首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Cellular signalling》2014,26(12):2885-2895
The endothelin-1 (ET-1)/endothelin A receptor (ETAR, a G protein-coupled receptor) axis confers pleiotropic effects on both tumor cells and the tumor microenvironment, modulating chemo-resistance and other tumor-associated processes by activating Gαq- and β-arrestin-mediated pathways. While the precise mechanisms by which these effects occur remain to be elucidated, interference with ETAR signaling has emerged as a promising antitumor strategy in many cancers including ovarian cancer (OC). However, current clinical approaches using ETAR antagonists in the absence of a detailed knowledge of downstream signaling have resulted in multiple adverse side effects and limited therapeutic efficacy. To maximize the safety and efficacy of ETAR-targeted OC therapy, we investigated the role of other G protein subunits such as Gαs in the ETAR-mediated ovarian oncogenic signaling. In HEY (human metastatic OC) cells where the ET-1/ETAR axis is well-characterized, Gαs signaling inhibits ETAR-mediated OC cell migration, wound healing, proliferation and colony formation on soft agar while inducing OC cell apoptosis. Mechanistically, ET-1/ETAR is coupled to Gαs/cAMP signaling in the same ovarian carcinoma-derived cell line. Gαs/cAMP/PKA activation inhibits ETAR-mediated β-arrestin activation of angiogenic/metastatic Calcrl and Icam2 expression. Consistent with our findings, Gαs overexpression is associated with improved survival in OC patients in the analysis of the Cancer Genome Atlas data. In conclusion, our results indicate a novel function for Gαs signaling in ET-1/ETAR-mediated OC oncogenesis and may provide a rationale for a biased signaling mechanism, which selectively activates Gαs-coupled tumor suppressive pathways while blocking Gαq-/β-arrestin-mediated oncogenic pathways, to improve the targeting of the ETAR axis in OC.  相似文献   

2.
The ability to stimulate angiogenesis/lymphangiogenesis is an intrinsic property of cancer cells, providing them necessary conditions for growth and metastasis. The “angiogenic switch” is one of the earliest consequences of malignant transformation; it involves altered expression of numerous genes and triggers a complex set of signaling pathways in endothelial cells. Processes of tumor microvascular network formation are closely associated with the stages of carcinogenesis (from appearance of benign lesions to invasive forms) and occur with numerous deviations from the norm. Analysis of expression of proangiogenic factors during sequential steps of cervical cancer development (intraepithelial neoplasia, cancer in situ, microinvasive, and invasive cancer) provides opportunity to reconstruct the regulatory mechanisms of angiogenesis/lymphangiogenesis with emphasis on the most important components. This review summarizes literature data on expression of key regulators of angiogenesis in cervical intraepithelial neoplasia and cervical cancer and analyses their possible involvement in molecular mechanisms of neoplastic transformation of epithelial cells, as well as invasion and tumor metastasis. Correlation between expression of proangiogenic molecular factors and various clinicopathological parameters is considered in the context of their possible use in molecular diagnostics and targeted therapy of cervical cancer. Special attention is paid to rather poorly studied regulators of lymphangiogenesis and “non-VEGF dependent,” or alternative, angiogenic pathways that constitute the prospect of future research in the field.  相似文献   

3.
We show that vasoactive intestinal peptide (VIP) exerts trophic and proangiogenic activities in experimental prostate cancer in vivo. Nude mice were subcutaneously injected with Matrigel impregnated with LNCaP prostate cancer cells. Cell treatment with 100 nM VIP for 1h before xenograft resulted in increased tumor growth after 8 and, more remarkably, 15 days of injection. The same occurred with the mRNA expression of the main angiogenic factor, vascular endothelial growth factor (VEGF), as shown by real-time RT-PCR quantification. The proangiogenic activity of VIP was further established by showing increases of hemoglobin levels, Masson trichromic staining, and immunohistochemical CD34 staining in tumors excised 15 days after subcutaneous injection of VIP-treated cells as compared to control conditions. All these parameters indicate that VIP increases vessel formation. This xenograft model is a useful tool to study in vivo the effects of VIP-related peptides in tumor growth and development of blood supply as well as their therapeutical potential in prostate cancer.  相似文献   

