首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In our attempt to develop effective EGFR-TKIs, two series of 1H-pyrazolo[3,4-d]pyrimidine derivatives were designed and synthesized. All the newly synthesized compounds were evaluated in vitro for their inhibitory activities against EGFRWT. Compounds 15b, 15j, and 18d potently inhibited EGFRWT at sub-micro molar IC50 values comparable to that of erlotinib. Moreover, thirteen compounds that showed promising IC50 values against EGFRWT were tested in vitro for their inhibitory activities against mutant EGFRT790M. Compounds 17d and 17f exhibited potent inhibitory activities towards EGFRT790M comparable to osimertinib. Compounds that showed promising IC50 values against EGFRWT were further tested for their anti-proliferative activities against three cancer cell lines bearing EGFRWT (MCF-7, HepG2, A549), and two cancer cell lines bearing EGFRT790M (H1975 and HCC827). Compounds 15g, 15j, 15n, 18d and 18e were the most potent anticancer agents against the EGFRWT containing cells, while compounds 15e, 17d and 17f showed promising anti-proliferative activities against EGFRT790M containing cells. Furthermore, the most active compound 18d was selected for further studies regarding to its effects on cell cycle progression and induction of apoptosis in the HepG2 cell line. The results indicated that this compound is good apoptotic agent and arrests G0/G1and G2/M phases of cell cycle. Finally, molecular docking studies were performed to investigate binding pattern of the synthesized compounds with the prospective targets, EGFRWT (PDB: 4HJO) and EGFRT790M (PDB: 3W2O).  相似文献   

2.
Deregulation of many kinases is directly linked to cancer development and the tyrosine kinase family is one of the most important targets in current cancer therapy regimens. In this study, we have designed and synthesized a series of thieno[2,3-d]pyrimidine derivatives as an EGFR and HER2 tyrosine kinase inhibitors. All the synthesized compounds were evaluated in vitro for their inhibitory activities against EGFRWT; and the most active compounds that showed promising IC50 values against EGFRWT were tested in vitro for their inhibitory activities against mutant EGFRT790M and HER2 kinases. Moreover, the antitumor activities of these compounds were tested against four cancer cell lines (HepG2, HCT-116, MCF-7 and A431). Compounds 13g, 13h and 13k exhibited the highest activities against the examined cell lines with IC50 values ranging from 7.592 ± 0.32 to 16.006 ± 0.58 µM comparable to that of erlotinib (IC50 ranging from 4.99 ± 0.09 to 13.914 ± 0.36 µM). Furthermore, the most potent antitumor agent (13k) was selected for further studies to determine its effect on the cell cycle progression and apoptosis in MCF-7 cell line. The results indicated that this compound arrests G2/M phase of the cell cycle and it is a good apoptotic agent. Finally, molecular docking studies showed a good binding pattern of the synthesized compounds with the prospective target, EGFRWT and EGFRT790M.  相似文献   

3.
In present study, we described the synthesis and biological evaluation of a new class of EGFR inhibitors containing 2,9-disubstituted 8-phenylthio/phenylsulfinyl-9H-purine scaffold. Thirty-one compounds were synthesized. Among them, compound C9 displayed the IC50 of 29.4?nM against HCC827 cell line and 1.9?nM against EGFRL858R. Compound C12 showed moderate inhibitory activity against EGFRL858R/T790M/C797S (IC50?=?114?nM). Western bolt assay suggested that compound C9 significantly inhibited EGFR phosphorylation. In vivo test, compound C9 remarkably exhibited inhibitory effect on tumor growth at 5.0?mg/kg by oral administration in established nude mouse HCC827 xenograft model. These results indicate that the 2,9-disubstituted 8-phenylsulfinyl/phenylsulfinyl-9H-purine derivatives can act as potent EGFR(L858R) inhibitors and effective anticancer agents. Additionally, optimization of compound C12 may result in discovering the fourth-generation EGFR-TKIs.  相似文献   

