首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Skeletal muscle possesses a remarkable regenerative capacity that relies on the activity of muscle stem cells, also known as satellite cells. The presence of non-myogenic cells also plays a key role in the coordination of skeletal muscle regeneration. Particularly, fibro-adipogenic progenitors (FAPs) emerged as master regulators of muscle stem cell function and skeletal muscle regeneration. This population of muscle resident mesenchymal stromal cells has been initially characterized based on its bi-potent ability to differentiate into fibroblasts or adipocytes. New technologies such as single-cell RNAseq revealed the cellular heterogeneity of FAPs and their complex regulatory network during muscle regeneration. In acute injury, FAPs rapidly enter the cell cycle and secrete trophic factors that support the myogenic activity of muscle stem cells. Conversely, deregulation of FAP cell activity is associated with the accumulation of fibrofatty tissue in pathological conditions such as muscular dystrophies and ageing. Considering their central role in skeletal muscle pathophysiology, the regulatory mechanisms of FAPs and their cellular and molecular crosstalk with muscle stem cells are highly investigated in the field. In this review, we summarize the current knowledge on FAP cell characteristics, heterogeneity and the cellular crosstalk during skeletal muscle homeostasis and regeneration. We further describe their role in muscular disorders, as well as different therapeutic strategies targeting these cells to restore muscle regeneration.  相似文献   

3.
4.
5.
6.
Duchenne muscular dystrophy (DMD) is a devastating X-linked muscle disease characterized by progressive muscle weakness caused by the lack of dystrophin expression at the sarcolemma of muscle fibers. Although various approaches to delivering dystrophin in dystrophic muscle have been investigated extensively (e.g., cell and gene therapy), there is still no treatment that alleviates the muscle weakness in this common inherited muscle disease. The transplantation of myoblasts can enable transient delivery of dystrophin and improve the strength of injected dystrophic muscle, but this approach has various limitations, including immune rejection, poor cellular survival rates, and the limited spread of the injected cells. The isolation of muscle cells that can overcome these limitations would enhance the success of myoblast transplantation significantly. The efficiency of cell transplantation might be improved through the use of stem cells, which display unique features, including (1) self-renewal with production of progeny, (2) appearance early in development and persistence throughout life, and (3) long-term proliferation and multipotency. For these reasons, the development of muscle stem cells for use in transplantation or gene transfer (ex vivo approach) as treatment for patients with muscle disorders has become more attractive in the past few years. In this paper, we review the current knowledge regarding the isolation and characterization of stem cells isolated from skeletal muscle by highlighting their biological features and their relationship to satellite cells as well as other populations of stem cells derived from other tissues. We also describe the remarkable ability of stem cells to regenerate skeletal muscle and their potential use to alleviate the muscle weakness associated with DMD.  相似文献   

7.
Colonic immune homeostasis is essential for normal gastrointestinal tract functioning. In this study, we report that specific gene targeting of phosphatase and tensin homolog (PTEN) in smooth muscle cells caused age-related colonic lymphoid hyperplasia followed by global immune activation in mice. Beginning at 5 weeks of age, these mutant mice displayed massive neutrophil infiltration in the colonic lamina propria. The gene expression levels of pro-inflammatory cytokines and chemokines, including those code for monocyte chemotactic protein-1 (Mcp-1), stromal cell-derived factor 1α (Sdf-1α), and chemokine (C-C motif) ligand 28 (Ccl-28), were upregulated in the colon. Accordingly, permeability and proliferation of the colonic epithelium was compromised. These abnormalities were alleviated to a great extent when the mutants were crossed with Akt1-null mice, indicating that the pathogenesis was mediated by Akt1 signaling. Our results suggest that in smooth muscle cells, PTEN is crucial for maintaining colonic immune homeostasis.  相似文献   

8.
9.
10.
Joint morphogenesis involves signaling pathways and growth factors that recur in the adult life with less redundancy to safeguard joint homeostasis. Loss of such homeostasis due to abnormal signaling networks as in aging could lead to diseases such as osteoarthritis. Stem cells are the cellular counterpart and targets of the morphogenetic signals, and they function to maintain the tissues by ensuring replacement of cells lost to physiological turnover, injury, aging, and disease. Mesenchymal stem cells (MSCs) are key players in regenerative medicine for their ability to differentiate toward multiple lineages such as cartilage and bone, but they age along the host body and senesce when serially passaged in culture. Understanding correlations between aging and its effects on MSCs is of the utmost importance to explain how aging happens and unravel the underlying mechanisms. The investigation of the MSC senescence in culture will help in developing more efficient and standardized cell culture methods for cellular therapies in skeletal regenerative medicine. An important area to explore in biomedical sciences is the role of endogenous stem cell niches in joint homeostasis, remodeling, and disease. It is anticipated that an understanding of the stem cell niches and related remodeling signals will allow the development of pharmacological interventions to support effective joint tissue regeneration, to restore joint homeostasis, and to prevent osteoarthritis.  相似文献   

11.
12.
Gangliosides are complex glycosphingolipids that are the major component of cytoplasmic cell membranes, and play a role in the control of biological processes. Human mesenchymal stem cells (hMSCs) have received considerable attention as alternative sources of adult stem cells because of their potential to differentiate into multiple cell lineages. In this study, we focus on various functional roles of gangliosides in the differentiation of hMSCs into osteoblasts or neuronal cells. A relationship between gangliosides and epidermal growth factor receptor (EGFR) activation during osteoblastic differentiation of hMSCs was observed, and the gangliosides may play a major role in the regulation of the differentiation. The roles of gangliosides in osteoblast differentiation are dependent on the origin of hMSCs. The reduction of ganglioside biosynthesis inhibited the neuronal differentiation of hMSCs during an early stage of the differentiation process, and the ganglioside expression can be used as a marker for the identification of neuronal differentiation from hMSCs. [BMB Reports 2013; 46(11): 527-532]  相似文献   