4.
Because angiogenesis underlies the pathogenesis of numerous conditions (cancer, psoriasis, macular degeneration), there is a pressing need for continued investigations into angiogenic signaling and potential drug targets. Antiangiogenic agents can be classified as either direct or indirect. Direct antiangiogenics act on untransformed endothelial cells to prevent differentiation and proliferation; indirect antiangiogenics act to inhibit factors involved in proangiogenic signaling. Agents currently available with dermatologic indications are few; while several established and novel biologics targeting various proangiogenic factors are currently being investigated for potential dermatologic uses, but the jury is still out on their efficacy and safety. In this review, we highlight our experience with a group of existing and novel, small molecules that combine several modes of action against angiogenesis in addition to other properties – triarylmethane dyes and fulvene derivatives.  相似文献   

5.
Recent work has identified dysfunctional Hippo signaling to be involved in maintenance and progression of various human cancers, although data on clear cell renal cell carcinoma (ccRCC) have been limited. Here, we provide evidence implicating aberrant Hippo signaling in ccRCC proliferation, invasiveness, and metastatic potential. Nuclear overexpression of the Hippo target Yes-associated protein (YAP) was found in a subset of patients with ccRCC. Immunostaining was particularly prominent at the tumor margins and highlighted neoplastic cells invading the tumor-adjacent stroma. Short hairpin RNA-mediated knockdown of YAP significantly inhibited proliferation, migration, and anchorage-independent growth of ccRCC cells in soft agar and led to significantly reduced murine xenograft growth. Microarray analysis of YAP knockdown versus mock-transduced ccRCC cells revealed down-regulation of endothelin 1, endothelin 2, cysteine-rich, angiogenic inducer, 61 (CYR61), and c-Myc in ccRCC cells as well as up-regulation of the cell adhesion molecule cadherin 6. Signaling pathway impact analysis revealed activation of the p53 signaling and cell cycle pathways as well as inhibition of mitogen-activated protein kinase signaling on YAP down-regulation. Our data suggest CYR61 and c-Myc as well as signaling through the endothelin axis as bona fide downstream effectors of YAP and establish aberrant Hippo signaling as a potential therapeutic target in ccRCC.  相似文献   

6.
The initiation of new blood vessels through angiogenesis is critical to tumor growth. Tumor cells release soluble angiogenic factors that induce neovascularization, without which nutrients and oxygen would not be available to allow tumors to grow more than 2-3 mm in diameter. This "angiogenic switch" or angiogenic phenotype requires an imbalance between proangiogenic and antiangiogenic factors since the formation of new blood vessels is highly regulated. This review discusses angiogenesis mediators, and the potential for manipulation of angiogenic factors as a practical cancer therapy, particularly in prostate cancer.  相似文献   

7.
Renal cell carcinoma (RCC) accounts for 3% of new cancer incidence and mortality in the United States. Studies in RCC have predominantly focused on VEGF in promoting tumor-associated angiogenesis. However, other angiogenic factors may contribute to the overall angiogenic milieu of RCC. We hypothesized that the CXCR2/CXCR2 ligand biological axis represents a mechanism by which RCC cells promote angiogenesis and facilitate tumor growth and metastasis. Therefore, we first examined tumor biopsies and plasma of patients with metastatic RCC for levels of CXCR2 ligands, and RCC tumor biopsies for the expression of CXCR2. The proangiogenic CXCR2 ligands CXCL1, CXCL3, CXCL5, and CXCL8, as well as VEGF were elevated in the plasma of these patients and found to be expressed within the tumors. CXCR2 was found to be expressed on endothelial cells within the tumors. To assess the role of ELR(+) CXC chemokines in RCC, we next used a model of syngeneic RCC (i.e., RENCA) in BALB/c mice. CXCR2 ligand and VEGF expression temporally increased in direct correlation with RENCA growth in CXCR2(+/+) mice. However, there was a marked reduction of RENCA tumor growth in CXCR2(-/-) mice, which correlated with decreased angiogenesis and increased tumor necrosis. Furthermore, in the absence of CXCR2, orthotopic RENCA tumors demonstrated a reduced potential to metastasize to the lungs of CXCR2(-/-) mice. These data support the notion that CXCR2/CXCR2 ligand biology is an important component of RCC tumor-associated angiogenesis and tumorigenesis.  相似文献   

8.
Coagulation abnormalities occur frequently in cancer patients. It is becoming evident that blood platelets have an important function in this process. However, understanding of the underlying mechanisms is still very modest. In this review, we discuss the role of platelets in tumor angiogenesis and growth and suggest their potential significance in malignancies. Platelets contain various pro-and antiangiogenic molecules, which seem to be endocytosed and sequestered in different populations of α-granules. Furthermore, tumor endothelial cells are phenotypically and functionally different from endothelial cells in healthy tissue, stimulating local platelet adhesion and subsequent activation. As a consequence, platelets are able to secrete their angiogenic and angiostatic content, most likely in a regulated manner. The overall effect of these platelet–endothelium interactions appears to be proangiogenic, stimulating tumor angiogenesis. We favor the view that local adhesion and activation of blood platelets and dysregulation of coagulation represent underestimated pathways in the progression of cancer.  相似文献   

