首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Two unnatural hydrophobic nucleotides, d5SICS (2,6-dimethyl-2H-isoquiniline-1-thione) and dNaM (2-methoxy-3-methylnaphthalene), were previously replicated in vivo by a modified E. coli strand, however, a consistent structure for their pairing in terms of specific and selective directional interactions remains elusive, as data from spectroscopy experiments and simulations are inconsistent. The proposed d5SICS–dNaM pairing has been suggested to be a stacked configuration as suggested by NMR data; simulations have failed to reproduce this configuration and a Watson–Crick like pairing is observed. Previously, we focused on reproducing the d5SICS–dNaM Unnatural Base Pair (UBP) paring using an older (bsc0) AMBER force field, which was not able to correctly reproduce the experimental data. We present our efforts to reproduce the experimental pairing using the current version of the AMBER DNA force fields (OL15 and bsc1), two water models (OPC and TIP3P) and external electrostatic stabilization by Mg2+ ions. Opposite to previously reported simulations, a Watson–Crick-like pairing with no hydrogen bonds persists throughout all our results. Despite our efforts to replicate the reported stacked conformation, we cannot confirm its plausibility nor obtain a consistent structure that is independent of the neighboring nucleotides.

Communicated by Ramaswamy H. Sarma  相似文献   

2.
We have developed a family of unnatural base pairs (UBPs), which rely on hydrophobic and packing interactions for pairing and which are well replicated and transcribed. While the pair formed between d5SICS and dNaM (d5SICS-dNaM) has received the most attention, and has been used to expand the genetic alphabet of a living organism, recent efforts have identified dTPT3-dNaM, which is replicated with even higher fidelity. These efforts also resulted in more UBPs than could be independently analyzed, and thus we now report a PCR-based screen to identify the most promising. While we found that dTPT3-dNaM is generally the most promising UBP, we identified several others that are replicated nearly as well and significantly better than d5SICS-dNaM, and are thus viable candidates for the expansion of the genetic alphabet of a living organism. Moreover, the results suggest that continued optimization should be possible, and that the putatively essential hydrogen-bond acceptor at the position ortho to the glycosidic linkage may not be required. These results clearly demonstrate the generality of hydrophobic forces for the control of base pairing within DNA, provide a wealth of new structure–activity relationship data and importantly identify multiple new candidates for in vivo evaluation and further optimization.  相似文献   

3.
近些年来DNA测序技术发展迅速,已经从第一代生化测序发展到第三代单分子测序。作为第三代测序技术中的一种不同于当前流行的其他测序技术,纳米孔测序技术是基于电信号的一种物理方法测序。许多研究者通常将高通量测序技术应用于食品微生物的研究,但是将纳米孔测序技术应用于食品中微生物的检测却鲜有报道。Oxford Nanopore Technologies(牛津纳米孔科技公司)研发的DNA测序仪MinION,是世界首例用于商业测序的纳米孔测序仪,经过不断完善,近年来MinION在DNA测序中被广泛应用。MinION 测序一次需要的DNA量约1μg,其标准识别速度为一秒钟识别250个碱基,平均读长可至13kb~20kb,测序准确率可以达到98%。纳米孔测序的高识别速度和高准确率,完全满足快速检测的要求,将其应用于食品中微生物检测是完全可行的。  相似文献   

4.
Engineered protein nanopores, such as those based on α-hemolysin from Staphylococcus aureus have shown great promise as components of next-generation DNA sequencing devices. However, before such protein nanopores can be used to their full potential, the conformational dynamics and translocation pathway of the DNA within them must be characterized at the individual molecule level. Here, we employ atomistic molecular dynamics simulations of single-stranded DNA movement through a model α-hemolysin pore under an applied electric field. The simulations enable characterization of the conformations adopted by single-stranded DNA, and allow exploration of how the conformations may impact on translocation within the wild-type model pore and a number of mutants. Our results show that specific interactions between the protein nanopore and the DNA can have a significant impact on the DNA conformation often leading to localized coiling, which in turn, can alter the order in which the DNA bases exit the nanopore. Thus, our simulations show that strategies to control the conformation of DNA within a protein nanopore would be a distinct advantage for the purposes of DNA sequencing.  相似文献   

