首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Neuropeptides induce signal transduction across the plasma membrane by acting through cell-surface receptors. The dynorphins, endogenous ligands for opioid receptors, are an exception; they also produce non-receptor-mediated effects causing pain and neurodegeneration. To understand non-receptor mechanism(s), we examined interactions of dynorphins with plasma membrane. Using fluorescence correlation spectroscopy and patch-clamp electrophysiology, we demonstrate that dynorphins accumulate in the membrane and induce a continuum of transient increases in ionic conductance. This phenomenon is consistent with stochastic formation of giant (~2.7 nm estimated diameter) unstructured non-ion-selective membrane pores. The potency of dynorphins to porate the plasma membrane correlates with their pathogenic effects in cellular and animal models. Membrane poration by dynorphins may represent a mechanism of pathological signal transduction. Persistent neuronal excitation by this mechanism may lead to profound neuropathological alterations, including neurodegeneration and cell death.Neuropeptides are the largest and most diverse family of neurotransmitters. They are released from axon terminals and dendrites, diffuse to pre- or postsynaptic neuronal structures and activate membrane G-protein-coupled receptors. Prodynorphin (PDYN)-derived opioid peptides including dynorphin A (Dyn A), dynorphin B (Dyn B) and big dynorphin (Big Dyn) consisting of Dyn A and Dyn B are endogenous ligands for the κ-opioid receptor. Acting through this receptor, dynorphins regulate processing of pain and emotions, memory acquisition and modulate reward induced by addictive substances.1, 2, 3, 4 Furthermore, dynorphins may produce robust cellular and behavioral effects that are not mediated through opioid receptors.5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 As evident from pharmacological, morphological, genetic and human neuropathological studies, these effects are generally pathological, including cell death, neurodegeneration, neurological dysfunctions and chronic pain. Big Dyn is the most active pathogenic peptide, which is about 10- to 100-fold more potent than Dyn A, whereas Dyn B does not produce non-opioid effects.16, 17, 22, 25 Big Dyn enhances activity of acid-sensing ion channel-1a (ASIC1a) and potentiates ASIC1a-mediated cell death in nanomolar concentrations30, 31 and, when administered intrathecally, induces characteristic nociceptive behavior at femtomolar doses.17, 22 Inhibition of endogenous Big Dyn degradation results in pathological pain, whereas prodynorphin (Pdyn) knockout mice do not maintain neuropathic pain.22, 32 Big Dyn differs from its constituents Dyn A and Dyn B in its unique pattern of non-opioid memory-enhancing, locomotor- and anxiolytic-like effects.25Pathological role of dynorphins is emphasized by the identification of PDYN missense mutations that cause profound neurodegeneration in the human brain underlying the SCA23 (spinocerebellar ataxia type 23), a very rare dominantly inherited neurodegenerative disorder.27, 33 Most PDYN mutations are located in the Big Dyn domain, demonstrating its critical role in neurodegeneration. PDYN mutations result in marked elevation in dynorphin levels and increase in its pathogenic non-opioid activity.27, 34 Dominant-negative pathogenic effects of dynorphins are not produced through opioid receptors.ASIC1a, glutamate NMDA (N-methyl-d-aspartate) and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)/kainate ion channels, and melanocortin and bradykinin B2 receptors have all been implicated as non-opioid dynorphin targets.5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 30, 31, 35, 36 Multiplicity of these targets and their association with the cellular membrane suggest that their activation is a secondary event triggered by a primary interaction of dynorphins with the membrane. Dynorphins are among the most basic neuropeptides.37, 38 The basic nature is also a general property of anti-microbial peptides (AMPs) and amyloid peptides that act by inducing membrane perturbations, altering membrane curvature and causing pore formation that disrupts membrane-associated processes including ion fluxes across the membrane.39 The similarity between dynorphins and these two peptide groups in overall charge and size suggests a similar mode of their interactions with membranes.In this study, we dissect the interactions of dynorphins with the cell membrane, the primary event in their non-receptor actions. Using fluorescence imaging, correlation spectroscopy and patch-clamp techniques, we demonstrate that dynorphin peptides accumulate in the plasma membrane in live cells and cause a profound transient increase in cell membrane conductance. Membrane poration by endogenous neuropeptides may represent a novel mechanism of signal transduction in the brain. This mechanism may underlie effects of dynorphins under pathological conditions including chronic pain and tissue injury.  相似文献   

3.
