首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We explored differences in leaf nutrient contents between species from Mediterranean shrublands with the ability to resprout after disturbances such as fire (resprouters) and others without this capacity (non-resprouters). Since it is to be expected that resprouting capacity is related to a more conservative use of nutrients, we hypothesize that resprouter and non-resprouter species will differ in their leaf nutrient concentrations.We measured the following leaf traits: leaf carbon content (LCC), leaf nitrogen content, leaf phosphorous content (LPC), leaf potassium content, leaf calcium content (LCaC), leaf magnesium content and leaf sodium content, in 30 woody species coexisting in a coastal shrubland. We also considered the influence of species’ taxonomic affiliation in our analysis.Non-resprouters had higher LPC and LCaC than resprouter species, and lower LCC, which could be related to their cell and life-history properties. This study also suggests that non-resprouter species have more P in their leaves and are less limited by P than resprouter species.Overall, the differences in leaf nutrient contents suggest that shifts in the proportion of resprouter and non-resprouter species resulting from changes in the fire regime may have effects on the functional properties of the ecosystem.  相似文献   

2.
The capacity of Mediterranean species to adapt to variable nutrient supply levels in a global change context can be a key factor to predict their future capacity to compete and survive in this new scenario. We aimed to investigate the capacity of a typical Mediterranean tree species, Pinus halepensis, to respond to sudden changes in N and P supply in different environmental conditions. We conducted a fertilisation, irrigation and removal of competing vegetation experiment in a calcareous post-fire shrubland with an homogeneous young (5 years old) population of P. halepensis in order to investigate the retranslocation and nutrient status for the principal nutrients (N, P, Mg, K, S, Ca and Fe), and the nutrient use efficiency (NUE) of the most important nutrients linked to photosynthetic capacity (N, P, Mg and K). P fertilisation increased P concentration in needles, P, N, Mg and K retranslocations, and NUE calculated as biomass production per unit of nutrient lost in the litterfall. The P fertilisation was able to increase the aboveground biomasses and P concentration 3 years after P fertiliser application. Those responses to P fertilisation were enhanced by the removal of competing vegetation. The N needle and litterfall concentration decreased after P fertilisation and this effect was greater when the P fertilisation was accompanied by removal of competing vegetation. The increase of P availability decreased the P-NUE and increased the N-NUE when these variables were calculated as aboveground biomass production per unit of P present in the biomass. Both P-NUE and N-NUE increased when calculated as total aboveground production per unit of nutrient loss. The results show that it is necessary to calculate NUE on a different basis to have a wider understanding of nutrient use. The irrigation did not change the needle nutrient concentrations and the litterfall production, but it significantly changed the nutrient litterfall concentrations and total aboveground contents (especially P and K). These results show a high capacity of P. halepensis to quickly respond to a limiting nutrient such as P in the critical phases of post-fire regeneration. The increase in P availability had a positive effect on growth and P concentrations and contents in aboveground biomass, thus increasing the capacity of growth in future periods and avoiding immediate runoff losses and leachate. This capacity also strongly depends on neighbour competition.  相似文献   

3.
Two field experiments were designed to evaluate the importance of competition, fire, repeated disturbance, and their interactions on the vegetative and reproductive performance of the Mediterranean shrub Erica multiflora over a 2.5-yr period. In a burn experiment, fire was applied to the ground-level stumps of previously clipped 13-yr-old plants with a propane torch and competition was diminished by removal of neighboring plants. Fire resulted in a reduction of sprout vigor and biomass of flowers; mature neighbors also reduced E. multiflora sprout vigor and flowering. The interaction between fire and competition was nonsignificant. In a stand burned by a wildfire we studied the effects of regenerating neighbors on target plants by removing all neighbors or only Quercus coccifera, the most dominant species in the burned stand. In this stand we also simulated herbivory by repeatedly clipping the sprouts of E. multiflora. Regenerating neighbors did not affect target plant sprout vigor after the wildfire, but did cause a decrease in the biomass of flowers per plant. Survival decreased after repeated clipping but was not affected by neighborhood treatment. The results suggest that the importance of competition on resprouting vigor was temporally variable. Variables related to plant size rather than species determined competitive superiority: resprouting neighbors did not affect resprouting performance of target plants, but mature neighbors did. In nature, fire may directly reduce vegetative and reproductive biomass by the heating effect. But it may have an indirect positive effect on biomass, by reducing competition among plants. Frequent disturbances that removed aboveground biomass of E. multiflora had a detrimental effect on target plant survival independent of neighborhood effect.  相似文献   