5.
Toward the expansion of the genetic alphabet, we present an unnatural base pair system for efficient PCR amplification, enabling the site-specific incorporation of extra functional components into DNA. This system can be applied to conventional PCR protocols employing DNA templates containing unnatural bases, natural and unnatural base triphosphates, and a 3′→5′ exonuclease-proficient DNA polymerase. For highly faithful and efficient PCR amplification involving the unnatural base pairing, we identified the natural-base sequences surrounding the unnatural bases in DNA templates by an in vitro selection technique, using a DNA library containing the unnatural base. The system facilitates the site-specific incorporation of a variety of modified unnatural bases, linked with functional groups of interest, into amplified DNA. DNA fragments (0.15 amol) containing the unnatural base pair can be amplified 107-fold by 30 cycles of PCR, with <1% total mutation rate of the unnatural base pair site. Using the system, we demonstrated efficient PCR amplification and functionalization of DNA fragments for the extremely sensitive detection of zeptomol-scale target DNA molecules from mixtures with excess amounts (pmol scale) of foreign DNA species. This unnatural base pair system will be applicable to a wide range of DNA/RNA-based technologies.  相似文献   

6.
We study theoretically the feasibility of using transverse electronic transport within a nanopore for rapid DNA sequencing. Specifically, we examine the effects of the environment and detection probes on the distinguishability of the DNA bases. We find that the intrinsic measurement bandwidth of the electrodes helps the detection of single bases by averaging over the current distributions of each base. We also find that although the overall magnitude of the current may change dramatically with different detection conditions, the intrinsic distinguishability of the bases is not significantly affected by pore size and transverse field strength. The latter is the result of very effective stabilization of the DNA by the transverse field induced by the probes, so long as that field is much larger than the field that drives DNA through the pore. In addition, the ions and water together effectively screen the charge on the nucleotides, so that the electron states participating in the transport properties of the latter ones resemble those of the uncharged species. Finally, water in the environment has negligible direct influence on the transverse electrical current.  相似文献   

7.
MOTIVATION: With the potential availability of nanopore devices that can sense the bases of translocating single-stranded DNA (ssDNA), it is likely that 'reads' of length approximately 10(5) will be available in large numbers and at high speed. We address the problem of complete DNA sequencing using such reads.We assume that approximately 10(2) copies of a DNA sequence are split into single strands that break into randomly sized pieces as they translocate the nanopore in arbitrary orientations. The nanopore senses and reports each individual base that passes through, but all information about orientation and complementarity of the ssDNA subsequences is lost. Random errors (both biological and transduction) in the reads create further complications. RESULTS: We have developed an algorithm that addresses these issues. It can be considered an extreme variation of the well-known Eulerian path approach. It searches over a space of de Bruijn graphs until it finds one in which (a) the impact of errors is eliminated and (b) both possible orientations of the two ssDNA sequences can be identified separately and unambiguously.Our algorithm is able to correctly reconstruct real DNA sequences of the order of 10(6) bases (e.g. the bacterium Mycoplasma pneumoniae) from simulated erroneous reads on a modest workstation in about 1 h. We describe, and give measured timings of, a parallel implementation of this algorithm on the Cray Multithreaded Architecture (MTA-2) supercomputer, whose architecture is ideally suited to this 'unstructured' problem. Our parallel implementation is crucial to the problem of rapidly sequencing long DNA sequences and also to the situation where multiple nanopores are used to obtain a high-bandwidth stream of reads.  相似文献   