A 5.5-y-old intact male cynomolgus macaque (Macaca fasicularis) presented with inappetence and weight loss 57 d after heterotopic heart and thymus transplantation while receiving an immunosuppressant regimen consisting of tacrolimus, mycophenolate mofetil, and methylprednisolone to prevent graft rejection. A serum chemistry panel, a glycated hemoglobin test, and urinalysis performed at presentation revealed elevated blood glucose and glycated hemoglobin (HbA1c) levels (727 mg/dL and 10.1%, respectively), glucosuria, and ketonuria. Diabetes mellitus was diagnosed, and insulin therapy was initiated immediately. The macaque was weaned off the immunosuppressive therapy as his clinical condition improved and stabilized. Approximately 74 d after discontinuation of the immunosuppressants, the blood glucose normalized, and the insulin therapy was stopped. The animal''s blood glucose and HbA1c values have remained within normal limits since this time. We suspect that our macaque experienced new-onset diabetes mellitus after transplantation, a condition that is commonly observed in human transplant patients but not well described in NHP. To our knowledge, this report represents the first documented case of new-onset diabetes mellitus after transplantation in a cynomolgus macaque.Abbreviations: NODAT, new-onset diabetes mellitus after transplantationNew-onset diabetes mellitus after transplantation (NODAT, formerly known as posttransplantation diabetes mellitus) is an important consequence of solid-organ transplantation in humans.7-10,15,17,19,21,25-28,31,33,34,37,38,42 A variety of risk factors have been identified including increased age, sex (male prevalence), elevated pretransplant fasting plasma glucose levels, and immunosuppressive therapy.7-10,15,17,19,21,25-28,31,33,34,37,38,42 The relationship between calcineurin inhibitors, such as tacrolimus and cyclosporin, and the development of NODAT is widely recognized in human medicine.7-10,15,17,19,21,25-28,31,33,34,37,38,42 Cynomolgus macaques (Macaca fasicularis) are a commonly used NHP model in organ transplantation research. Cases of natural and induced diabetes of cynomolgus monkeys have been described in the literature;14,43,45 however, NODAT in a macaque model of solid-organ transplantation has not been reported previously to our knowledge.  相似文献   

4.
Q Xia  Q Hu  H Wang  H Yang  F Gao  H Ren  D Chen  C Fu  L Zheng  X Zhen  Z Ying  G Wang 《Cell death & disease》2015,6(3):e1702
Neuroinflammation is a striking hallmark of amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Previous studies have shown the contribution of glial cells such as astrocytes in TDP-43-linked ALS. However, the role of microglia in TDP-43-mediated motor neuron degeneration remains poorly understood. In this study, we show that depletion of TDP-43 in microglia, but not in astrocytes, strikingly upregulates cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production through the activation of MAPK/ERK signaling and initiates neurotoxicity. Moreover, we find that administration of celecoxib, a specific COX-2 inhibitor, greatly diminishes the neurotoxicity triggered by TDP-43-depleted microglia. Taken together, our results reveal a previously unrecognized non-cell-autonomous mechanism in TDP-43-mediated neurodegeneration, identifying COX-2-PGE2 as the molecular events of microglia- but not astrocyte-initiated neurotoxicity and identifying celecoxib as a novel potential therapy for TDP-43-linked ALS and possibly other types of ALS.Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by the degeneration of motor neurons in the brain and spinal cord.1 Most cases of ALS are sporadic, but 10% are familial. Familial ALS cases are associated with mutations in genes such as Cu/Zn superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TARDBP) and, most recently discovered, C9orf72. Currently, most available information obtained from ALS research is based on the study of SOD1, but new studies focusing on TARDBP and C9orf72 have come to the forefront of ALS research.1, 2 The discovery of the central role of the protein TDP-43, encoded by TARDBP, in ALS was a breakthrough in ALS research.3, 4, 5 Although pathogenic mutations of TDP-43 are genetically rare, abnormal TDP-43 function is thought to be associated with the majority of ALS cases.1 TDP-43 was identified as a key component of the ubiquitin-positive inclusions in most ALS patients and also in other neurodegenerative diseases such as frontotemporal lobar degeneration,6, 7 Alzheimer''s disease (AD)8, 9 and Parkinson''s disease (PD).10, 11 TDP-43 is a multifunctional RNA binding protein, and loss-of-function of TDP-43 has been increasingly recognized as a key contributor in TDP-43-mediated pathogenesis.5, 12, 13, 14Neuroinflammation, a striking and common hallmark involved in many neurodegenerative diseases, including ALS, is characterized by extensive activation of glial cells including microglia, astrocytes and oligodendrocytes.15, 16 Although numerous studies have focused on the intrinsic properties of motor neurons in ALS, a large amount of evidence showed that glial cells, such as astrocytes and microglia, could have critical roles in SOD1-mediated motor neuron degeneration and ALS progression,17, 18, 19, 20, 21, 22 indicating the importance of non-cell-autonomous toxicity in SOD1-mediated ALS pathogenesis.Very interestingly, a vital insight of neuroinflammation research in ALS was generated by the evidence that both the mRNA and protein levels of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2) are upregulated in both transgenic mouse models and in human postmortem brain and spinal cord.23, 24, 25, 26, 27, 28, 29 The role of COX-2 neurotoxicity in ALS and other neurodegenerative disorders has been well explored.30, 31, 32 One of the key downstream products of COX-2, prostaglandin E2 (PGE2), can directly mediate COX-2 neurotoxicity both in vitro and in vivo.33, 34, 35, 36, 37 The levels of COX-2 expression and PGE2 production are controlled by multiple cell signaling pathways, including the mitogen-activated protein kinase (MAPK)/ERK pathway,38, 39, 40 and they have been found to be increased in neurodegenerative diseases including AD, PD and ALS.25, 28, 32, 41, 42, 43, 44, 45, 46 Importantly, COX-2 inhibitors such as celecoxib exhibited significant neuroprotective effects and prolonged survival or delayed disease onset in a SOD1-ALS transgenic mouse model through the downregulation of PGE2 release.28Most recent studies have tried to elucidate the role of glial cells in neurotoxicity using TDP-43-ALS models, which are considered to be helpful for better understanding the disease mechanisms.47, 48, 49, 50, 51 Although the contribution of glial cells to TDP-43-mediated motor neuron degeneration is now well supported, this model does not fully suggest an astrocyte-based non-cell autonomous mechanism. For example, recent studies have shown that TDP-43-mutant astrocytes do not affect the survival of motor neurons,50, 51 indicating a previously unrecognized non-cell autonomous TDP-43 proteinopathy that associates with cell types other than astrocytes.Given that the role of glial cell types other than astrocytes in TDP-43-mediated neuroinflammation is still not fully understood, we aim to compare the contribution of microglia and astrocytes to neurotoxicity in a TDP-43 loss-of-function model. Here, we show that TDP-43 has a dominant role in promoting COX-2-PGE2 production through the MAPK/ERK pathway in primary cultured microglia, but not in primary cultured astrocytes. Our study suggests that overproduction of PGE2 in microglia is a novel molecular mechanism underlying neurotoxicity in TDP-43-linked ALS. Moreover, our data identify celecoxib as a new potential effective treatment of TDP-43-linked ALS and possibly other types of ALS.  相似文献   

5.