4.
Abstract. The effect of fire intensity - both temperature and duration - on the resprouting pattern of the evergreen Mediterranean shrub Erica multiflora in relation to plant size, was experimentally investigated by subjecting plants to the flame of a propane torch, and observing mortality and resprouting after 5 and 20 months. Pre-treatment plant size was not important in determining post-fire plant survival, but it did influence the resprouting vigour, increasingly so with time. High temperatures induced higher mortality rates within populations, but duration of fire did not effect mortality. Biomass of resprouts was lower following more intense fire treatments, but this effect progressively disappeared over time, except in plants subjected to the most intense fire treatment. This is probably because of the increasing importance of the below-ground organs for the regeneration of the above-ground biomass. Some of the plants which were clipped but not exposed to fire also died 20 months after treatment. The effect of clipping onmortality andresprout-ing response, estimated as biomass of resprouts, was not significantly different from the effect induced by either low or medium temperature treatments, but was significantly different when compared with the effect of high-temperature treatments. Field observations show that the establishment of seedlings of E. multiflora is rare both after fire and between fires. Thus, our data support the idea that both a single fire or clipping can diminish the population size of a resprouting species. We conclude that fire may have a stochastic effect on E. multiflora populations, due to the variation in fire intensity existing within a single burning stand.  相似文献   

5.
Nutrient availability is a key factor in Mediterranean ecosystems that affects the primary productivity and the community structure. The great variability of its natural availability is now increasing due to frequent fires, pollution events and changes in rainfall regime associated to climate change. Quercus ilex ssp. ballota and Pinus halepensis are the most abundant tree species in the NW Mediterranean basin. They frequently compete in the early and middle successional stages. We investigated the effects of N and P pulse supplies on nutrient uptake capacity in these two species in an after-fire field area and in nursery conditions on different soil types and competing conditions. In the field, N fertilisation had weak effects on nutrient concentration and mineralomass likely as a consequence of this nutrient not being limiting in this field site whereas P fertilisation increased the P mineralomass and the Mg, S, Fe, K and Ca concentrations and mineralomass in the different biomass fractions of both species 1 and 3 years after fertilisation application. In the nursery experiments, P fertilisation increased the mineralomass and concentrations of P, Mg, S, Fe, K and Ca in all biomass fractions including the roots in both species and in different soils and competition conditions. The increment of nutrient mineralomass was due to both the increase of growth and of nutrient concentrations. Both species were able to absorb significant amounts of the P applied by fertilisation (between 5 and 20%) in short time (18 months). Competing vegetation decreased the positive effects of P fertilisation, and in many cases the negative effect of competing vegetation on nutrient mineralomass was stronger when P availability was increased by fertilisation. Q. ilex subsp ballota showed a greater competitive ability for P than the more pioneer species Pinus halepensis in the field but not in the nursery conditions. Pinus halepensis had greater nutrient mineralomass in calcareous than in siliceous soils. Q. ilex subsp. ballota had a higher root biomass allocation and root nutrient allocation than P. halepensis, but both species showed a high capacity to increase their nutrient uptake when its availability increased by fertilisation, thus assuring a great nutrient reserve for future growth periods and contributing to retain nutrients in the ecosystem.  相似文献   

6.
Vilà  Montserrat  Stoll  Peter  Weiner  Jacob 《Plant Ecology》1998,136(2):167-173
To study the effects of competition in Mediterranean shrubland regeneration following disturbance, we used a neighborhood approach to assess the influence of mature Rosmarinus officinalis neighbors on the resprouting of Erica multiflora individuals after clipping. Sprout biomass of target plants 2 years after clipping was regressed against various measures of neighbor abundance within a 2 m radius around target E. multiflora individuals in which all vegetation except R. officinalis had been removed. The largest single influence on the biomass of sprouts produced was the previous biomass of the resprouting plant. The abundance of R. officinalis neighbors had a weak but detectable effect on resprouting of E. multiflora. Abundance of neighbors within 60 cm from target plants was the best predictor of regrowth. At this distance, two simple measures of neighbor abundance within the neighborhood, the number of neighbors and the sum of their heights, were significant in accounting for variation in resprouted biomass. None of the combinations of neighbor variables performed significantly better than single variables. The best models accounted for around 24 percent of the variation in resprout biomass. As in other studies, angular dispersion of neighbors never had a significant effect on performance of target plants. The weak but significant response of resprouting to variation in R. officinalis abundance suggests that the intensity of competition in the experiment was low because of the removal of other species.  相似文献   