13.
Science China Life Sciences - The adult lung, a workhorse for gas exchange, is continually subjected to a barrage of assaults from the inhaled particles and pathogens. Hence, homeostatic...  相似文献   

14.
15.
We have shown that muscle-derived stem cells (MDSCs) transplanted into dystrophic (mdx) mice efficiently regenerate skeletal muscle. However, MDSC populations exhibit heterogeneity in marker profiles and variability in regeneration abilities. We show here that cell sex is a variable that considerably influences MDSCs' regeneration abilities. We found that the female MDSCs (F-MDSCs) regenerated skeletal muscle more efficiently. Despite using additional isolation techniques and cell cloning, we could not obtain a male subfraction with a regeneration capacity similar to that of their female counterparts. Rather than being directly hormonal or caused by host immune response, this difference in MDSCs' regeneration potential may arise from innate sex-related differences in the cells' stress responses. In comparison with F-MDSCs, male MDSCs have increased differentiation after exposure to oxidative stress induced by hydrogen peroxide, which may lead to in vivo donor cell depletion, and a proliferative advantage for F-MDSCs that eventually increases muscle regeneration. These findings should persuade researchers to report cell sex, which is a largely unexplored variable, and consider the implications of relying on cells of one sex.  相似文献   

16.
Bone regeneration and stem cells   总被引:1,自引:0,他引:1  
This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed.  相似文献   

17.
Retinal stem cells and regeneration   总被引:5,自引:0,他引:5  
The optic vesicle gives rise to several very different epithelial tissues, including the neural retina, the pigmented epithelium, the iris, the ciliary epithelium of the ciliary body and the optic stalk. Retinal regeneration can arise from several different cellular sources; in some species, the process involves interconversion, or transdifferentiation, among cells of the different tissue types. Therefore, prior to a discussion of retinal regeneration, we will briefly discuss current knowledge about the influence of signaling molecules in cell fate determination in ocular tissues. Next, we will detail the evidence for neurogenesis in the mature retina. Lastly, we will describe various types of regenerative phenomena that occur in the retina, from complete regeneration of functional retina in fish and amphibians, to the more limited neuronal production that occurs in avian and mammalian retinas.  相似文献   

18.
Clones of ectopic stem cells in the regeneration of muscle defects in vivo   总被引:1,自引:0,他引:1  
Yang R  Chen M  Lee CH  Yoon R  Lal S  Mao JJ 《PloS one》2010,5(10):e13547
Little is known about whether clones of ectopic, non-muscle stem cells contribute to muscle regeneration. Stem/progenitor cells that are isolated for experimental research or therapeutics are typically heterogeneous. Non-myogenic lineages in a heterogeneous population conceptually may compromise tissue repair. In this study, we discovered that clones of mononucleated stem cells of human tooth pulp fused into multinucleated myotubes that robustly expressed myosin heavy chain in vitro with or without co-culture with mouse skeletal myoblasts (C2C12 cells). Cloned cells were sustainably Oct4+, Nanog+ and Stro1+. The fusion indices of myogenic clones were approximately 16-17 folds greater than their parent, heterogeneous stem cells. Upon infusion into cardio-toxin induced tibialis anterior muscle defects, undifferentiated clonal progenies not only engrafted and colonized host muscle, but also expressed human dystrophin and myosin heavy chain more efficaciously than their parent heterogeneous stem cell populations. Strikingly, clonal progenies yielded ~9 times more human myosin heavy chain mRNA in regenerating muscles than those infused with their parent, heterogeneous stem cells. The number of human dystrophin positive cells in regenerating muscles infused with clonal progenies was more than ~3 times greater than muscles infused with heterogeneous stem cells from which clonal progenies were derived. These findings suggest the therapeutic potential of ectopic myogenic clones in muscle regeneration.  相似文献   

19.
Tracing epithelial stem cells during development, homeostasis, and repair   总被引:1,自引:0,他引:1  
Epithelia ensure many critical functions of the body, including protection against the external environment, nutrition, respiration, and reproduction. Stem cells (SCs) located in the various epithelia ensure the homeostasis and repair of these tissues throughout the lifetime of the animal. Genetic lineage tracing in mice has allowed the labeling of SCs and their progeny. This technique has been instrumental in characterizing the origin and heterogeneity of epithelial SCs, their tissue location, and their differentiation potential under physiological conditions and during tissue regeneration.  相似文献   

20.
Abstract

Adult stem cell niches are characterized by a dichotomy of cycling and quiescent stem cells: while the former are responsible for tissue turnover, their quiescent counterparts are thought to become active upon tissue injury thus underlying the regenerative response. Moreover, quiescence prevents adult stem cells from accumulating mutations thus ensuring a reservoir of unaltered stem cells. In the intestine, while cycling stem cells were shown to give rise to the main differentiated lineages, the identity of their quiescent equivalents remains to date elusive. This is of relevance for conditions such as Crohn's disease and ulcerative colitis where quiescent stem cells may underlie metaplasia and the increased cancer risk associated with chronic inflammation. Tumours are thought to share a comparable hierarchical structure of adult tissues with pluripotent and self-renewing cancer stem cells (CSCs) giving rise to more differentiated cellular types. As such, neoplastic lesions may encompass both cycling and quiescent CSCs. Because of their infrequent cycling, quiescent CSCs are refractory to chemo- and radiotherapy and are likely to play a role in tumour dissemination, dormancy and recurrence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号