiome in host physiology like nutrition and health, it is thus essential to understand how human–wildlife interactions and availability of anthropogenic food in habitats can affect an animal's gut microbiome. This study, therefore, set out to examine the gut microbiota of Japanese macaques (Macaca fuscata) with varying accessibility to anthropogenic food and the possibility of using gut microbiota as indicator for macaques’ reliance on anthropogenic food. Using 16S ribosomal RNA gene sequencing, we described the microbial composition of Japanese macaques experiencing different types of human disturbance and anthropogenic food availability—captive, provisioned, crop‐raiding, and wild. In terms of alpha diversity, our results showed that observed richness of gut microbiota did not differ significantly between disturbance types but among collection sites, whereas Shannon diversity index differed by both disturbance types and sites. In terms of beta diversity, captive populations harbored the most distinctive gut microbial composition, and had the greatest difference compared with wild populations. Whereas for provisioned and crop‐raiding groups, the macaques exhibited intermediate microbiota between wild and captive. We identified several potential bacterial taxa at different taxonomic ranks whose abundance potentially could help in assessing macaques’ accessibility to anthropogenic food. This study revealed the flexibility of the gut microbiome of Japanese macaques and provided possible indices based on the gut microbiome profile in assessing macaques’ accessibility to/reliance on anthropogenic foods.  相似文献   

13.
Fermentation of food components by microbes occurs both during certain food production processes and in the gastro-intestinal tract. In these processes specific compounds are produced that originate from either biotransformation reactions or biosynthesis, and that can affect the health of the consumer. In this review, we summarize recent advances highlighting the potential to improve the nutritional status of a fermented food by rational choice of food-fermenting microbes. The vast numbers of microbes residing in the human gut, the gut microbiota, also give rise to a broad array of health-active molecules. Diet and functional foods are important modulators of the gut microbiota activity that can be applied to improve host health. A truly multidisciplinary approach is required to increase our understanding of the molecular mechanisms underlying health beneficial effects that arise from the interaction of diet, microbes and the human body.  相似文献   

14.
Body mass is a strong predictor of diet and nutritional requirements across a wide range of mammalian taxa. In the case of small‐bodied primates, because of their limited gut volume, rapid food passage rate, and high metabolic rate, they are hypothesized to maintain high digestive efficiency by exploiting foods rich in protein, fats, and readily available energy. However, our understanding of the dietary requirements of wild primates is limited because little is known concerning the contributions of their gut microbiome to the breakdown and assimilation of macronutrients and energy. To study how the gut microbiome contributes to the feeding ecology of a small‐bodied primate, we analyzed the fecal microbiome composition and metabolome of 22 wild saddleback tamarins (adult body mass 360–390 g) in Northern Bolivia. Samples were analyzed using high‐throughput Illumina sequencing of the 16 S rRNA gene V3‐V5 regions, coupled with GC‐MS metabolomic profiling. Our analysis revealed that the distal microbiome of Leontocebus weddelli is largely dominated by two main bacterial genera: Xylanibacter and Hallella (34.7 ± 14.7 and 22.6 ± 12.4%, respectively). A predictive analysis of functions likely carried out by bacteria in the tamarin gut demonstrated the dominance of membrane transport systems and carbohydrate metabolism as the predominant metabolic pathways. Moreover, given a fecal metabolome composed mainly of glucose, fructose, and lactic acid (21.7 ± 15.9%, 16.5 ± 10.7%, and 6.8 ± 5.5%, respectively), the processing of highly fermentable carbohydrates appears to play a central role in the nutritional ecology of these small‐bodied primates. Finally, the results also show a potential influence of environmentally‐derived bacteria in colonizing the tamarin gut. These results indicate high energetic turnover in the distal gut of Weddell's saddleback tamarin, likely influenced by dominant bacterial taxa that facilitate dietary dependence on highly digestible carbohydrates present in nectar, plant exudates, and ripe fruits.  相似文献   

15.
Colobine monkeys have complex, multichambered, foregut-fermenting stomachs with either three (“tripartite”) or four (“quadripartite,” adding the praesaccus) chambers where a commensal microbiome digests plant cell walls and possibly detoxifies defensive plant chemicals. Although different potential functions for the praesaccus have been suggested, little evidence exists to support any of the proposed functions. To address the issue of the function of the praesaccus, we collated literature data on diet and compared tripartite and quadripartite species. Our results suggest that the praesaccus is an adaptation to a dietary niche with a particularly high reliance on leaves as fallback foods in colobine clades with quadripartite stomachs, and a higher reliance on fruits/seeds as foods at times of high fruit availability in clades with tripartite stomachs. This supports the notion that a large gut capacity is an important characteristic by which folivores survive on a high fiber diet, and that this large gut capacity may not be necessary for some species if there are seasonal peaks in fruit availability.  相似文献   