7.
8.
Rosmarinus officinalis is a dominant shrub species of calcareous Mediterranean communities that has increased its presence in wide areas due to fire frequency increase and field abandonment. We aimed to study the capacity of adult shrubs to respond to nutrient pulses such as those produced by fires and human driven eutrophycation. In a 5 years old post-fire Mediterranean shrubland we conducted an experiment to investigate the effects of irrigation and N and P fertilisation on the growth, nutrient status and flowering effort of adult plants of the dominant shrub R. officinalis in a post-fire shrubland. The responses were monitored during the immediate 3 years after fertilisation. P fertilisation increased plant growth, produced a great increase in P aerial mineralomass and P concentration in leaf and stems and had a slight positive effect on flowering effort. Irrigation increased plant growth, but did not have significant effects on nutrient contents and flowering. The results show that adult individuals of the Mediterranean shrub R. officinalis have a notable capacity to positively respond in growth and in nutritional status to a sudden increase of the limiting nutrient, in this case P, and in a lesser extent, to an increase of water supply. These capacities may be important under the more unpredictable nutrient and water availability conditions expected for the near future; they will allow to take advantage of the pulses of higher nutrient and water availability in the middle of dry periods, thus increasing the community capacity to improve the nutrient retention in the ecosystem.  相似文献   

9.
Abstract. Soil resource availability may affect plant regeneration by resprouting in disturbed environments directly, by affecting plant growth rates, or indirectly by determining allocation to storage in the resprouting organs. Allocation to storage may be higher in stressful, low resource‐supply soils, but under such conditions plant growth rates may be lower. These factors could act in opposite directions leading to poorly known effects on resprouting. This paper analyses the role played by soil resources in the production and growth of resprouts after removal of above‐ground plant tissues in the Mediterranean shrub Erica australis. At 13 sites, differing in substrate, we cut the base of the stems of six plants of E. australis and allowed them to resprout and grow for two years. Soils were chemically analysed and plant water potential measured during the summer at all sites to characterize soil resource availability. We used stepwise regression analysis to determine the relationships between the resprouting response [mean site values of the number of resprouts (RN), maximum length (RML) and biomass (RB)] and soil nutrient content and plant water potential at each site. During the first two years of resprouting there were statistically significant differences among sites in the variables characterizing the resprouting response. RML was always different among sites and had little relationship with lignotuber area. RN was less different among sites and was always positively correlated with lignotuber area. RB was different among sites after the two years of growth. During the first months of resprouting, RN and RML were highly and positively related to the water status of the plant during summer. At later dates soil fertility variables came into play, explaining significant amounts of variance of the resprouting variables. Soil extractable cations content was the main variable accounting for RML and RB. Our results indicate that resprout growth of E. australis is positively affected by high water availability at the beginning of the resprouting response and negatively so by high soil extractable cation content at later periods. Some of these factors had previously shown to be related, with an opposite sign, to the development of a relatively larger lignotuber. Indeed, RML and RB measured in the second year of resprouting were significantly and negatively correlated with some indices of biomass allocation to the lignotuber at each site. This indicates that sites favouring allocation to the resprouting organ may not favour resprout growth.  相似文献   

10.
Resprouting from subterranean structures is a principal method of vegetative regeneration that many shrub species show after a disturbance. This study, therefore, aims to determine the resprouting capacity and intensity of six dominant species in an Atlantic shrubland area located in the NW of the Iberian Peninsula and compare their resprouting and germinating strategies. Resprouting intensity is measured using three variables: individual probability of resprouting, number of resprouts and length of these sprouts in three plant-age classes. The intensity for each species was calculated using a simple index (IRI) that included the three measured variables. All studied species, excepting Erica umbellata, could resprout. According to the IRI values, there are three groups of species: strong resprouters (Ulex europaeus, Ulex minor and Pterospartum tridentatum), weak resprouters (Ulex micranthus and Genista triacanthos) and non-resprouters (E. umbellata). The germination of strong resprouters is highly stimulated by fire. Frequent disturbances remove the non- and weak resprouter populations and promote the strong resprouter ones.  相似文献   