9.
Vasohibin1 (VASH1) is a kind of vasopressor, produced by negative feedback from vascular endothelial growth factor A (VEGFA). Anti-angiogenic therapy targeting VEGFA is currently the first-line treatment for advanced ovarian cancer (OC), but there are still many adverse effects. Regulatory T cells (Tregs) are the main lymphocytes mediating immune escape function in the tumor microenvironment (TME) and have been reported to influence the function of VEGFA. However, whether Tregs are associated with VASH1 and angiogenesis in TME in OC is unclear. We aimed to explore the relationship between angiogenesis and immunosuppression in the TME of OC. We validated the relationship between VEGFA, VASH1, and angiogenesis in ovarian cancer and their prognostic implications. The infiltration level of Tregs and its marker forkhead box protein 3 (FOXP3) were explored in relation to angiogenesis-related molecules. The results showed that VEGFA and VASH1 were associated with clinicopathological stage, microvessel density and poor prognosis of ovarian cancer. Both VEGFA and VASH1 expression were associated with angiogenic pathways and there was a positive correlation between VEGFA and VASH1 expression. Tregs correlated with angiogenesis-related molecules and indicated that high FOXP3 expression is harmful to the prognosis. Gene set enrichment analysis (GSEA) predicted that angiogenesis, IL6/JAK/STAT3 signaling, PI3K/AKT/mTOR signaling, TGF-β signaling, and TNF-α signaling via NF-κB may be common pathways for VEGFA, VASH1, and Tregs to be involved in the development of OC. These findings suggest that Tregs may be involved in the regulation of tumor angiogenesis through VEGFA and VASH1, providing new ideas for synergistic anti-angiogenic therapy and immunotherapy in OC.  相似文献   

10.
The ErbB receptors and their role in cancer progression   总被引:27,自引:0,他引:27  
The involvement of the ErbB receptor tyrosine kinases in human cancer, as well as their essential role in a variety of physiological events during normal development, have motivated the interest in this receptor family. Approaches taken to block the activity of ErbB receptors in cancer cells have not only proven that they drive in vitro tumor cell proliferation, but have also become clinically relevant for targeting tumors with deregulated ErbB signaling. The mechanisms and downstream effectors through which the ErbB receptors influence processes linked to malignant development, including proliferation, cell survival, angiogenesis, migration, and invasion, are, however, only now becoming apparent. Our particular emphasis in this review will be on how ErbB receptors, in particular ErbB1 and ErbB2, contribute to processes linked to cancer progression. Importantly, in keeping with the emerging theme that ErbB receptors do not function in isolation, we will focus on receptor cooperativity, i.e., ErbB1 cooperates with other classes of receptors, and the ligand-less ErbB2 functions as a heterodimer with other ErbBs.  相似文献   

11.
Heparan sulfate (HS) is a component of cell surface and extracellular matrix proteoglycans that regulates numerous signaling pathways by binding and activating multiple growth factors and chemokines. The amount and pattern of HS sulfation are key determinants for the assembly of the trimolecular, HS-growth factor-receptor, signaling complex. Here we demonstrate that HS 6-O-sulfotransferases 1 and 2 (HS6ST-1 and HS6ST-2), which perform sulfation at 6-O position in glucosamine in HS, impact ovarian cancer angiogenesis through the HS-dependent HB-EGF/EGFR axis that subsequently modulates the expression of multiple angiogenic cytokines. Down-regulation of HS6ST-1 or HS6ST-2 in human ovarian cancer cell lines results in 30–50% reduction in glucosamine 6-O-sulfate levels in HS, impairing HB-EGF-dependent EGFR signaling and diminishing FGF2, IL-6, and IL-8 mRNA and protein levels in cancer cells. These cancer cell-related changes reduce endothelial cell signaling and tubule formation in vitro. In vivo, the development of subcutaneous tumor nodules with reduced 6-O-sulfation is significantly delayed at the initial stages of tumor establishment with further reduction in angiogenesis occurring throughout tumor growth. Our results show that in addition to the critical role that 6-O-sulfate moieties play in angiogenic cytokine activation, HS 6-O-sulfation level, determined by the expression of HS6ST isoforms in ovarian cancer cells, is a major regulator of angiogenic program in ovarian cancer cells impacting HB-EGF signaling and subsequent expression of angiogenic cytokines by cancer cells.  相似文献   