8.
Nanopore sequencing has the potential to become a fast and low-cost DNA sequencing platform. An ionic current passing through a small pore would directly map the sequence of single stranded DNA (ssDNA) driven through the constriction. The pore protein, MspA, derived from Mycobacterium smegmatis, has a short and narrow channel constriction ideally suited for nanopore sequencing. To study MspA's ability to resolve nucleotides, we held ssDNA within the pore using a biotin-NeutrAvidin complex. We show that homopolymers of adenine, cytosine, thymine, and guanine in MspA exhibit much larger current differences than in α-hemolysin. Additionally, methylated cytosine is distinguishable from unmethylated cytosine. We establish that single nucleotide substitutions within homopolymer ssDNA can be detected when held in MspA's constriction. Using genomic single nucleotide polymorphisms, we demonstrate that single nucleotides within random DNA can be identified. Our results indicate that MspA has high signal-to-noise ratio and the single nucleotide sensitivity desired for nanopore sequencing devices.  相似文献   

9.
Many candidate unnatural DNA base pairs have been developed, but some of the best-replicated pairs adopt intercalated structures in free DNA that are difficult to reconcile with known mechanisms of polymerase recognition. Here we present crystal structures of KlenTaq DNA polymerase at different stages of replication for one such pair, dNaM-d5SICS, and show that efficient replication results from the polymerase itself, inducing the required natural-like structure.  相似文献   

10.
Nanopores are a promising platform in next generation DNA sequencing. In this platform, an individual DNA strand is threaded into nanopore using an electric field, and enzyme-based ratcheting is used to move the strand through the detector. During this process the residual ion current through the pore is measured, which exhibits unique levels for different base combinations inside the pore. While this approach has shown great promise, accuracy is not optimal because the four bases are chemically comparable to one another, leading to small differences in current obstruction. Nucleobase-specific chemical tagging can be a viable approach to enhancing the contrast between different bases in the sequence. Herein we show that covalent modification of one or both of the pyrimidine bases by an osmium bipyridine complex leads to measureable differences in the blockade amplitudes of DNA molecules. We qualitatively determine the degree of osmylation of a DNA strand by passing it through a solid-state nanopore, and are thus able to gauge T and C base content. In addition, we show that osmium bipyridine reacts with dsDNA, leading to substantially different current blockade levels than exhibited for bare dsDNA. This work serves as a proof of principle for nanopore sequencing and mapping via base-specific DNA osmylation.  相似文献   

11.
DNA sequencing techniques witnessed fast development in the last decades, primarily driven by the Human Genome Project. Among the proposed new techniques, Nanopore was considered as a suitable candidate for the single DNA sequencing with ultrahigh speed and very low cost. Several fabrication and modification techniques have been developed to produce robust and well-defined nanopore devices. Many efforts have also been done to apply nanopore to analyze the properties of DNA molecules. By comparing with traditional sequencing techniques, nanopore has demonstrated its distinctive superiorities in main practical issues, such as sample preparation, sequencing speed, cost-effective and read-length. Although challenges still remain, recent researches in improving the capabilities of nanopore have shed a light to achieve its ultimate goal: Sequence individual DNA strand at single nucleotide level. This patent review briefly highlights recent developments and technological achievements for DNA analysis and sequencing at single molecule level, focusing on nanopore based methods.  相似文献   