11.
Reproductive allocation (RA) is a measure of how resources (biomass, nutrients) are partitioned between reproductive structures and the rest of the plant. For plants that resprout after fire, the percentage of resources allocated to reproduction may vary depending on their resprouting ability. Our study examines the percentage RA (biomass, N, P, K) and nutrient content of current season’s growth in southern (Swan Coastal Plain) epicormic and northern (Eneabba Plain) lignotuberous resprouter populations of Banksia menziesii (Proteaceae), a species endemic to nutrient-impoverished sandplains of southwestern Australia. Within each population, plants along road edges were compared with plants not associated with road edges. There was no difference in total nutrient content of current year’s growth between both resprouting types, except that total K in the shoots of lignotuberous populations was >2 times that in the epicormic populations. Non-road lignotuberous plants allocated twice the biomass, N and P, and 13.5 times the K, to reproduction as non-road epicormic plants. Lignotuberous populations had the highest RA (17–34% of biomass, N, P, K), with non-road epicormic populations the lowest RA (3–15%). This can be viewed as an adaptive (ultimate) response to the poorer postfire survival and recruitment conditions where the lignotuberous populations occur. Total biomass and nutrient content of road-edge plants was 2–3 times that of non-edge plants. Lignotuberous populations in both road positions allocated the same fraction of biomass, N and P to reproduction, whereas road-edge populations allocated 10% less K than non-road. Road-edge epicormic populations allocated 5–10% more biomass, N, P and K to reproduction than non-road populations. This can be viewed as an ecophysiological (proximate) response to the better growing conditions created by the roadways that may also ultimately have an adaptive explanation.  相似文献   

12.
This study evaluated the change induced by the year season and by experimentally induced drought on foliar element stoichiometry of the predominant woody species (Quercus ilex and Erica multiflora) in two Mediterranean ecosystems, a forest and a shrubland. This study is based in two long-term (11 yr) field experiments that simulated drought throughout the annual cycle.The effects of experimental droughts were significant but weaker than the changes produced by ontogeny and seasonality. Leaf N and P concentrations were higher in spring (the main growing season) in E. multiflora and, in Q. ilex in autumn (a period of additional growth). Leaf N:P ratios were lower in spring. In Q. ilex, the highest leaf K concentrations and leaf K:P ratios, and the lowest leaf C:K and N:K ratios, occurred in summer, the season when water stress was greatest. In E. multiflora, leaf K concentrations and K:P ratios were highest, and leaf C:K and N:K ratios were lowest in the plants from the drought-treated plots.The plant capacity to change K concentrations in response to seasonality and to drought is at least as great as the capacity to change N and P concentrations. The results underscore the importance of K and its stoichiometry relative to C, N and P in dry environments. These results indicate first, that N:P ratio shifts are not uniquely related to growth rate in Mediterranean plants but also to drought, and second, that there is a need to take into account K in ecological stoichiometry studies of terrestrial plants.  相似文献   

13.
《Acta Oecologica》2001,22(2):121-127
Trade-offs between allocation to sexual or vegetative regeneration capacity are well established as a driving force in the life history patterns of plants in fire-prone environments. However, it is not known whether such trade-offs exist in plants which after aboveground removing disturbances, such as fire, may regenerate by sexual (seeding) or asexual (sprouting) mechanisms. We evaluated whether in the fire-recruiting resprouter Erica australis, which after fire can regenerate by seedling establishment or resprouting, a larger investment in flowers and seeds prior to being disturbed by clipping its aboveground parts would decrease subsequent sprouting, that is, its vegetative regeneration capacity. We analysed the relationships between flower and seed production and the ensuing production and growth of sprouts of six plants from thirteen different sites in central-western Spain. We found no significant relationships between measures of sexual reproductive effort and resprout production and growth 6 months after clipping the aboveground parts of the plants. No evidence of trade-offs between sexual and asexual efforts was found. Furthermore, no significant relationship was found between lignotuber total non-structural carbohydrates and sexual reproductive effort. In addition, 2 years after the disturbance, resprout biomass was positively and significantly correlated with sexual reproductive effort prior to the disturbance. This indicates that growth of resprouts was higher at the sites where plants made a greater reproductive effort. The sites that were more favourable to producing flowers and seeds could also be more favourable to resprouting.  相似文献   