Tumor necrosis factor α (TNFα) triggers necroptotic cell death through an intracellular signaling complex containing receptor-interacting protein kinase (RIPK) 1 and RIPK3, called the necrosome. RIPK1 phosphorylates RIPK3, which phosphorylates the pseudokinase mixed lineage kinase-domain-like (MLKL)—driving its oligomerization and membrane-disrupting necroptotic activity. Here, we show that TNF receptor-associated factor 2 (TRAF2)—previously implicated in apoptosis suppression—also inhibits necroptotic signaling by TNFα. TRAF2 disruption in mouse fibroblasts augmented TNFα–driven necrosome formation and RIPK3-MLKL association, promoting necroptosis. TRAF2 constitutively associated with MLKL, whereas TNFα reversed this via cylindromatosis-dependent TRAF2 deubiquitination. Ectopic interaction of TRAF2 and MLKL required the C-terminal portion but not the N-terminal, RING, or CIM region of TRAF2. Induced TRAF2 knockout (KO) in adult mice caused rapid lethality, in conjunction with increased hepatic necrosome assembly. By contrast, TRAF2 KO on a RIPK3 KO background caused delayed mortality, in concert with elevated intestinal caspase-8 protein and activity. Combined injection of TNFR1-Fc, Fas-Fc and DR5-Fc decoys prevented death upon TRAF2 KO. However, Fas-Fc and DR5-Fc were ineffective, whereas TNFR1-Fc and interferon α receptor (IFNAR1)-Fc were partially protective against lethality upon combined TRAF2 and RIPK3 KO. These results identify TRAF2 as an important biological suppressor of necroptosis in vitro and in vivo.Apoptotic cell death is mediated by caspases and has distinct morphological features, including membrane blebbing, cell shrinkage and nuclear fragmentation.1, 2, 3, 4 In contrast, necroptotic cell death is caspase-independent and is characterized by loss of membrane integrity, cell swelling and implosion.1, 2, 5 Nevertheless, necroptosis is a highly regulated process, requiring activation of RIPK1 and RIPK3, which form the core necrosome complex.1, 2, 5 Necrosome assembly can be induced via specific death receptors or toll-like receptors, among other modules.6, 7, 8, 9 The activated necrosome engages MLKL by RIPK3-mediated phosphorylation.6, 10, 11 MLKL then oligomerizes and binds to membrane phospholipids, forming pores that cause necroptotic cell death.10, 12, 13, 14, 15 Unchecked necroptosis disrupts embryonic development in mice and contributes to several human diseases.7, 8, 16, 17, 18, 19, 20, 21, 22The apoptotic mediators FADD, caspase-8 and cFLIP suppress necroptosis.19, 20, 21, 23, 24 Elimination of any of these genes in mice causes embryonic lethality, subverted by additional deletion of RIPK3 or MLKL.19, 20, 21, 25 Necroptosis is also regulated at the level of RIPK1. Whereas TNFα engagement of TNFR1 leads to K63-linked ubiquitination of RIPK1 by cellular inhibitor of apoptosis proteins (cIAPs) to promote nuclear factor (NF)-κB activation,26 necroptosis requires suppression or reversal of this modification to allow RIPK1 autophosphorylation and consequent RIPK3 activation.2, 23, 27, 28 CYLD promotes necroptotic signaling by deubiquitinating RIPK1, augmenting its interaction with RIPK3.29 Conversely, caspase-8-mediated CYLD cleavage inhibits necroptosis.24TRAF2 recruits cIAPs to the TNFα-TNFR1 signaling complex, facilitating NF-κB activation.30, 31, 32, 33 TRAF2 also supports K48-linked ubiquitination and proteasomal degradation of death-receptor-activated caspase-8, curbing apoptosis.34 TRAF2 KO mice display embryonic lethality; some survive through birth but have severe developmental and immune deficiencies and die prematurely.35, 36 Conditional TRAF2 KO leads to rapid intestinal inflammation and mortality.37 Furthermore, hepatic TRAF2 depletion augments apoptosis activation via Fas/CD95.34 TRAF2 attenuates necroptosis induction in vitro by the death ligands Apo2L/TRAIL and Fas/CD95L.38 However, it remains unclear whether TRAF2 regulates TNFα-induced necroptosis—and if so—how. Our present findings reveal that TRAF2 inhibits TNFα necroptotic signaling. Furthermore, our results establish TRAF2 as a biologically important necroptosis suppressor in vitro and in vivo and provide initial insight into the mechanisms underlying this function.  相似文献   

6.