4.
To overcome the drug-resistance of first generation EGFR inhibitors and the nonselective toxicities of second generation inhibitors among NSCLC patients, a series of 5-(methylthio)pyrimidine derivatives were discovered as novel EGFR inhibitors, which harbored not only potent enzymatic and antiproliferative activities against EGFRL858R/T790M mutants, but good selectivity over wide-type form of the receptor. This goal was achieved by employing structure-based drug design and traditional optimization strategies, based on WZ4002 and CO1686. These derivatives inhibited the enzymatic activity of EGFRL858R/T790M mutants with IC50 values in subnanomolar ranges, while exhibiting hundreds of fold less potency on EGFRWT. These compounds also strongly inhibited the proliferation of H1975 non-small cell lung cancer cells bearing EGFRL858R/T790M, while being significantly less toxic to A431 human epithelial carcinoma cells with overexpressed EGFRWT. The EGFR kinase inhibitory and antiproliferative activities were further validated by Western blot analysis for activation of EGFR and the downstream signaling in cancer cells.  相似文献   

5.
In the present study, a new class of compounds containing pyrido[3,4-d]pyrimidine scaffold with an acrylamide moiety was designed as irreversible EGFR-TKIs to overcome acquired EGFR-T790M resistance. The most promising compound 25h inhibited HCC827 and H1975 cells growth with the IC50 values of 0.025?μM and 0.49?μM, respectively. Meanwhile, 25h displayed potent inhibitory activity against the EGFRL858R (IC50?=?1.7?nM) and EGFRL858R/T790M (IC50?=?23.3?nM). 25h could suppress EGFR phosphorylation in HCC827 and H1975 cell lines and significantly induce the apoptosis of HCC827 cells. Additionally, compound 25h could remarkably inhibit cancer growth in established HCC827 xenograft mouse model at 50?mg/kg in vivo. These results indicated that the 2,4-disubstituted 6-(5-substituted pyridin-2-amino)pyrido[3,4-d]pyrimidine derivatives can serve as effective EGFR inhibitors and potent anticancer agents.  相似文献   

6.
The covalent binding nature of irreversible kinase inhibitors potentially increases the severity of “off-target” toxicity. Based on our continual strategy of chemically tuning the Michael addition acceptors, herein, we further explore the relationship among the electronic nature of Michael addition acceptors and EGFRT790M mutation selectivity as well as “off-target” toxicity balance. By perturbing the electronic nature of acrylamide moiety, compound 8a with a chloro-group at the α-position of the Michael addition acceptor was identified. It was found that 8a retained the excellent EGFR L858R/T790M potency (IC50 = 3.9 nM) and exhibited good anti-proliferative activities against the gefitinib-resistant NCI-H1975 cells (IC50 = 0.75 μM). Moreover, 8a displayed a significant EGFRWT selectivity and much weaker inhibitory activity against non-EGFR dependent SW620 cell and COS7. Preliminary study showed that 8a could arrest NCI-H1975 cells in G0/G1 phase. This work provides a promising chemical tuned strategy for balancing the mutant-EGFR potency and selectivity as well as “off-target” toxicity.  相似文献   

7.
A novel series of 2,3-dihydro-[1,4]dioxino[2,3-f]quinazoline derivatives were designed, synthesized and evaluated as reversible and noncovalent epidermal growth factor receptor (EGFR) inhibitors. Most of the compounds exhibited good potency against EGFRwt and some showed moderate to excellent potency against EGFRT790M/L858R mutant. The half-maximal inhibitory concentration (IC50) values of twenty-one compounds against EGFRwt were less than 50 nM, and those of six compounds were less than 10 nM. The IC50 values of eleven compounds against EGFRT790M/L858R were less than 100 nM. Among these, compound b1 displayed the most potent inhibitory activity against EGFRwt (IC50 = 2.0 nM) and EGFRT790M/L858R (IC50 = 6.9 nM). Compounds with excellent inhibitory activities against EGFRwt and EGFRT790M/L858R kinase inhibitory activities showed good antiproliferative activities against H358 and A549 cells. Docking study was performed to position compound b1 into the EGFR active pocket to determine the probable binding conformation.  相似文献   

8.
Modifications at C6 and C7 positions of 3-cyanoquinolines 6 and 7 led to potent inhibitors of the ErbB family of kinases particularly against EGFRWT and Her4 enzymes in the radioisotope filter binding assay. The lead (4, SAB402) displayed potent dual biochemical activities with EGFRWT/Her4 IC50 ratio of 80 due to its potent inhibition of Her4 activity (IC50 0.03 nM), however, the selectivity towards activating mutations (EGFRL858R, EGFRex19del) was decreased. Inhibitor 4 also exhibited excellent growth inhibition in seven different cancer types and reduced cell viability in female NMRI nude mice in the intraperitoneally implanted hollow fibers which have been loaded with MOLT-4 (leukemia) and NCI-H460 (NSCLC) cells in a statistically significant manner.  相似文献   

