首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histones of heterochromatin are deacetylated in yeast and methylated in more complex eukaryotes to regulate heterochromatin structure and gene silencing. Here, we report that histone H2A phosphorylated at serine 129 (γH2A) in Saccharomyces cerevisiae is a conceptually new type of heterochromatin modification that functions downstream of silent chromatin assembly. We show that γH2A is enriched throughout yeast telomeric and silent mating locus (HM) heterochromatin where γH2A results from the action of kinases Tel1 and Mec1. Interestingly, mutation of γH2A has no apparent effect on the binding of Sir (silent information regulator) complex or on gene silencing. In contrast, deletion of SIR3 abolishes the formation of γH2A at heterochromatin. To address the function of γH2A, we used a Δrif1 mutant strain in which telomeres are excessively elongated to show that γH2A is required for the optimal recruitment of Cdc13, a regulator of telomere elongation, and for telomere elongation itself. Thus, a histone modification that parallels Sir3 protein binding is shown here to be dispensable for the formation of a silent structure but is important for a crucial heterochromatin-specific downstream function in telomere homeostasis.Key words: γH2A, H2AS129 phosphorylation, heterochromatin, telomere, Sir complex, Tel1/Mec1, Rif1/2, Cdc13, yKu proteins  相似文献   

2.
Heterochromatin assembly in fission yeast depends on the Clr4 histone methyltransferase, which targets H3K9. We show that the histone deacetylase Sir2 is required for Clr4 activity at telomeres, but acts redundantly with Clr3 histone deacetylase to maintain centromeric heterochromatin. However, Sir2 is critical for Clr4 function during de novo centromeric heterochromatin assembly. We identified new targets of Sir2 and tested if their deacetylation is necessary for Clr4‐mediated heterochromatin establishment. Sir2 preferentially deacetylates H4K16Ac and H3K4Ac, but mutation of these residues to mimic acetylation did not prevent Clr4‐mediated heterochromatin establishment. Sir2 also deacetylates H3K9Ac and H3K14Ac. Strains bearing H3K9 or H3K14 mutations exhibit heterochromatin defects. H3K9 mutation blocks Clr4 function, but why H3K14 mutation impacts heterochromatin was not known. Here, we demonstrate that recruitment of Clr4 to centromeres is blocked by mutation of H3K14. We suggest that Sir2 deacetylates H3K14 to target Clr4 to centromeres. Further, we demonstrate that Sir2 is critical for de novo accumulation of H3K9me2 in RNAi‐deficient cells. These analyses place Sir2 and H3K14 deacetylation upstream of Clr4 recruitment during heterochromatin assembly.  相似文献   

3.
4.
5.
The composition of posttranslational modifications on newly synthesized histones must be altered upon their incorporation into chromatin. These changes are necessary to maintain the same gene expression state at individual chromosomal loci before and after DNA replication. We have examined how one modification that occurs on newly synthesized histone H3, acetylation of K56, influences gene expression at epigenetically regulated loci in Saccharomyces cerevisiae. H3 K56 is acetylated by Rtt109p before its incorporation into chromatin during S phase, and this modification is then removed by the NAD+-dependent deacetylases Hst3p and Hst4p during G2/M phase. We found silenced loci maintain H3 K56 in a hypoacetylated state, and the absence of this modification in rtt109 mutants was compatible with HM and telomeric silencing. In contrast, loss of HST3 and HST4 resulted in hyperacetylation of H3 K56 within silent loci and telomeric silencing defects, despite the continued presence of Sir2p throughout these loci. These silencing defects in hst3Δ hst4Δ mutants could be suppressed by deletion of RTT109. In contrast, overexpression of Sir2p could not restore silencing in hst3Δ hst4Δ mutants. Together, our findings argue that HST3 HST4 play critical roles in maintaining the hypoacetylated state of K56 on histone H3 within silent chromatin.  相似文献   

6.
7.
Discrete regions of the eukaryotic genome assume a heritable chromatin structure that is refractory to gene expression, referred to as heterochromatin or “silent” chromatin. Constitutively silent chromatin is found in subtelomeric domains in a number of species, ranging from yeast to man. In addition, chromatin-dependent repression of mating type loci occurs in both budding and fission yeasts, to enable sexual reproduction. The silencing of chromatin in budding yeast is characterized by an assembly of Silent Information Regulatory (SIR) proteins—Sir2, Sir3 and Sir4—with unmodified nucleosomes. Silencing requires the lysine deacetylase activity of Sir2, extensive contacts between Sir3 and the nucleosome, as well as interactions among the SIR proteins, to generate the Sir2–3–4 or SIR complex. Results from recent structural and reconstitution studies suggest an updated model for the ordered assembly and organization of SIR-dependent silent chromatin in yeast. Moreover, studies of subtelomeric gene expression reveal the importance of subtelomeric silent chromatin in the regulation of genes other than the silent mating type loci. This review covers recent advances in this field.  相似文献   

