首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The GIY-YIG nuclease domain was originally identified in homing endonucleases and enzymes involved in DNA repair and recombination. Many of the GIY-YIG family enzymes are functional as monomers. We show here that the Cfr42I restriction endonuclease which belongs to the GIY-YIG family and recognizes the symmetric sequence 5′-CCGC/GG-3′ (‘/’ indicates the cleavage site) is a tetramer in solution. Moreover, biochemical and kinetic studies provided here demonstrate that the Cfr42I tetramer is catalytically active only upon simultaneous binding of two copies of its recognition sequence. In that respect Cfr42I resembles the homotetrameric Type IIF restriction enzymes that belong to the distinct PD-(E/D)XK nuclease superfamily. Unlike the PD-(E/D)XK enzymes, the GIY-YIG nuclease Cfr42I accommodates an extremely wide selection of metal-ion cofactors, including Mg2+, Mn2+, Co2+, Zn2+, Ni2+, Cu2+ and Ca2+. To our knowledge, Cfr42I is the first tetrameric GIY-YIG family enzyme. Similar structural arrangement and phenotypes displayed by restriction enzymes of the PD-(E/D)XK and GIY-YIG nuclease families point to the functional significance of tetramerization.  相似文献   

2.
The crystal structure of the NgoMIV restriction endonuclease in complex with cleaved DNA has been determined at 1.6 A resolution. The crystallographic asymmetric unit contains a protein tetramer and two DNA molecules cleaved at their recognition sites. This is the first structure of a tetrameric restriction enzyme-DNA complex. In the tetramer, two primary dimers are arranged back to back with two oligonucleotides bound in clefts on opposite sides of the tetramer. The DNA molecules retain a B-type conformation and have an enclosed angle between their helical axes of 60 degrees. Sequence-specific interactions occur in both the major and minor grooves. Two Mg2+ ions are located close to the cleaved phosphate at the active site of NgoMIV. Biochemical experiments show that interactions between the recognition sites within the tetramer greatly increase DNA cleavage efficiency.  相似文献   

3.
A new Type III restriction endonuclease designated PstII has been purified from Providencia stuartii. PstII recognizes the hexanucleotide sequence 5′-CTGATG(N)25-26/27-28-3′. Endonuclease activity requires a substrate with two copies of the recognition site in head-to-head repeat and is dependent on a low level of ATP hydrolysis (~40 ATP/site/min). Cleavage occurs at just one of the two sites and results in a staggered cut 25–26 nt downstream of the top strand sequence to generate a two base 5′-protruding end. Methylation of the site occurs on one strand only at the first adenine of 5′-CATCAG-3′. Therefore, PstII has characteristic Type III restriction enzyme activity as exemplified by EcoPI or EcoP15I. Moreover, sequence asymmetry of the PstII recognition site in the T7 genome acts as an historical imprint of Type III restriction activity in vivo. In contrast to other Type I and III enzymes, PstII has a more relaxed nucleotide specificity and can cut DNA with GTP and CTP (but not UTP). We also demonstrate that PstII and EcoP15I cannot interact and cleave a DNA substrate suggesting that Type III enzymes must make specific protein–protein contacts to activate endonuclease activity.  相似文献   

4.
To cut DNA at their target sites, restriction enzymes assemble into different oligomeric structures. The Ecl18kI endonuclease in the crystal is arranged as a tetramer made of two dimers each bound to a DNA copy. However, free in solution Ecl18kI is a dimer. To find out whether the Ecl18kI dimer or tetramer represents the functionally important assembly, we generated mutants aimed at disrupting the putative dimer–dimer interface and analysed the functional properties of Ecl18kI and mutant variants. We show by atomic force microscopy that on two-site DNA, Ecl18kI loops out an intervening DNA fragment and forms a tetramer. Using the tethered particle motion technique, we demonstrate that in solution DNA looping is highly dynamic and involves a transient interaction between the two DNA-bound dimers. Furthermore, we show that Ecl18kI cleaves DNA in the synaptic complex much faster than when acting on a single recognition site. Contrary to Ecl18kI, the tetramerization interface mutant R174A binds DNA as a dimer, shows no DNA looping and is virtually inactive. We conclude that Ecl18kI follows the association model for the synaptic complex assembly in which it binds to the target site as a dimer and then associates into a transient tetrameric form to accomplish the cleavage reaction.  相似文献   