12.
《Biophysical journal》2022,121(5):742-754
Transmembrane protein channels enable fast and highly sensitive detection of single molecules. Nanopore sequencing of DNA was achieved using an engineered Mycobacterium smegmatis porin A (MspA) in combination with a motor enzyme. Due to its favorable channel geometry, the octameric MspA pore exhibits the highest current level compared with other pore proteins. To date, MspA is the only protein nanopore with a published record of DNA sequencing. While widely used in commercial devices, nanopore sequencing of DNA suffers from significant base-calling errors due to stochastic events of the complex DNA-motor-pore combination and the contribution of up to five nucleotides to the signal at each position. Different mutations in specific subunits of a pore protein offer an enormous potential to improve nucleotide resolution and sequencing accuracy. However, individual subunits of MspA and other oligomeric protein pores are randomly assembled in vivo and in vitro, preventing the efficient production of designed pores with different subunit mutations. In this study, we converted octameric MspA into a single-chain pore by connecting eight subunits using peptide linkers. Lipid bilayer experiments demonstrated that single-chain MspA formed membrane-spanning channels and discriminated all four nucleotides identical to MspA produced from monomers in DNA hairpin experiments. Single-chain constructs comprising three, five, six, and seven connected subunits assembled to functional channels, demonstrating a remarkable plasticity of MspA to different subunit stoichiometries. Thus, single-chain MspA constitutes a new milestone in the optimization of MspA as a biosensor for DNA sequencing and many other applications by enabling the production of pores with distinct subunit mutations and pore diameters.  相似文献   

13.
We report on an experiment and calculations that determine the thermal motion of a voltage-clamped single-stranded DNA-NeutrAvidin complex in a Mycobacterium smegmatis porin A nanopore. The electric force and diffusion constant of DNA inside a Mycobacterium smegmatis porin A pore were determined to evaluate the thermal position fluctuations of DNA. We show that an out-of-equilibrium state returns to equilibrium so quickly that experiments usually measure a weighted average over the equilibrium position distribution. Averaging over the equilibrium position distribution is consistent with results of state-of-the-art nanopore sequencing experiments. It is shown how a reduction in thermal position fluctuations can be achieved by increasing the electrophoretic force used in nanopore sequencing devices.  相似文献   

14.
The MinION is a miniaturized high-throughput next generation sequencing platform of novel conception. The use of nucleic acids derived from formalin-fixed paraffin-embedded samples is highly desirable, but their adoption for molecular assays is hurdled by the high degree of fragmentation and by the chemical-induced mutations stemming from the fixation protocols. In order to investigate the suitability of MinION sequencing on formalin-fixed paraffin-embedded samples, the presence and frequency of BRAF c.1799T?>?A mutation was investigated in two archival tissue specimens of Hairy cell leukemia and Hairy cell leukemia Variant. Despite the poor quality of the starting DNA, BRAF mutation was successfully detected in the Hairy cell leukemia sample with around 50% of the reads obtained within 2 h of the sequencing start. Notably, the mutational burden of the Hairy cell leukemia sample as derived from nanopore sequencing proved to be comparable to a sensitive method for the detection of point mutations, namely the Digital PCR, using a validated assay. Nanopore sequencing can be adopted for targeted sequencing of genetic lesions on critical DNA samples such as those extracted from archival routine formalin-fixed paraffin-embedded samples. This result let speculating about the possibility that the nanopore sequencing could be trustably adopted for the real-time targeted sequencing of genetic lesions. Our report opens the window for the adoption of nanopore sequencing in molecular pathology for research and diagnostics.  相似文献   

15.
Solid-state nanopores have received increasing interest over recent years because of their potential for genomic screening and sequencing. In particular, small nanopores (2-5 nm in diameter) allow the detection of local structure along biological molecules, such as proteins bound to DNA or possibly the secondary structure of RNA molecules. In a typical experiment, individual molecules are translocated through a single nanopore, thereby causing a small deviation in the ionic conductance. A correct interpretation of these conductance changes is essential for our understanding of the process of translocation, and for further sophistication of this technique. Here, we present translocation measurements of double-stranded DNA through nanopores down to the diameter of the DNA itself (1.8-7 nm at the narrowest constriction). In contrast to previous findings on such small nanopores, we find that single molecules interacting with these pores can cause three distinct levels of conductance blockades. We attribute the smallest conductance blockades to molecules that briefly skim the nanopore entrance without translocating, the intermediate level of conductance blockade to regular head-to-tail translocations, and the largest conductance blockades to obstruction of the nanopore entrance by one or multiple (duplex) DNA strands. Our measurements are an important step toward understanding the conductance blockade of biomolecules in such small nanopores, which will be essential for future applications involving solid-state nanopores.  相似文献   