8.
9.
The organization of eukaryotic genomes is characterized by the presence of distinct euchromatic and heterochromatic sub-nuclear compartments. In Saccharomyces cerevisiae heterochromatic loci, including telomeres and silent mating type loci, form clusters at the nuclear periphery. We have employed live cell 3-D imaging and chromosome conformation capture (3C) to determine the contribution of nuclear positioning and heterochromatic factors in mediating associations of the silent mating type loci. We identify specific long-range interactions between HML and HMR that are dependent upon silencing proteins Sir2p, Sir3p, and Sir4p as well as Sir1p and Esc2p, two proteins involved in establishment of silencing. Although clustering of these loci frequently occurs near the nuclear periphery, colocalization can occur equally at more internal positions and is not affected in strains deleted for membrane anchoring proteins yKu70p and Esc1p. In addition, appropriate nucleosome assembly plays a role, as deletion of ASF1 or combined disruption of the CAF-1 and HIR complexes abolishes the HML-HMR interaction. Further, silencer proteins are required for clustering, but complete loss of clustering in asf1 and esc2 mutants had only minor effects on silencing. Our results indicate that formation of heterochromatic clusters depends on correctly assembled heterochromatin at the silent loci and, in addition, identify an Asf1p-, Esc2p-, and Sir1p-dependent step in heterochromatin formation that is not essential for gene silencing but is required for long-range interactions.  相似文献   

10.
Budding yeast silent chromatin, or heterochromatin, is composed of histones and the Sir2, Sir3, and Sir4 proteins. Their assembly into silent chromatin is believed to require the deacetylation of histones by the NAD-dependent deacetylase Sir2 and the subsequent interaction of Sir3 and Sir4 with these hypoacetylated regions of chromatin. Here we explore the role of interactions among the Sir proteins in the assembly of the SIR complex and the formation of silent chromatin. We show that significant fractions of Sir2, Sir3, and Sir4 are associated together in a stable complex. When the assembly of Sir3 into this complex is disrupted by a specific mutation on the surface of the C-terminal coiled-coil domain of Sir4, Sir3 is no longer recruited to chromatin and silencing is disrupted. Because in sir4 mutant cells the association of Sir3 with chromatin is greatly reduced despite the partial Sir2-dependent deacetylation of histones near silencers, we conclude that histone deacetylation is not sufficient for the full recruitment of silencing proteins to chromatin and that Sir-Sir interactions are essential for the assembly of heterochromatin.  相似文献   

11.
12.
Ubp3 is a conserved ubiquitin protease that acts as an antisilencing factor in MAT and telomeric regions. Here we show that ubp3∆ mutants also display increased silencing in ribosomal DNA (rDNA). Consistent with this, RNA polymerase II occupancy is lower in cells lacking Ubp3 than in wild-type cells in all heterochromatic regions. Moreover, in a ubp3∆ mutant, unequal recombination in rDNA is highly suppressed. We present genetic evidence that this effect on rDNA recombination, but not silencing, is entirely dependent on the silencing factor Sir2. Further, ubp3∆ sir2∆ mutants age prematurely at the same rate as sir2∆ mutants. Thus our data suggest that recombination negatively influences replicative life span more so than silencing. However, in ubp3∆ mutants, recombination is not a prerequisite for aging, since cells lacking Ubp3 have a shorter life span than isogenic wild-type cells. We discuss the data in view of different models on how silencing and unequal recombination affect replicative life span and the role of Ubp3 in these processes.  相似文献   