5.
Crystal structures of Type II restriction endonucleases demonstrate a conserved common core and active site residues but diverse structural elements involved in DNA sequence discrimination. Comparative structural analysis of restriction enzymes recognizing the same nucleotide sequence might therefore contribute to our understanding of the structural diversity of specificity determinants within restriction enzymes. We have solved the crystal structure of the Bacillus stearothermophilus restriction endonuclease Bse634I by the multiple isomorphous replacement technique to 2.17 Å resolution. Bse634I is an isoschisomer of the Cfr10I restriction enzyme whose crystal structure has been reported previously. Comparative structural analysis of the first pair of isoschisomeric enzymes revealed conserved structural determinants of sequence recognition and catalysis. However, conformations of the N-terminal subdomains differed between Bse634I/Cfr10I, suggesting a rigid body movement that might couple DNA recognition and catalysis. Structural similarities extend to the quaternary structure level: crystal contacts suggest that Bse634I similarly to Cfr10I is arranged as a tetramer. Kinetic analysis reveals that Bse634I is able to interact simultaneously with two recognition sites supporting the tetrameric architecture of the protein. Thus, restriction enzymes Bse634I, Cfr10I and NgoMIV, recognizing overlapping nucleotide sequences, exhibit a conserved tetrameric architecture that is of functional importance.  相似文献   

6.
The MvaI restriction endonuclease cuts 5′-CC↓AGG-3′/5′-CC↑TGG-3′ sites as indicated by the arrows. N4-methylation of the inner cytosines (Cm4CAGG/Cm4CTGG) protects the site against MvaI cleavage. Here, we show that MvaI nicks the G-strand of the related sequence (CCGGG/CCCGG, BcnI site) if the inner cytosines are C5-methylated: Cm5C↓GGG/CCm5CGG. At M.SssI-methylated SmaI sites, where two oppositely oriented methylated BcnI sites partially overlap, double-nicking leads to double-strand cleavage (CCm5C↓GGG/CCm5C↑GGG) generating fragments with blunt ends. The double-strand cleavage rate and the stringency of substrate site recognition is lower at the methylation-dependent site than at the canonical target site. MvaI is the first restriction endonuclease shown to possess, besides the ‘normal’ activity on its unmethylated recognition site, also a methylation-directed activity on a different sequence.  相似文献   

7.
The Bse634I restriction endonuclease is a tetramer and belongs to the type IIF subtype of restriction enzymes. It requires two recognition sites for its optimal activity and cleaves plasmid DNA with two sites much faster than a single-site DNA. We show that disruption of the tetramerisation interface of Bse634I by site-directed mutagenesis converts the tetrameric enzyme into a dimer. Dimeric W228A mutant cleaves plasmid DNA containing one or two sites with the same efficiency as the tetramer cleaves the two-site plasmid. Hence, the catalytic activity of the Bse634I tetramer on a single-site DNA is down-regulated due to the cross-talking interactions between the individual dimers. The autoinhibition within the Bse634I tetramer is relieved by bridging two DNA copies into the synaptic complex that promotes fast and concerted cleavage at both sites. Cleavage analysis of the oligonucleotide attached to the solid support revealed that Bse634I is able to form catalytically competent synaptic complexes by bridging two molecules of the cognate DNA, cognate DNA-miscognate DNA and cognate DNA-product DNA. Taken together, our data demonstrate that a single W228A mutation converts a tetrameric type IIF restriction enzyme Bse634I into the orthodox dimeric type IIP restriction endonuclease. However, the stability of the dimer towards chemical denaturants, thermal inactivation and proteolytic degradation are compromised.  相似文献   

8.
Restriction endonuclease MvaI recognizes the sequence CC/WGG (W stands for A or T, ‘/’ designates the cleavage site) and generates products with single nucleotide 5′-overhangs. The enzyme has been noted for its tolerance towards DNA modifications. Here, we report a biochemical characterization and crystal structures of MvaI in an apo-form and in a complex with target DNA at 1.5Å resolution. Our results show that MvaI is a monomer and recognizes its pseudosymmetric target sequence asymmetrically. The enzyme consists of two lobes. The catalytic lobe anchors the active site residues Glu36, Asp50, Glu55 and Lys57 and contacts the bases from the minor grove side. The recognition lobe mediates all major grove interactions with the bases. The enzyme in the crystal is bound to the strand with T at the center of the recognition sequence. The crystal structure with calcium ions and DNA mimics the prereactive state. MvaI shows structural similarities to BcnI, which cleaves the related sequence CC/SGG and to MutH enzyme, which is a component of the DNA repair machinery, and nicks one DNA strand instead of making a double-strand break.  相似文献   