12.
Antiangiogenic therapy is important for the treatment of gynecological cancer. However, the therapeutic benefit derived from these treatments is transient, predominantly due to the selective activation of compensatory proangiogenic pathways that lead to rapid development of resistance. We aimed to identify and target potential alternative signaling to anti-vascular endothelial growth factor (VEGF) therapy, with a view toward developing a combination of antiangiogenic agents to provide extended therapeutic benefits. We developed a preclinical in vivo phenotypic resistance model of ovarian cancer resistant to antiangiogenic therapy. We measured dynamic changes in secreted chemokines and angiogenic signaling in tumors and plasma in response to anti-VEGF treatment, as tumors advanced from the initial responsive phase to progressive disease. In tumors that progressed following sorafenib treatment, gene and protein expression levels of proangiogenic CXC chemokines and their receptors were significantly elevated, compared with responsive tumors. The chemokine (C-X-C motif) ligand 8 (CXCL8), also known as interleukin-8 (IL-8) increase was time-dependent and coincided with the dynamics of tumor progression. We used SB225002, a pharmacological inhibitor of chemokine (C-X-C motif) receptor 2 (CXCR2), to disrupt the CXC chemokine-mediated functions of ovarian cancer cells in in vitro assays of cell growth inhibition, spheroid formation, and cell migration. The combination of CXCR2 inhibitor with sorafenib led to a synergistic inhibition of cell growth in vitro, and further stabilized tumor progression following sorafenib in vivo. Our results suggest that CXCR2-mediated chemokines may represent an important compensatory pathway that promotes resistance to antiangiogenic therapy in ovarian cancer. Thus, simultaneous blockage of this proangiogenic cytokine pathway using CXCR2 inhibitors and the VEGF receptor (VEGFR) pathway could improve the outcomes of antiangiogenic therapy.  相似文献   

13.
Endothelial progenitor cells (EPCs) have been recently found to exist circulating in peripheral blood of adults, and home to sites of neovascularization in peripheral tissues. They can also be differentiated from peripheral blood mononuclear cells (PBMNCs). In tumor tissues, EPCs are found in highly vascularized lesions. Few reports exist in the literature concerning the characteristics of EPCs, especially related to their surface antigen expressions, except for endothelial markers. Here, we aimed to investigate the surface expression of differentiation markers, and the functional activities of early-outgrowth of EPCs (EO-EPCs), especially focusing on their antigen-presenting ability. EO-EPCs were generated from PBMNCs, by culture in the presence of angiogenic factors. These EO-EPCs had the morphological and functional features of endothelial cells and, additionally, they shared antigen-presenting ability. They induced the proliferation of allogeneic lymphocytes in a mixed-lymphocyte reaction, and could generate cytotoxic lymphocytes, with the ability to lyze tumor cells in an antigen-specific manner. The antigen-presenting ability of EO-EPCs, however, was weaker than that of monocyte-derived dendritic cells, but stronger than peripheral blood monocytes. Since EO-EPCs play an important role in the development of tumor angiogenesis, targeting EPCs would be an effective anti-angiogenic strategy. Alternatively, due to their antigen-presenting ability, EO-EPCs can be used as the effectors of anti-tumor immunotherapy. Since they share endothelial antigens, the activation of a cellular immunity against angiogenic vessels can be expected. In conclusion, EO-EPCs should be an interesting alternative for the development of new therapeutic strategies to combat cancer, either as the effectors or as the targets of cancer immunotherapy.  相似文献   