7.
8.
9.
10.
Necroptosis is a form of regulated necrotic cell death mediated by receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3. Necroptotic cell death contributes to the pathophysiology of several disorders involving tissue damage, including myocardial infarction, stroke and ischemia-reperfusion injury. However, no inhibitors of necroptosis are currently in clinical use. Here we performed a phenotypic screen for small-molecule inhibitors of tumor necrosis factor-alpha (TNF)-induced necroptosis in Fas-associated protein with death domain (FADD)-deficient Jurkat cells using a representative panel of Food and Drug Administration (FDA)-approved drugs. We identified two anti-cancer agents, ponatinib and pazopanib, as submicromolar inhibitors of necroptosis. Both compounds inhibited necroptotic cell death induced by various cell death receptor ligands in human cells, while not protecting from apoptosis. Ponatinib and pazopanib abrogated phosphorylation of mixed lineage kinase domain-like protein (MLKL) upon TNF-α-induced necroptosis, indicating that both agents target a component upstream of MLKL. An unbiased chemical proteomic approach determined the cellular target spectrum of ponatinib, revealing key members of the necroptosis signaling pathway. We validated RIPK1, RIPK3 and transforming growth factor-β-activated kinase 1 (TAK1) as novel, direct targets of ponatinib by using competitive binding, cellular thermal shift and recombinant kinase assays. Ponatinib inhibited both RIPK1 and RIPK3, while pazopanib preferentially targeted RIPK1. The identification of the FDA-approved drugs ponatinib and pazopanib as cellular inhibitors of necroptosis highlights them as potentially interesting for the treatment of pathologies caused or aggravated by necroptotic cell death.Programmed cell death has a crucial role in a variety of biological processes ranging from normal tissue development to diverse pathological conditions.1, 2 Necroptosis is a form of regulated cell death that has been shown to occur during pathogen infection or sterile injury-induced inflammation in conditions where apoptosis signaling is compromised.3, 4, 5, 6 Given that many viruses have developed strategies to circumvent apoptotic cell death, necroptosis constitutes an important, pro-inflammatory back-up mechanism that limits viral spread in vivo.7, 8, 9 In contrast, in the context of sterile inflammation, necroptotic cell death contributes to disease pathology, outlining potential benefits of therapeutic intervention.10 Necroptosis can be initiated by death receptors of the tumor necrosis factor (TNF) superfamily,11 Toll-like receptor 3 (TLR3),12 TLR4,13 DNA-dependent activator of IFN-regulatory factors14 or interferon receptors.15 Downstream signaling is subsequently conveyed via RIPK116 or TIR-domain-containing adapter-inducing interferon-β,8, 17 and converges on RIPK3-mediated13, 18, 19, 20 activation of MLKL.21 Phosphorylated MLKL triggers membrane rupture,22, 23, 24, 25, 26 releasing pro-inflammatory cellular contents to the extracellular space.27 Studies using the RIPK1 inhibitor necrostatin-1 (Nec-1) 28 or RIPK3-deficient mice have established a role for necroptosis in the pathophysiology of pancreatitis,19 artherosclerosis,29 retinal cell death,30 ischemic organ damage and ischemia-reperfusion injury in both the kidney31 and the heart.32 Moreover, allografts from RIPK3-deficient mice are better protected from rejection, suggesting necroptosis inhibition as a therapeutic option to improve transplant outcome.33 Besides Nec-1, several tool compounds inhibiting different pathway members have been described,12, 16, 21, 34, 35 however, no inhibitors of necroptosis are available for clinical use so far.2, 10 In this study we screened a library of FDA approved drugs for the precise purpose of identifying already existing and generally safe chemical agents that could be used as necroptosis inhibitors. We identified the two structurally distinct kinase inhibitors pazopanib and ponatinib as potent blockers of necroptosis targeting the key enzymes RIPK1/3.  相似文献   

11.