9.
The SgrAI endonuclease usually cleaves DNA with two recognition sites more rapidly than DNA with one site, often converting the former directly to the products cut at both sites. In this respect, SgrAI acts like the tetrameric restriction enzymes that bind two copies of their target sites before cleaving both sites concertedly. However, by analytical ultracentrifugation, SgrAI is a dimer in solution though it aggregates to high molecular mass species when bound to its specific DNA sequence. Its reaction kinetics indicate that it uses different mechanisms to cleave DNA with one and with two SgrAI sites. It cleaves the one-site DNA in the style of a dimeric restriction enzyme acting at an individual site, mediating neither interactions in trans, as seen with the tetrameric enzymes, nor subunit associations, as seen with the monomeric enzymes. In contrast, its optimal reaction on DNA with two sites involves an association of protein subunits: two dimers bound to sites in cis may associate to form a tetramer that has enhanced activity, which then cleaves both sites concurrently. The mode of action of SgrAI differs from all restriction enzymes characterised previously, so this study extends the range of mechanisms known for restriction endonucleases.  相似文献   

10.
Base excision repair intermediates are mutagenic in mammalian cells   总被引:2,自引:1,他引:1  
Base excision repair (BER) is the main pathway for repair of DNA damage in mammalian cells. This pathway leads to the formation of DNA repair intermediates which, if still unsolved, cause cell lethality and mutagenesis. To characterize mutations induced by BER intermediates in mammalian cells, an SV-40 derived shuttle vector was constructed carrying a site-specific lesion within the recognition sequence of a restriction endonuclease. The mutation spectra of abasic (AP) sites, 5′-deoxyribose-5-phosphate (5′dRp) and 3′-[2,3-didehydro-2,3-dideoxy-ribose] (3′ddR5p) single-strand breaks (ssb) in mammalian cells was analysed by RFLP/PCR and mutation frequency was estimated by quantitative PCR. Point mutations were the predominant events occurring at all BER intermediates. The AP site-induced mutation spectrum supports evidence for the ‘A-rule’ and is also consistent with the use of the 5′ neighbouring base to instruct nucleotide incorporation (5′-rule). Preferential adenine insertion was also observed after in vivo replication of 5′dRp or 3′ddR5p ssb. We provide original evidence that not only the abasic site but also its derivatives ‘faceless’ BER intermediates are mutagenic, with a similar mutation frequency, in mammalian cells. Our findings support the hypothesis that unattended BER intermediates could be a constant threat for genome integrity as well as a spontaneous source of mutations.  相似文献   

11.
The three-dimensional X-ray crystal structure of the ‘rare cutting’ type II restriction endonuclease SgrAI bound to cognate DNA is presented. SgrAI forms a dimer bound to one duplex of DNA. Two Ca2+ bind in the enzyme active site, with one ion at the interface between the protein and DNA, and the second bound distal from the DNA. These sites are differentially occupied by Mn2+, with strong binding at the protein–DNA interface, but only partial occupancy of the distal site. The DNA remains uncleaved in the structures from crystals grown in the presence of either divalent cation. The structure of the dimer of SgrAI is similar to those of Cfr10I, Bse634I and NgoMIV, however no tetrameric structure of SgrAI is observed. DNA contacts to the central CCGG base pairs of the SgrAI canonical target sequence (CR|CCGGYG, | marks the site of cleavage) are found to be very similar to those in the NgoMIV/DNA structure (target sequence G|CCGGC). Specificity at the degenerate YR base pairs of the SgrAI sequence may occur via indirect readout using DNA distortion. Recognition of the outer GC base pairs occurs through a single contact to the G from an arginine side chain located in a region unique to SgrAI.  相似文献   