16.
The potential and challenges of nanopore sequencing   总被引:3,自引:0,他引:3  
A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of 'third generation' instruments that will sequence a diploid mammalian genome for approximately $1,000 in approximately 24 h.  相似文献   

17.
Nanopores and nucleic acids: prospects for ultrarapid sequencing   总被引:10,自引:0,他引:10  
DNA and RNA molecules can be detected as they are driven through a nanopore by an applied electric field at rates ranging from several hundred microseconds to a few milliseconds per molecule. The nanopore can rapidly discriminate between pyrimidine and purine segments along a single-stranded nucleic acid molecule. Nanopore detection and characterization of single molecules represents a new method for directly reading information encoded in linear polymers. If single-nucleotide resolution can be achieved, it is possible that nucleic acid sequences can be determined at rates exceeding a thousand bases per second.  相似文献   

18.
Nanopore sequencing and phylodynamic modeling have been used to reconstruct the transmission dynamics of viral epidemics, but their application to bacterial pathogens has remained challenging. Cost-effective bacterial genome sequencing and variant calling on nanopore platforms would greatly enhance surveillance and outbreak response in communities without access to sequencing infrastructure. Here, we adapt random forest models for single nucleotide polymorphism (SNP) polishing developed by Sanderson and colleagues (2020. High precision Neisseria gonorrhoeae variant and antimicrobial resistance calling from metagenomic nanopore sequencing. Genome Res. 30(9):1354–1363) to estimate divergence and effective reproduction numbers (Re) of two methicillin-resistant Staphylococcus aureus (MRSA) outbreaks from remote communities in Far North Queensland and Papua New Guinea (PNG; n = 159). Successive barcoded panels of S. aureus isolates (2 × 12 per MinION) sequenced at low coverage (>5× to 10×) provided sufficient data to accurately infer genotypes with high recall when compared with Illumina references. Random forest models achieved high resolution on ST93 outbreak sequence types (>90% accuracy and precision) and enabled phylodynamic inference of epidemiological parameters using birth–death skyline models. Our method reproduced phylogenetic topology, origin of the outbreaks, and indications of epidemic growth (Re > 1). Nextflow pipelines implement SNP polisher training, evaluation, and outbreak alignments, enabling reconstruction of within-lineage transmission dynamics for infection control of bacterial disease outbreaks on portable nanopore platforms. Our study shows that nanopore technology can be used for bacterial outbreak reconstruction at competitive costs, providing opportunities for infection control in hospitals and communities without access to sequencing infrastructure, such as in remote northern Australia and PNG.  相似文献   

19.
The staphylococcal α-hemolysin (αHL) protein nanopore is under investigation as a fast, cheap detector for nucleic acid analysis and sequencing. Although discrimination of all four bases of DNA by the αHL pore has been demonstrated, analysis of single-stranded DNAs and RNAs containing secondary structure mediated by basepairing is prevented because these nucleic acids cannot be translocated through the pore. Here, we show that a structured 95-nucleotide single-stranded DNA and its RNA equivalent are translocated through the αHL pore in the presence of 4 M urea, a concentration that denatures the secondary structure of the polynucleotides. The αHL pore is functional even in 7 M urea, and therefore it is easily stable enough for analyses of challenging DNA and RNA species.  相似文献   

20.
Single molecules of DNA or RNA can be detected as they are driven through an alpha-hemolysin channel by an applied electric field. During translocation, nucleotides within the polynucleotide must pass through the channel pore in sequential, single-file order because the limiting diameter of the pore can accommodate only one strand of DNA or RNA at a time. Here we demonstrate that this nanopore behaves as a detector that can rapidly discriminate between pyrimidine and purine segments along an RNA molecule. Nanopore detection and characterization of single molecules represent a new method for directly reading information encoded in linear polymers, and are critical first steps toward direct sequencing of individual DNA and RNA molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号