16.
The effects of plastic debris on the environment and plant, animal, and human health are a global challenge, with micro(nano)plastics (MNPs) being the main focus. MNPs are found so often in the food chain that they are provoking an increase in human intake. They have been detected in most categories of consumed foods, drinking water, and even human feces. Therefore, oral ingestion becomes the main source of exposure to MNPs, and the gastrointestinal tract, primarily the gut, constantly interacts with these small particles. The consequences of human exposure to MNPs remain unclear. However, current in vivo studies and in vitro gastrointestinal tract models have shown that MNPs of several types and sizes impact gut intestinal bacteria, affecting gut homeostasis. The typical microbiome signature of MNP ingestion is often associated with dysbiosis and loss of resilience, leads to frequent pathogen outbreaks, and local and systemic metabolic disorders. Moreover, the small micro- and nano-plastic particles found in animal tissues with accumulated evidence of microbial degradation of plastics/MNPs by bacteria and insect gut microbiota raise the issue of whether human gut bacteria make key contributions to the bio-transformation of ingested MNPs. Here, we discuss these issues and unveil the complex interplay between MNPs and the human gut microbiome. Therefore, the elucidation of the biological consequences of this interaction on both host and microbiota is undoubtedly challenging. It is expected that microbial biotechnology and microbiome research could help decipher the extent to which gut microorganisms diversify and MNP-determinant species, mechanisms, and enzymatic systems, as well as become important to understand our response to MNP exposure and provide background information to inspire future holistic studies.  相似文献   

17.
《遗传学报》2021,48(11):972-983
Understanding the micro-coevolution of the human gut microbiome with host genetics is challenging but essential in both evolutionary and medical studies. To gain insight into the interactions between host genetic variation and the gut microbiome, we analyzed both the human genome and gut microbiome collected from a cohort of 190 students in the same boarding college and representing 3 ethnic groups, Uyghur, Kazakh, and Han Chinese. We found that differences in gut microbiome were greater between genetically distinct ethnic groups than those genetically closely related ones in taxonomic composition, functional composition, enterotype stratification, and microbiome genetic differentiation. We also observed considerable correlations between host genetic variants and the abundance of a subset of gut microbial species. Notably, interactions between gut microbiome species and host genetic variants might have coordinated effects on specific human phenotypes. Bacteroides ovatus, previously reported to modulate intestinal immunity, is significantly correlated with the host genetic variant rs12899811 (meta-P = 5.55 × 10−5), which regulates the VPS33B expression in the colon, acting as a tumor suppressor of colorectal cancer. These results advance our understanding of the micro-coevolution of the human gut microbiome and their interactive effects with host genetic variation on phenotypic diversity.  相似文献   

18.
Wheat bran (WB) is an important side product of the milling industry and can serve as dietary fiber compound for monogastric animals. The aim of this study was to evaluate the influence of native or fermented WB on the gut physiology and microbiology of laying hens. To accomplish this, 24 laying hens were fed the following diets: conventional diet without WB; 15% native WB in the diet; 15% WB fermented with Pleurotus eryngii; and 15% WB fermented with P. eryngii and a lactic acid bacterial culture. Immediately after slaughtering, digesta samples were taken from the jejunum, ileum and cecum, respectively. Total DNA was extracted and subsequently investigated with 16S DNA amplicon sequencing. Neither native nor fermented WB supplementations negatively affected the feed conversion ratio, laying performance or the relative abundances and alpha-diversity of microbiota in the intestine. Effects of WB-based diets on gut morphology were only recognized in the jejunum (reduced villum height and mucosa thickness). Likewise, WB supplementation decreased the digestibility of DM and starch. Based on these findings, it was demonstrated that different WB variants are applicable without exerting practically negative consequences on performance or on gut microbiota. Fermentation improved the digestibility/retention of dietary fat and phosphorus. However, no further beneficial effects were observed. This study also allowed a more in-depth view on the laying hens’ gut microbiome and its variation within the gut segments.  相似文献   

19.
Individual human health is determined by a complex interplay between genes, environment, diet, lifestyle, and symbiotic gut microbial activity. Here, we demonstrate a new "nutrimetabonomic" approach in which spectroscopically generated metabolic phenotypes are correlated with behavioral/psychological dietary preference, namely, "chocolate desiring" or "chocolate indifferent". Urinary and plasma metabolic phenotypes are characterized by differential metabolic biomarkers, measured using 1H NMR spectroscopy, including the postprandial lipoprotein profile and gut microbial co-metabolism. These data suggest that specific dietary preferences can influence basal metabolic state and gut microbiome activity that in turn may have long-term health consequences to the host. Nutrimetabonomics appears as a promising approach for the classification of dietary responses in populations and personalized nutritional management.  相似文献   

20.
It is well known that an unhealthy lifestyle is a major risk factor for metabolic diseases,while in recent years,accumulating evidence has demonstrated that the gut microbiome and its metabolites also play a crucial role in the onset and development of many metabolic dis-eases,including obesity,type 2 diabetes,nonalcoholic fatty liver disease,cardiovascular disease and so on.Numerous microorganisms dwell in the gastrointestinal tract,which is a key interface for energy acquisition and can metabolize dietary nutrients into many bioactive substances,thus acting as a link between the gut microbiome and its host.The gut microbiome is shaped by host genetics,immune responses and dietary fac-tors.The metabolic and immune potential of the gut microbiome determines its significance in host health and diseases.Therefore,targeting the gut microbiome and relevant metabolic pathways would be effective therapeutic treatments for many metabolic diseases in the near future.This review will summarize information about the role of the gut microbiome in organism metabolism and the relationship between gut micro-biome-derived metabolites and the pathogenesis of many metabolic diseases.Furthermore,recent advan-ces in improving metabolic diseases by regulating the gut microbiome will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号