14.
We have identified and characterized a novel proangiogenic glycoprotein (NAP) with molecular weight of 67 kDa from synovial fluid of rheumatoid arthritis patients. Proteomic analysis of the protein revealed 29% sequence coverage with maximum identity for human retinoblastoma binding protein 2. N-terminal amino acid sequence showed no identity to recently discovered protein sequences. NAP was also identified in both normal and tumor cell lines by Western blotting. NAP is a permeability factor as verified by miles permeability assay. The proangiogenic potential of NAP was identified using shell less CAM, rat cornea and tumor on CAM assays. NAP induces expression of VEGF and Flt-1 gene as verified by promoter reporter gene analysis. Further NAP induces proliferation of endothelial cells and formation of tube like structures. NAP is also involved in migration and invasion of tumor cells. Clinical data revealed the presence of NAP in breast cancer biopsies. We have developed monoclonal antibody (mAb), and specific ELISA, which confirmed the presence of NAP in the cytosol of tumor cells. The mAb effect was evaluated with established angiogenic assays. Further, we investigated the detailed mechanism by which NAP induces angiogenesis. NAP is phosphorylated by VEGF induced activation of MAPK and JNK pathways through VEGFR2 phosphorylation. NAP involves JNK pathway predominantly with further activation of NFκB in downstream processing of VEGF activation. Together these findings establish that NAP displays angiogenic properties and promotes efficient neovascularization both in vitro and in vivo models. These observations suggest that anti-NAP-mAb can be targeted for antiangiogenic therapy of cancer.  相似文献   

15.
Wang J  Wang J  Sun Y  Song W  Nor JE  Wang CY  Taichman RS 《Cellular signalling》2005,17(12):1578-1592
The establishment of metastatic bone lesions in prostate cancer (CaP) is a process partially dependent on angiogenesis. Previously we demonstrated that the stromal-derived factor-1 (SDF-1 or CXCL12)/CXCR4 chemokine axis is critical for CaP cell metastasis. In this investigation, cell lines were established in which CXCR4 expression was knocked down using siRNA technology. When CaP cells were co-transplanted with human vascular endothelial cells into SCID mice, significantly fewer human blood vessels were observed paralleling the reductions in CXCR4 levels. Likewise, the invasive behaviors of the CaP cells were inhibited in vitro. From these functional observations we explored angiogenic and signaling mechanisms generated following SDF-1 binding to CXCR4. Differential activation of the MEK/ERK and PI3K/AKT pathways that result in differential secretion IL-6, IL-8, TIMP-2 and VEGF were seen contingent on the cell type examined; VEGF and TIMP-2 expression in PC3 cells are dependent on AKT activation and ERK activation in LNCaP and LNCaP C4-2B cells leads to IL-6 or IL-8 secretion. At the same time, expression of angiostatin levels were inversely related to CXCR4 levels, and inhibited by SDF-1 stimulation. These data link the SDF-1/CXCR4 pathway to changes in angiogenic cytokines by different signaling mechanisms and, suggest that the delicate equilibrium between proangiogenic and antiangiogenic factors may be achieved by different signal transduction pathways to regulate the angiogenic phenotype of prostate cancers. Taken together, our results provide new information regarding expression of functional CXCR4 receptor-an essential role and potential mechanism of angiogenesis upon SDF-1 stimulation.  相似文献   

16.
Sirtuins are stress‐responsive proteins that direct various post‐translational modifications (PTMs) and as a result, are considered to be master regulators of several cellular processes. They are known to both extend lifespan and regulate spontaneous tumor development. As both aging and cancer are associated with altered stem cell function, the possibility that the involvement of sirtuins in these events is mediated by their roles in stem cells is worthy of investigation. Research to date suggests that the individual sirtuin family members can differentially regulate embryonic, hematopoietic as well as other adult stem cells in a tissue‐ and cell type‐specific context. Sirtuin‐driven regulation of both cell differentiation and signaling pathways previously involved in stem cell maintenance has been described where downstream effectors involved determine the biological outcome. Similarly, diverse roles have been reported in cancer stem cells (CSCs), depending on the tissue of origin. This review highlights the current knowledge which places sirtuins at the intersection of stem cells, aging, and cancer. By outlining the plethora of stem cell‐related roles for individual sirtuins in various contexts, our purpose was to provide an indication of their significance in relation to cancer and aging, as well as to generate a clearer picture of their therapeutic potential. Finally, we propose future directions which will contribute to the better understanding of sirtuins, thereby further unraveling the full repertoire of sirtuin functions in both normal stem cells and CSCs.  相似文献   

17.
The Notch signaling pathway is conserved in vertebrates and invertebrates and is involved in many developmental processes. Notch receptors and ligands are expressed on the cell surface enabling interactions between adjacent cells upon receptor-ligand binding. Notch signaling molecules have an important well-documented role in vascular development, differentiation, proliferation, apoptosis and tumorigenesis. Recently, several groups have identified the importance of Notch signaling in tumor angiogenesis. Notch activity increases specifically in tumor endothelium and in various tumors types and, in some studies, Notch signaling suppresses angiogenic processes. Because the Notch signaling pathway can mediate communication between various cell types in the tumor microenvironment, interactions between tumor cells and endothelial cells might promote angiogenesis, therefore targeting the Notch pathway might provide a novel strategy for anti-angiogenic therapies. Here, we discuss recent insights of Notch signaling in tumor angiogenesis.  相似文献   