9.
A new class of 2(1H)-pyrimidinone derivatives was identified as potential EGFR T790M inhibitors against TKI-resistant NSCLC. These novel compounds inhibited the EGFR T790M kinase activity at concentrations in the range of 85.3 to 519.9 nM. In particular, compound 7e exhibited the strongest activity against both EGFRWT (IC50 = 96.9 nM) and EGFRT790M (IC50 = 85.3 nM) kinases in the cells. Compared with inhibitor 7e, compound 7b displayed enhanced antiproliferative activity against gefitinib-resistant H1975 cells harboring the EGFR T790M mutation. In addition, compound 7b also has low toxicity against the normal human liver cells LO2, with an IC50 of 11.1 µM. Moreover, both the AO/EB and DAPI staining assays also demonstrated the inhibitory efficacy of 7b against the resistant H1975 cells. This contribution provides a new scaffold 2(1H)-pyrimidinone as potential EGFR T790M inhibitor against drug-resistant NSCLC.  相似文献   

10.
Despite the remarkable benefits of gefitinib, the clinical efficacy is eventually diminished due to the acquired point mutations in the EGFR (T790M). To address this unmet medical need, we demonstrated a strategy to prepare a hybrid analogue consisting of the oxooxazolidine ring and the quinazoline scaffold and provided alternative noncovalent inhibitors targeting mutant forms of EGFR. Most of the derivatives displayed moderate to good anti-proliferative activity against gefitinib-resistant NCI-H1975. Some of them exhibited potent EGFR kinase inhibitory activities, especially on EGFRT790M and EGFRL858R kinases. SAR studies led to the identification of a hit 9a that can target both of the most common EGFR mutants: L858R and T790M. Also, 9a displayed weaker inhibitory against cancer cell lines with low level of EGFR expression and good chemical stability under different pH conditions. The work presented herein showed the potential for developing noncovalent inhibitors targeting EGFR mutants.  相似文献   

11.
A new series of pyrido[2,3-d]pyrimidin-4(3H)-one derivatives having the essential pharmacophoric features of EGFR inhibitors has been designed and synthesised. Cell viability screening was performed for these compounds against A-549, PC-3, HCT-116, and MCF-7 cell lines at a dose of 100 μM. The highest active derivatives (8a, 8 b, 8d, 9a, and 12b) were selected for IC50 screening. Compounds 8a, 8 b, and 9a showed the highest cytotoxic activities and were further investigated for wild EGFRWT and mutant EGFRT790M inhibitory activities. Compound 8a showed the highest inhibitory activities against EGFRWT and EGFRT790M with IC50 values of 0.099 and 0.123 µM, respectively. In addition, it arrested the cell cycle at pre-G1 phase and induced a significant apoptotic effect in PC-3 cells. Furthermore, compound 8a induced a 5.3-fold increase in the level of caspase-3 in PC-3 cells. Finally, docking studies were carried out to examine the binding mode of the synthesised compounds against both EGFRWT and EGFRT790M.  相似文献   

12.
The efficacy of EGFR inhibitors is frequently affected by acquired resistance. EGFR19D/T790M/C797S mutation is one of the primary reasons for the emergence of resistance after treatment with the third-generation EGFR inhibitors such as AZD9291, CO1686 and Olmutinib. To overcome the resistance mutation 19D/T790M/C797S, we designed and prepared a series of indole derivatives with the terminal hydroxyl of alkyl chain to increase extra interaction with the Asp855 in the conservative DFG site. Activity evaluation, structure-activity relationship and docking analysis were also carried out. Among them, compound 12e displayed significant inhibitory activity against EGFR19D/T790M/C797S (IC50 = 15.3 nM) and good selectivity over EGFR WT (IC50 > 1000 nM), L858R/T790M (IC50, 156.6 nM) and L858R/T790M/C797S (IC50, 218.3 nM) respectively. Furthermore, 12e exhibited good growth inhibition activity, induced G1 phase cell cycle arrest and apoptosis in BaF3/EGFR19D/T790M/C797S cells by suppressing EGFR phosphorylation signaling pathway. In all, our study might provide a novel structural design method and lay the solid foundation for the development of the 4th generation EGFR19D/T790M/C797S inhibitors.  相似文献   