14.
《Acta Oecologica》2007,31(3):419-425
Semi-natural grassland communities are of great interest in conservation because of their high species richness. These communities are being threatened by both land abandonment and nitrogen eutrophication, and their continued existence will depend upon correct management. However, there is a distinct lack of studies of the ecological mechanisms that regulate species diversity and productivity in Mediterranean grasslands. We have conducted a 3-year field experiment in a species-poor grassland in central Italy to investigate the effects of nitrogen fertilization coupled with removal of plant litter and artificial cutting on species diversity and community productivity. Vegetation cutting reduced living biomass but increased species diversity. In fact, cutting had positive effects on the cover of almost all of the annual and biennial species, while it had a negative effect on the dominant perennial grasses Brachypodium rupestre and Dactylis glomerata. Litter removal had similar effects to cutting, although it was far less effective in increasing species diversity. In contrast, nitrogen enrichment strongly increased the living biomass while maintaining very low species diversity. Our results have indicated that semi-natural Mediterranean grasslands need specific management regimes for maintenance and restoration of species diversity. In the management of these grasslands, attention should be paid to the potential threat from nitrogen enrichment, especially when coupled with land abandonment.  相似文献   

15.
The higher growth rates of resprouting shoots compared with those of mature plants in resprouter woody species are supported by higher rates of photosynthesis and transpiration. In this contribution we hypothesize that species with higher resprouting vigour will show a larger enhancement of photosynthesis in resprouting shoots. We test this hypothesis by comparing gas exchange and leaf parameters between resprouting and mature plants in Erica scoparia and E. australis. These two Erica species co-occur in Mediterranean heathlands of the Strait of Gibraltar. Erica scoparia has a higher rate of post-disturbance starch recovery than E. australis, which makes it more resistant to recurrent disturbance. We tested the hypothesis that enhancement of photosynthesis and water use characteristics of resprouting shoots compared with mature plants should be more pronounced in E. scoparia. In both species, resprouts had higher efficiency in the use of light and higher maximum net photosynthesis than mature shoots. However, contrary to expectations, differences in the photosynthetic performance between resprouts and mature plant shoots were larger in E. australis. Higher root to shoot ratios in resprouting E. australis plants, determined by their slower above-ground recovery, together with stronger demand from carbon sinks might explain this result.  相似文献   

16.

Key message

Cork oak has buds protected by the full thickness of its substantial phellem, thus explaining why it is the only European tree that can epicormically resprout after higher intensity fire.

Abstract

Epicormic resprouting has various ecological advantages over basal resprouting. However, after higher intensity fires epicormic resprouting is rare as it is difficult for trees and shrubs to keep both their buds and vascular cambia alive. Quercus suber (cork oak) is the only European tree that can resprout epicormically after higher intensity fires. Q. suber develops very thick bark and it has been assumed, without anatomical evidence, that the bark protects the epicormic buds. We investigated if developmental anatomy could explain why Q. suber is an excellent post-fire epicormic resprouter. We examined buds from mature Q. suber trees, macroscopically using a stereo microscope and microscopically using semi-thin microtome sections. Q. suber produced buds in the foliage leaf axils and the bud scale axils. With the commencement of extensive phellem (cork) production the base of the epicormic buds remained at, or just below, the level of the phellogen and thus cork began to bury the buds, although a narrow tube connected each bud to the bark surface. Q. suber epicormic buds became deeply buried in the phellem and would be protected from heat by the full phellem thickness. With its rapid and substantial development of phellem Q. suber had well-protected epicormic buds even in relatively small diameter stems. These results provide the anatomical evidence to show why Q. suber is a noted epicormic resprouter after crown fire.
  相似文献   