18.
Although chemokines are well established to function in immunity and endothelial cell activation and proliferation, a rapidly growing literature suggests that CXC Chemokine receptors CXCR3, CXCR4 and CXCR7 are critical in the development and progression of solid tumors. The effect of these chemokine receptors in tumorigenesis is mediated via interactions with shared ligands I-TAC (CXCL11) and SDF-1 (CXCL12). Over the last decade, CXCR4 has been extensively reported to be overexpressed in most human solid tumors and has earned considerable attention toward elucidating its role in cancer metastasis. To enrich the existing armamentarium of anti-cancerous agents, many inhibitors of CXCL12–CXCR4 axis have emerged as additional or alternative agents for neo-adjuvant treatments and even many of them are in preclinical and clinical stages of their development. However, the discovery of CXCR7 as another receptor for CXCL12 with rather high binding affinity and recent reports about its involvement in cancer progression, has questioned the potential of “selective blockade” of CXCR4 as cancer chemotherapeutics. Interestingly, CXCR7 can also bind another chemokine CXCL11, which is an established ligand for CXCR3. Recent reports have documented that CXCR3 and their ligands are overexpressed in different solid tumors and regulate tumor growth and metastasis. Therefore, it is important to consider the interactions and crosstalk between these three chemokine receptors and their ligand mediated signaling cascades for the development of effective anti-cancer therapies. Emerging evidence also indicates that these receptors are differentially expressed in tumor endothelial cells as well as in cancer stem cells, suggesting their direct role in regulating tumor angiogenesis and metastasis. In this review, we will focus on the signals mediated by this receptor trio via their shared ligands and their role in tumor growth and progression.  相似文献   

19.
Stress can alter immunological, neurochemical and endocrinological functions, but its role in cancer progression is not well understood. Here, we show that chronic behavioral stress results in higher levels of tissue catecholamines, greater tumor burden and more invasive growth of ovarian carcinoma cells in an orthotopic mouse model. These effects are mediated primarily through activation of the tumor cell cyclic AMP (cAMP)-protein kinase A (PKA) signaling pathway by the beta(2) adrenergic receptor (encoded by ADRB2). Tumors in stressed animals showed markedly increased vascularization and enhanced expression of VEGF, MMP2 and MMP9, and we found that angiogenic processes mediated the effects of stress on tumor growth in vivo. These data identify beta-adrenergic activation of the cAMP-PKA signaling pathway as a major mechanism by which behavioral stress can enhance tumor angiogenesis in vivo and thereby promote malignant cell growth. These data also suggest that blocking ADRB-mediated angiogenesis could have therapeutic implications for the management of ovarian cancer.  相似文献   

20.
LY2228820 dimesylate is a highly selective small molecule inhibitor of p38α and p38β mitogen-activated protein kinases (MAPKs) that is currently under clinical investigation for human malignancies. p38 MAPK is implicated in a wide range of biological processes, in particular those that support tumorigenesis. One such process, angiogenesis, is required for tumor growth and metastasis, and many new cancer therapies are therefore directed against the tumor vasculature. Using an in vitro co-culture endothelial cord formation assay, a surrogate of angiogenesis, we investigated the role of p38 MAPK in growth factor- and tumor-driven angiogenesis using LY2228820 dimesylate treatment and by shRNA gene knockdown. p38 MAPK was activated in endothelial cells upon growth factor stimulation, with inhibition by LY2228820 dimesylate treatment causing a significant decrease in VEGF-, bFGF-, EGF-, and IL-6-induced endothelial cord formation and an even more dramatic decrease in tumor-driven cord formation. In addition to involvement in downstream cytokine signaling, p38 MAPK was important for VEGF, bFGF, EGF, IL-6, and other proangiogenic cytokine secretion in stromal and tumor cells. LY2228820 dimesylate results were substantiated using p38α MAPK-specific shRNA and shRNA against the downstream p38 MAPK effectors MAPKAPK-2 and HSP27. Using in vivo models of functional neoangiogenesis, LY2228820 dimesylate treatment reduced hemoglobin content in a plug assay and decreased VEGF-A-stimulated vascularization in a mouse ear model. Thus, p38α MAPK is implicated in tumor angiogenesis through direct tumoral effects and through reduction of proangiogenic cytokine secretion via the microenvironment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号