12.
13.
Type IIS restriction endonucleases cleave DNA outside their recognition sequences, and are therefore particularly useful in the assembly of DNA from smaller fragments. A limitation of type IIS restriction endonucleases in assembly of long DNA sequences is the relative abundance of their target sites. To facilitate ligation-based assembly of extremely long pieces of DNA, we have engineered a new type IIS restriction endonuclease that combines the specificity of the homing endonuclease I-SceI with the type IIS cleavage pattern of FokI. We linked a non-cleaving mutant of I-SceI, which conveys to the chimeric enzyme its specificity for an 18-bp DNA sequence, to the catalytic domain of FokI, which cuts DNA at a defined site outside the target site. Whereas previously described chimeric endonucleases do not produce type IIS-like precise DNA overhangs suitable for ligation, our chimeric endonuclease cleaves double-stranded DNA exactly 2 and 6nt from the target site to generate homogeneous, 5′, four-base overhangs, which can be ligated with 90% fidelity. We anticipate that these enzymes will be particularly useful in manipulation of DNA fragments larger than a thousand bases, which are very likely to contain target sites for all natural type IIS restriction endonucleases.  相似文献   

14.
The MspJI modification-dependent restriction endonuclease recognizes 5-methylcytosine or 5-hydroxymethylcytosine in the context of CNN(G/A) and cleaves both strands at fixed distances (N12/N16) away from the modified cytosine at the 3′-side. We determined the crystal structure of MspJI of Mycobacterium sp. JLS at 2.05-Å resolution. Each protein monomer harbors two domains: an N-terminal DNA-binding domain and a C-terminal endonuclease. The N-terminal domain is structurally similar to that of the eukaryotic SET and RING-associated domain, which is known to bind to a hemi-methylated CpG dinucleotide. Four protein monomers are found in the crystallographic asymmetric unit. Analytical gel-filtration and ultracentrifugation measurements confirm that the protein exists as a tetramer in solution. Two monomers form a back-to-back dimer mediated by their C-terminal endonuclease domains. Two back-to-back dimers interact to generate a tetramer with two double-stranded DNA cleavage modules. Each cleavage module contains two active sites facing each other, enabling double-strand DNA cuts. Biochemical, mutagenesis and structural characterization suggest three different monomers of the tetramer may be involved respectively in binding the modified cytosine, making the first proximal N12 cleavage in the same strand and then the second distal N16 cleavage in the opposite strand. Both cleavage events require binding of at least a second recognition site either in cis or in trans.  相似文献   

15.
In the early 1950’s, ‘host-controlled variation in bacterial viruses’ was reported as a non-hereditary phenomenon: one cycle of viral growth on certain bacterial hosts affected the ability of progeny virus to grow on other hosts by either restricting or enlarging their host range. Unlike mutation, this change was reversible, and one cycle of growth in the previous host returned the virus to its original form. These simple observations heralded the discovery of the endonuclease and methyltransferase activities of what are now termed Type I, II, III and IV DNA restriction-modification systems. The Type II restriction enzymes (e.g. EcoRI) gave rise to recombinant DNA technology that has transformed molecular biology and medicine. This review traces the discovery of restriction enzymes and their continuing impact on molecular biology and medicine.  相似文献   

16.
Restriction enzymes share little or no sequence homology with the exception of isoschizomers, or enzymes that recognize and cleave the same DNA sequence. We present here the structure of a BamHI isoschizomer, OkrAI, bound to the same DNA sequence (TATGGATCCATA) as that cocrystallized with BamHI. We show that OkrAI is a more minimal version of BamHI, lacking not only the N- and C-terminal helices but also an internal 310 helix and containing β-strands that are shorter than those in BamHI. Despite these structural differences, OkrAI recognizes the DNA in a remarkably similar manner to BamHI, including asymmetric contacts via C-terminal ‘arms’ that appear to ‘compete’ for the minor groove. However, the arms are shorter than in BamHI. We observe similar DNA-binding affinities between OkrAI and BamHI but OkrAI has higher star activity (at 37°C) compared to BamHI. Together, the OkrAI and BamHI structures offer a rare opportunity to compare two restriction enzymes that work on exactly the same DNA substrate.  相似文献   