17.
  1. Previous studies of the N:P ratio in wetland plants have been carried out in northern hemisphere wetlands where atmospheric nitrogen deposition is higher. There is little research on foliar N:P ratio as a potential indicator of nutrient limitation in vegetation communities in southern hemisphere wetlands. This study aimed to redress this knowledge gap and answer the following questions: how well does the plant tissue nitrogen to phosphorus (N:P) ratio predict wetland plant community nutrient limitation, as indicated by vegetation standing stocks and below-ground biomass, in southern hemisphere fens? Secondly, what are the impacts of realistic upper levels of farm nutrient run-off on natural montane fen vegetation?
  2. Low (35 kg ha−1 year−1) and high (70 kg ha−1 year−1) levels of nitrate-N or ammonium-N with and without P (20 kg ha−1 year−1) were added to 81 vegetation plots over a period of 2.75 years. Species composition, plant nutrient status, and above-ground live vegetation standing stocks were assessed after 3 years, and below-ground biomass after 2 years.
  3. Plant tissue analysis suggested the community was N limited or N and P co-limited; we found greater standing stocks of vegetation in plots treated with 70 kg ha−1 year−1 ammonium-N, indicating N limitation. No difference between other treatments was found in above-ground standing stocks or below-ground biomass. Plant species cover increased in both high N treatments, consistent with N limitation. These changes in plant species cover were accompanied by significant decreases in species richness in both high N treatments. Native species dominated the vegetation and this was unaffected by nutrient addition (90% cover).
  4. This is one of the first studies to test and find support for the N:P ratio in southern hemisphere wetlands. Observed declines in species richness after N fertilisation in an N-limited fen suggests increased N may pose risks to austral wetlands. Responses by plant communities (changes in composition, biomass) to lower levels of nutrient addition may require longer periods of fertilisation to be apparent in slow growing ecosystems.
  相似文献   

18.
To examine the effects of vegetation cover on the resprouting abilities of Quercus crispula seedlings, in each of three consecutive years, we artificially clipped seedlings growing in microhabitats with differing degrees of vegetation cover. We also investigated the relationship between the level of total nonstructural carbohydrate (TNC) and resprouting ability. Seedlings with clipped shoots in gaps produced larger resprouting shoots than those in the understory. Moreover, both the percentage of resprouting seedlings and the survival ratio in seedlings with clipped shoots were negatively correlated with the degree of vegetation cover. Seedlings stored high levels of TNC, especially in their roots, and their TNC levels were negatively correlated with the degree of vegetation cover. There were also positive relationships between the TNC levels in their roots and the degree of resprouting. Hence, we conclude that release from vegetation cover enhanced the resprouting ability of Q. crispula seedlings by increasing their levels of stored carbohydrate. The key variables affected were the resprouting ratio (the proportion of seedlings capable of producing new shoots) and the size of the resprouted shoots.  相似文献   

19.
Abstract. Resprouting from underground structures is one of the main regeneration strategies of Mediterranean shrubs after aerial biomass disturbance such as fire or clear-cutting to reduce fire risk. In order to study the effect of root competition and shading (simulated shoot competition) on Erica multiflora, growth, morphology, flowering performance and sprout size variability during resprouting, a factorial field experiment was conducted in which neighbours around target plants were eliminated and plants were shaded with mesh for two years. Root competition reduced sprout recruitment and sprout density (number of sprouts per unit stump area) more strongly than did shading. The negative effect of root competition on sprout biomass was constant with time, while the reduction due to shading increased with time. There was an interaction between root competition and shading on the biomass of sprouts 22 months after treatment: genets without root competition and shading were four times larger than in any other treatment. Both shading and root competition also decreased percentage branching but did not modify maximum sprout height. Only shading decreased the leaf/shoot biomass ratio and the percentage of flowering genets. One year after resprouting, root competition counteracted the effect of shading on inducing sprout biomass variability within the genet because it decreased sprout density. 22 months after treatment, sprout biomass variability was not affected by any main effect. The results suggest that competition among sprouts within the genet is asymmetric. However, shading by genet neighbours may not always increase sprout biomass variability if root competition is also severe.  相似文献   

20.
We studied the effects of experimental warming and drought on the plant biomass of a Mediterranean shrubland. We monitored growth at plant level and biomass accumulation at stand level. The experimentation period stretched over 7 years (1999–2005) and we focused on the two dominant shrub species, Erica multiflora L. and Globularia alypum L. and the tree species Pinus halepensis L. The warming treatment increased shoot elongation in E. multiflora, and the drought treatment reduced shoot elongation in G. alypum. The elongation of P. halepensis remained unaffected under both treatments. The balance between the patterns observed in biomass accumulation for the three studied species in the drought plots (reduction in E. multiflora and P. halepensis and increase in G. alypum) resulted in a trend to reduce 33% the biomass of the drought treatment plots with respect to the untreated plots, which almost doubled their biomass from 1998 to 2005. The results also suggest that under drier conditions larger accumulation of dead biomass may occur at stand level, which combined with higher temperatures, may thus increase fire risk in the Mediterranean area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号