Chemoresistance in cancer has previously been attributed to gene mutations or deficiencies. Bax or p53 deficiency can lead to resistance to cancer drugs. We aimed to find an agent to overcome chemoresistance induced by Bax or p53 deficiency. Here, we used immunoblot, flow-cytometry analysis, gene interference, etc. to show that genistein, a major component of isoflavone that is known to have anti-tumor activities in a variety of models, induces Bax/p53-independent cell death in HCT116 Bax knockout (KO), HCT116 p53 KO, DU145 Bax KO, or DU145 p53 KO cells that express wild-type (WT) Bak. Bak knockdown (KD) only partially attenuated genistein-induced apoptosis. Further results indicated that the release of AIF and endoG also contributes to genistein-induced cell death, which is independent of Bak activation. Conversely, AIF and endoG knockdown had little effect on Bak activation. Knockdown of either AIF or endoG alone could not efficiently inhibit apoptosis in cells treated with genistein, whereas an AIF, endoG, and Bak triple knockdown almost completely attenuated apoptosis. Next, we found that the Akt-Bid pathway mediates Bak-induced caspase-dependent and AIF- and endoG-induced caspase-independent cell death. Moreover, downstream caspase-3 could enhance the release of AIF and endoG as well as Bak activation via a positive feedback loop. Taken together, our data elaborate the detailed mechanisms of genistein in Bax/p53-independent apoptosis and indicate that caspase-3-enhanced Bid activation initiates the cell death pathway. Our results also suggest that genistein may be an effective agent for overcoming chemoresistance in cancers with dysfunctional Bax and p53.Mammalian cell death proceeds through a highly regulated program called apoptosis that is highly dependent on the mitochondria.1 Mitochondrial outer membrane (MOM) multiple apoptotic stresses permeabilize the MOM, resulting in the release of apoptogenic factors including cytochrome c, Smac, AIF, and endoG.2, 3, 4 Released cytochrome c activates Apaf-1, which assists in caspase activation. Then, activated caspases cleave cellular proteins and contribute to the morphological and biochemical changes associated with apoptosis. Bcl-2 family proteins control a crucial apoptosis checkpoint in the mitochondria.2, 5, 6, 7 Multidomain proapoptotic Bax and Bak are essential effectors responsible for the permeabilization of the MOM, whereas anti-apoptotic Bcl-2, Bcl-xL, and Mcl-1 preserve mitochondrial integrity and prevent cytochrome c efflux triggered by apoptotic stimuli. The third Bcl-2 subfamily of proteins, BH3-only molecules (BH3s), promotes apoptosis by either activating Bax/Bak or inactivating Bcl-2/Bcl-xL/Mcl-1.8, 9, 10, 11, 12 Upon apoptosis, the ‘activator'' BH3s, including truncated Bid (tBid), Bim, and Puma, activate Bax and Bak to mediate cytochrome c efflux, leading to caspase activation.8, 11, 12 Conversely, antiapoptotic Bcl-2, Bcl-xL, and Mcl-1 sequester activator BH3s into inert complexes, which prevents Bax/Bak activation.8, 9 Although it has been proposed that Bax and Bak activation occurs by default as long as all of the anti-apoptotic Bcl-2 proteins are neutralized by BH3s,13 liposome studies clearly recapitulate the direct activation model in which tBid or BH3 domain peptides derived from Bid or Bim induce Bax or Bak oligomerization and membrane permeabilization.12, 14, 15Numerous studies have demonstrated a critical role for Bax in determining tumor cell sensitivity to drug induction and in tumor development. Bax has been reported to be mutated in colon16, 17 and prostate cancers,18, 19 contributing to tumor cell survival and promoting clonal expansion. Bax has been shown to restrain tumorigenesis20 and is necessary for tBid-induced cancer cell apoptosis.21 Loss of Bax has been reported to promote tumor development in animal models.22 Bax knockout (KO) renders HCT116 cells resistant to a series of apoptosis inducers.23, 24, 25 p53 has been reported to be a tumor suppressor,26 and its mutant can cause chemoresistance in cancer cells.27, 28, 29 Moreover, p53 is often inactivated in solid tumors via deletions or point mutations.30, 31 Thus, it is necessary to find an efficient approach or agent to overcome chemoresistance caused by Bax and/or p53 mutants.Few studies have focused on the role of Bak in tumor cell apoptosis and cancer development. Bak mutations have only been shown in gastric and colon cancer cells.32 Some studies have revealed that Bak is a determinant of cancer cell apoptosis.33, 34 Some studies have even demonstrated that