17.
Although the DNA cleavage mechanism of Type I restriction–modification enzymes has been extensively studied, the mode of cleavage remains elusive. In this work, DNA ends produced by EcoKI, EcoAI and EcoR124I, members of the Type IA, IB and IC families, respectively, have been characterized by cloning and sequencing restriction products from the reactions with a plasmid DNA substrate containing a single recognition site for each enzyme. Here, we show that all three enzymes cut this substrate randomly with no preference for a particular base composition surrounding the cleavage site, producing both 5′- and 3′-overhangs of varying lengths. EcoAI preferentially generated 3′-overhangs of 2–3 nt, whereas EcoKI and EcoR124I displayed some preference for the formation of 5′-overhangs of a length of ~6–7 and 3–5 nt, respectively. A mutant EcoAI endonuclease assembled from wild-type and nuclease-deficient restriction subunits generated a high proportion of nicked circular DNA, whereas the wild-type enzyme catalyzed efficient cleavage of both DNA strands. We conclude that Type I restriction enzymes require two restriction subunits to introduce DNA double-strand breaks, each providing one catalytic center for phosphodiester bond hydrolysis. Possible models for DNA cleavage are discussed.  相似文献   

18.
SgrAI is a type IIF restriction endonuclease that cuts an unusually long recognition sequence and exhibits allosteric self-modulation of cleavage activity and sequence specificity. Previous studies have shown that DNA bound dimers of SgrAI oligomerize into an activated form with higher DNA cleavage rates, although previously determined crystal structures of SgrAI bound to DNA show only the DNA bound dimer. A new crystal structure of the type II restriction endonuclease SgrAI bound to DNA and Ca(2+) is now presented, which shows the close association of two DNA bound SgrAI dimers. This tetrameric form is unlike those of the homologous enzymes Cfr10I and NgoMIV and is formed by the swapping of the amino-terminal 24 amino acid residues. Two mutations predicted to destabilize the swapped form of SgrAI, P27W and P27G, have been made and shown to eliminate both the oligomerization of the DNA bound SgrAI dimers as well as the allosteric stimulation of DNA cleavage by SgrAI. A mechanism involving domain swapping is proposed to explain the unusual allosteric properties of SgrAI via association of the domain swapped tetramer of SgrAI bound to DNA into higher order oligomers.  相似文献   

19.
BLM and WRN, the products of the Bloom’s and Werner’s syndrome genes, are members of the RecQ family of DNA helicases. Although both have been shown previously to unwind simple, partial duplex DNA substrates with 3′→5′ polarity, little is known about the structural features of DNA that determine the substrate specificities of these enzymes. We have compared the substrate specificities of the BLM and WRN proteins using a variety of partial duplex DNA molecules, which are based upon a common core nucleotide sequence. We show that neither BLM nor WRN is capable of unwinding duplex DNA from a blunt-ended terminus or from an internal nick. However, both enzymes efficiently unwind the same blunt-ended duplex containing a centrally located 12 nt single-stranded ‘bubble’, as well as a synthetic X-structure (a model for the Holliday junction recombination intermediate) in which each ‘arm’ of the 4-way junction is blunt-ended. Surprisingly, a 3′-tailed duplex, a standard substrate for 3′→5′ helicases, is unwound much less efficiently by BLM and WRN than are the bubble and X-structure substrates. These data show conclusively that a single-stranded 3′-tail is not a structural requirement for unwinding of standard B-form DNA by these helicases. BLM and WRN also both unwind a variety of different forms of G-quadruplex DNA, a structure that can form at guanine-rich sequences present at several genomic loci. Our data indicate that BLM and WRN are atypical helicases that are highly DNA structure specific and have similar substrate specificities. We interpret these data in the light of the genomic instability and hyper-recombination characteristics of cells from individuals with Bloom’s or Werner’s syndrome.  相似文献   

20.
Here we report a PCR-based DNA engineering technique for seamless assembly of recombinant molecules from multiple components. We create cloning vector and target molecules flanked with compatible single-stranded (ss) extensions. The vector contains a cassette with two inversely oriented nicking endonuclease sites separated by restriction endonuclease site(s). The spacer sequences between the nicking and restriction sites are tailored to create ss extensions of custom sequence. The vector is then linearized by digestion with nicking and restriction endonucleases. To generate target molecules, a single deoxyuridine (dU) residue is placed 6–10nt away from the 5′-end of each PCR primer. 5′ of dU the primer sequence is compatible either with an ss extension on the vector or with the ss extension of the next-in-line PCR product. After amplification, the dU is excised from the PCR products with the USER enzyme leaving PCR products flanked by 3′ ss extensions. When mixed together, the linearized vector and PCR products directionally assemble into a recombinant molecule through complementary ss extensions. By varying the design of the PCR primers, the protocol is easily adapted to perform one or more simultaneous DNA manipulations such as directional cloning, site-specific mutagenesis, sequence insertion or deletion and sequence assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号