13.
Chromatin assembly factor I (CAF-I) is a three-subunit histone-binding complex conserved from the yeast Saccharomyces cerevisiae to humans. Yeast cells lacking CAF-I (cacΔ mutants) have defects in heterochromatic gene silencing. In this study, we showed that deletion of HIR genes, which regulate histone gene expression, synergistically reduced gene silencing at telomeres and at the HM loci in cacΔ mutants, although hirΔ mutants had no silencing defects when CAF-I was intact. Therefore, Hir proteins are required for an alternative silencing pathway that becomes important in the absence of CAF-I. Because Hir proteins regulate expression of histone genes, we tested the effects of histone gene deletion and overexpression on telomeric silencing and found that alterations in histone H3 and H4 levels or in core histone stoichiometry reduced silencing in cacΔ mutants but not in wild-type cells. We therefore propose that Hir proteins contribute to silencing indirectly via regulation of histone synthesis. However, deletion of combinations of CAC and HIR genes also affected the growth rate and in some cases caused partial temperature sensitivity, suggesting that global aspects of chromosome function may be affected by the loss of members of both gene families.  相似文献   

14.
The silent mating-type loci HML and HMR of Saccharomyces cerevisiae contain mating-type information that is permanently repressed. This silencing is mediated by flanking sequence elements, the E- and I-silencers. They contain combinations of binding sites for the proteins Rap1, Abf1 and Sum1 as well as for the origin recognition complex (ORC). Together, they recruit other silencing factors, foremost the repressive Sir2/Sir3/Sir4 complex, to establish heterochromatin-like structures at the HM loci. However, the HM silencers exhibit considerable functional redundancy, which has hampered the identification of further silencing factors. In this study, we constructed a synthetic HML-E silencer (HML-SS ΔI) that lacked this redundancy. It consisted solely of Rap1 and ORC-binding sites and the D2 element, a Sum1-binding site. All three elements were crucial for minimal HML silencing, and mutations in these elements led to a loss of Sir3 recruitment. The silencer was sensitive to a mutation in RAP1, rap1-12, but less sensitive to orc mutations or sum1Δ. Moreover, deletions of SIR1 and DOT1 lead to complete derepression of the HML-SS ΔI silencer. This fully functional, minimal HML-E silencer will therefore be useful to identify novel factors involved in HML silencing.  相似文献   

15.
We used the budding yeasts Saccharomyces cerevisiae and Torulaspora delbrueckii to examine the evolution of Sir-based silencing, focusing on Sir1, silencers, the molecular topography of silenced chromatin, and the roles of SIR and RNA interference (RNAi) genes in T. delbrueckii. Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) analysis of Sir proteins in T. delbrueckii revealed a different topography of chromatin at the HML and HMR loci than was observed in S. cerevisiae. S. cerevisiae Sir1, enriched at the silencers of HMLα and HMRa, was absent from telomeres and did not repress subtelomeric genes. In contrast to S. cerevisiae SIR1''s partially dispensable role in silencing, the T. delbrueckii SIR1 paralog KOS3 was essential for silencing. KOS3 was also found at telomeres with T. delbrueckii Sir2 (Td-Sir2) and Td-Sir4 and repressed subtelomeric genes. Silencer mapping in T. delbrueckii revealed single silencers at HML and HMR, bound by Td-Kos3, Td-Sir2, and Td-Sir4. The KOS3 gene mapped near HMR, and its expression was regulated by Sir-based silencing, providing feedback regulation of a silencing protein by silencing. In contrast to the prominent role of Sir proteins in silencing, T. delbrueckii RNAi genes AGO1 and DCR1 did not function in heterochromatin formation. These results highlighted the shifting role of silencing genes and the diverse chromatin architectures underlying heterochromatin.  相似文献   

16.
17.
18.
19.
The CHD remodeling factor Hrp1 stimulates CENP-A loading to centromeres   总被引:4,自引:1,他引:3  
Centromeres of fission yeast are arranged with a central core DNA sequence flanked by repeated sequences. The centromere-associated histone H3 variant Cnp1 (SpCENP-A) binds exclusively to central core DNA, while the heterochromatin proteins and cohesins bind the surrounding outer repeats. CHD (chromo-helicase/ATPase DNA binding) chromatin remodeling factors were recently shown to affect chromatin assembly in vitro. Here, we report that the CHD protein Hrp1 plays a key role at fission yeast centromeres. The hrp1Δ mutant disrupts silencing of the outer repeats and central core regions of the centromere and displays chromosome segregation defects characteristic for dysfunction of both regions. Importantly, Hrp1 is required to maintain high levels of Cnp1 and low levels of histone H3 and H4 acetylation at the central core region. Hrp1 interacts directly with the centromere in early S-phase when centromeres are replicated, suggesting that Hrp1 plays a direct role in chromatin assembly during DNA replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号