13.
A series of 4-arylamido-2-arylaminoprimidines bearing acrylamide pharmacophore were synthesized as potent EGFRT790M/L858R inhibitors among which 9c (IC50?=?0.5872?nM), 9d (IC50?=?2.213?nM), or 9h (IC50?=?12.57?nM) showed more potent anti-EGFRT790M/L858R activity compared with AZD–9291 (IC50?=?20.80?nM) and possessed high SI displaying 307.6, 56.5, or 12.5 for EGFRT790M/L858R over the wild-type respectively. 9h also showed pretty good activity against H 1975 cells with an IC50 of 1.664?μM and exhibited low toxicity against the normal HBE cells (IC50?>?20?μΜ). 9h had moderate selectivity for H 1975 over A 431 (SI?=?7.0) and the other selected cell lines. Morphological staining results further indicated that 9h could promote apoptosis. Hence, 9h was a promising compound for further investigation as a potential EGFRT790M/L858R inhibitor for the treatment of NSCLC.  相似文献   

14.
With the aim to overcome the drug resistance induced by the EGFR T790M mutation (EGFRT790M), herein, a family of diphenylpyrimidine derivatives (Sty-DPPYs) bearing a C-2 (E)-4-(styryl)aniline functionality were designed and synthesized as potential EGFRT790M inhibitors. Among them, the compound 10e displayed strong potency against the EGFRT790M enzyme, with the IC50 of 11.0 nM. Compound 10e also showed a higher SI value (SI = 49.0) than rociletinib (SI = 21.4), indicating its less side effect. In addition, compound 10e could effectively inhibit the proliferation of H1975 cells harboring the EGFRT790M mutation, within the concentration of 2.91 μM. Significantly, compound 10e has low toxicity against the normal HBE cell (IC50 = 22.48 μM). This work provided new insights into the discovery of potent and selective inhibitor against EGFRT790M over wild-type (EGFRWT).  相似文献   

15.
The human epidermal growth factor receptor (EGFR) has been established as an attractive target for lung cancer therapy. However, an acquired EGFR T790M gatekeeper mutation is frequently observed in patients treated with first‐line anticancer agents such as gefitinib and erlotinib to cause drug resistance, largely limiting the application of small‐molecule kinase inhibitors in EGFR‐targeted chemotherapy. Previously, the reversible pan‐kinase inhibitor staurosporine and its several analogs such as Gö6976 and K252a have been reported to selectively inhibit the EGFR T790M mutant (EGFRT790M) over wild‐type kinase (EGFRWT), suggesting that the staurosporine scaffold is potentially to develop the wild‐type sparing reversible inhibitors of EGFRT790M. Here, we systematically evaluated the inhibitor response of 28 staurosporine scaffold–based compounds to EGFR T790M mutation at structural, energetic, and molecular levels by using an integrated in silico–in vitro analog‐sensitive (AS) kinase technology. With the strategy, we were able to identify 4 novel wild‐type sparing inhibitors UCN‐01, UCN‐02, AFN941, and SB‐218078 with high or moderate selectivity of 30‐, 45‐, 5‐, and 8‐fold for EGFRT790M over EGFRWT, respectively, which are comparable with or even better than that of the parent compound staurosporine (24‐fold). Molecular modeling and structural analysis revealed that van der Waals contacts and hydrophobic forces can form between the side chain of mutated residue Met790 and the pyrrolidinone moiety of inhibitor ligand UCN‐02, which may simultaneously improve the favorable interaction energy between the kinase and inhibitor, and reduce the unfavorable desolvation penalty upon the kinase‐inhibitor binding. A hydroxyl group of UCN‐02 additional to staurosporine locates at the pyrrolidinone moiety, which can largely alter the electronic distribution of pyrrolidinone moiety and thus promote the intermolecular interaction with Met790 residue. This can well explain the measured higher selectivity of UCN‐02 than staurosporine for mutant over wild‐type kinase.  相似文献   

16.
A series of thirty two anilinopyrimidines derived from WZ4002 has been synthesized and evaluated for percentage inhibition of six different EGFR kinases using LanthaScreen binding assay method (EGFR d746 – 750) or Z’LYTE assay method (EGFR-WT, EGFR d746 – 750, EGFR T790M, EGFR T790M L858R, EGFR C797S and EGFR T790M L858R C797S). Ortho-hydroxyacetamide 10 exhibited complete inhibition of all the six kinases at 10 µM. Against the triple mutant, EGFR T790M C797S L858R, compounds 912 exhibited complete inhibition at 10 µM and nearly complete inhibition at 1 µM. The target compounds were also evaluated using the MTT assay to determine their cytotoxic activity against human non-small cell lung cancer cells (PC9, PC9GR and H460) and mouse leukemic cells (Ba/F3 WT and Ba/F3T 3151). Overall, 7, 912, 30 and 31 were found to be the most potent compounds across all five cell lines.  相似文献   