Bak renders Bax KO cells sensitive to drug induction.33, 35 In this study, we are the first group to show that tBid induces Bak activation and the release of AIF and endoG in colon cancer cells, which causes cellular apoptosis independent of Bax/p53. We also found that caspase-3 is activated in apoptosis. Interestingly, downstream caspase-3 can strengthen Bak activation and the release of AIF and endoG during apoptosis via a feedback loop. Furthermore, we reveal that Akt upregulates apoptosis progression. These results will help us to better understand the function of mitochondrial apoptotic protein members in apoptosis and cancer therapies. Furthermore, our experiments may provide a theoretical basis for overcoming chemoresistance in cancer cells.  相似文献   

12.
13.
Osteosarcoma is a common primary bone tumor in children and adolescents. The drug resistance of osteosarcoma leads to high lethality. Macrophage migration inhibitory factor (MIF) is an inflammation-related cytokine implicated in the chemoresistance of breast cancer. In this study, we isolated a novel androstenedione derivative identified as 3,4-dihydroxy-9,10-secoandrosta-1,3,5,7-tetraene-9,17-dione (DSTD). DSTD could inhibit MIF expression in MG-63 and U2OS cells. The inhibition of MIF by DSTD promoted autophagy by inducing Bcl-2 downregulation and the translocation of HMGB1. N-acetyl-L-cysteine (NAC) and 3-methyladenine (3-MA) attenuated DSTD-induced autophagy but promoted cell death, suggesting that DSTD induced ROS-mediated autophagy to rescue cell death. However, in the presence of chemotherapy drugs, DSTD enhanced the chemosensitivity by decreasing the HMGB1 level. Our data suggest MIF inhibition as a therapeutic strategy for overcoming drug resistance in osteosarcoma.Osteosarcoma, a common primary bone tumor in children and adolescents, is prone to early metastasis through blood.1 Treatment with a combination of surgery and aggressive adjuvant chemotherapy has improved the survival rate of osteosarcoma patients. The 5-year-survival rates of non-metastatic patients have reached a plateau of approximately 70%.2, 3 However, patients with poor responses to chemotherapeutics will undergo local recurrence and metastasis, which reduce the 5-year-survival rates to only 20% despite additional doses or drugs.4, 5 Drug resistance is responsible for the poor prognosis. Attenuating chemoresistance facilitates better treatment of osteosarcoma.6, 7 Novel treatment strategies that combine anticancer drugs with adjuvant agents could improve the antitumor effects.8, 9In the 1960s, macrophage migration inhibitory factor (MIF) was identified as a pluripotent protein that modulates inflammation.10 Increasing evidence suggests that inflammation is closely related to tumorigenesis.11 MIF plays a bridging role between inflammation and tumorigenesis.12, 13, 14 MIF triggers the activation of the MAPK and PI3K pathways by binding its membrane receptor CD74, resulting in the inhibition of cell apoptosis.15 Recently, MIF was demonstrated to be involved in cell proliferation, differentiation, angiogenesis and tumorigenesis.16, 17, 18 Some evidence has indicated that MIF is abundantly expressed in various cancers and is significantly associated with tumor invasion and metastasis.19, 20, 21 MIF has been well established to be involved in the development of glioblastoma,22 breast cancer,23 bladder cancer24 and colon cancer.20, 25 MIF was also upregulated in osteosarcoma.26, 27 The knockdown of MIF blocked osteosarcoma cell proliferation and invasion.26 However, the effect of MIF on drug resistance in osteosarcoma has not yet been investigated. Wu et al. 23 have revealed that MIF knockdown promoted chemosensitivity by inducing autophagy in breast cancer. In contrast, autophagy reportedly contributed to chemoresistance in osteosarcoma.6 These controversial results prompted us to confirm the role of MIF in drug resistance in osteosarcoma.In this study, we isolated a novel androstenedione derivative identified as 3,4-dihydroxy-9,10-secoandrosta-1,3,5,7-tetraene-9,17-dione (DSTD). DSTD could inhibit MIF expression in MG-63 and U2OS cells. Both N-acetyl-L-cysteine (NAC) and 3-methyladenine (3-MA) attenuated DSTD-induced autophagy but promoted cell death, suggesting that DSTD induced reactive oxygen species (ROS)-mediated autophagy to rescue cell death. Furthermore, MIF inhibition by DSTD enhances chemosensitivity by downregulating HMGB1 in osteosarcoma cells. Our data suggest MIF inhibition as a therapeutic strategy for overcoming drug resistance in osteosarcoma.  相似文献   

14.