17.
A series of novel thiapyran-pyrimidine derivatives (10a–10h, 11a–11g, 12a–12f, 13a–13f, 14a–14f) were synthesized and their antiproliferative activities were tested. Most of the target compounds showed good activity on one or more cancer cell lines but low activity on human normal cell LO2. The most promising compound 13a exhibited the similar IC50 values on A549 and H1975 cell lines to the lead drug Olmutinib, and exhibited excellent activity and selectivity on EGFRT790M/L858R in the kinase experiment. AO and Hoechst33258 staining indicated that 13a could effectively induce H1975 cells apoptosis. Cell cycle and apoptosis analysis suggested that 13a could block cancer cells in G2/M phase and induce into late apoptosis in a manner of concentration-dependent. The structure–activity relationship of 13a was analyzed to explore its mechanism. All the results showed that 13a was a promising EGFR inhibitor.  相似文献   

18.
A novel series of 6-alkenylamides of 4-anilinothieno[2,3-d]pyrimidine derivatives was designed, synthesized and evaluated as irreversible inhibitors of the epidermal growth factor receptor (EGFR). Most of the compounds exhibited good potency against EGFR wild type (EGFR wt) and EGFR T790M/L858R. Among these, the half-maximal inhibitory concentration (IC50) values of 17 compounds against EGFR wt were less than 0.020 μM, and those of 12 compounds were less than 0.010 μM. The IC50 values of 10 compounds against EGFR T790M/L858R were less than 0.005 μM. Compounds 8l, 9n, 9o, 9q and 9v almost completely blocked the phosphorylation of EGFR in the A431 cell line at 1 μM. Compounds 8l, 9n, 9o, 9q and 9v blocked the autophosphorylation of EGFR in NCI-H1975 cells at high concentration (1 μM), and compound 8l was confirmed to be an irreversible inhibitor through the dilution method.  相似文献   

19.
A series of novel azole-diphenylpyrimidine derivatives (AzDPPYs) were synthesized and biologically evaluated as potent EGFRT790M inhibitors. Among these analogues, the most active inhibitor 6e not only displayed high activity against EGFRT790M/L858R kinase (IC50 = 3.3 nM), but also was able to repress the replication of H1975 cells harboring EGFRT790M mutation at a concentration of 0.118 μmol/L. In contrast to the lead compound rociletinib, 6e slightly reduces the key EGFRT790M-minduced drug resistance. Significantly, inhibitor 6e demonstrates high selectivity (SI = 299.3) for T790M-containing EGFR mutants over wild type EGFR, hinting that it will cause less side effects.  相似文献   

20.
Secondary acquired mutation in EGFR, i.e. EGFR T790M and amplification of c-MET form the two key components of resistant NSCLC. Thus, previously published pharmacophore models of EGFR T790M and c-MET were utilized to screen an in-house database. On the basis of fitness score, indole-pyrimidine scaffold was selected for further evaluation. Derivatives of indole-pyrimidine scaffold with variedly substituted aryl substitutions were sketched and then docked in both the targets. These docked complexes were then subjected to molecular dynamic simulations, to study the stability of the complexes and evaluate orientations of the designed molecules in the catalytic domain of the selected kinases. Afterwards, the complexes were subjected to MM-GBSA calculation, to study the effect of substitutions on binding affinity of double mutant EGFR towards these small molecules. Finally, the designed molecules were synthesized and evaluated for their inhibitory potential against both the kinases using in vitro experiments. Additionally, the compounds were also evaluated against EGFR (L858R) to determine their selectivity towards double mutant, resistant kinase [EGFR (T790M)]. Compound 7a and 7c were found to be possess nanomolar range inhibitory (IC50) potential against EGFR (T790M), 7 h showed good inhibitory potential against c-MET with IC50 value of 0.101 µM. Overall, this work is one of the earliest report of compounds having significant dual inhibitory potential against secondary acquired EGFR and cMET, with IC50 values in nanomolar range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号