15.
In the central nervous system (CNS), hyperglycemia leads to neuronal damage and cognitive decline. Recent research has focused on revealing alterations in the brain in hyperglycemia and finding therapeutic solutions for alleviating the hyperglycemia-induced cognitive dysfunction. Adiponectin is a protein hormone with a major regulatory role in diabetes and obesity; however, its role in the CNS has not been studied yet. Although the presence of adiponectin receptors has been reported in the CNS, adiponectin receptor-mediated signaling in the CNS has not been investigated. In the present study, we investigated adiponectin receptor (AdipoR)-mediated signaling in vivo using a high-fat diet and in vitro using neural stem cells (NSCs). We showed that AdipoR1 protects cell damage and synaptic dysfunction in the mouse brain in hyperglycemia. At high glucose concentrations in vitro, AdipoR1 regulated the survival of NSCs through the p53/p21 pathway and the proliferation- and differentiation-related factors of NSCs via tailless (TLX). Hence, we suggest that further investigations are necessary to understand the cerebral AdipoR1-mediated signaling in hyperglycemic conditions, because the modulation of AdipoR1 might alleviate hyperglycemia-induced neuropathogenesis.Adiponectin secreted by the adipose tissue1, 2 exists in either a full-length or globular form.3, 4, 5, 6 Adiponectin can cross the blood–brain barrier, and various forms of adiponectin are found in the cerebrospinal fluid.7, 8, 9, 10, 11 Adiponectin exerts its effect by binding to the adiponectin receptor 1 (AdipoR1) and adiponectin receptor 2 (AdipoR2)12, 13 that have different affinities for the various circulating adiponectins.12, 14, 15, 16, 17 Several studies reported that both receptor subtypes are expressed in the central nervous system (CNS).7, 12, 18 As adiponectin modulates insulin sensitivity and inflammation,19 its deficiency induces insulin resistance and glucose intolerance in animals fed a high-fat diet (HFD).19, 20, 21 In addition, adiponectin can ameliorate the glucose homeostasis and increase insulin sensitivity.22, 23, 24 Adiponectin, which is the most well-known adipokine, acts mainly as an anti-inflammatory regulator,25, 26 and is associated with the onset of neurological disorders.27 In addition, a recent study reported that adiponectin promotes the proliferation of hippocampal neural stem cells (NSCs).28 Considering that adiponectin acts by binding to the adiponectin receptors, investigation of the adiponectin receptor-mediated signaling in the brain is crucial to understand the cerebral effects of adiponectin and the underlying cellular mechanisms.The prevalence of type II diabetes mellitus (DM2) and Alzheimer''s disease increases with aging.29 According to a cross-sectional study, in people with DM2, the risk of dementia is 2.5 times higher than that in the normal population.30, 31 A study performed between 1980 and 2002 suggested that an elevated blood glucose level is associated with a greater risk for dementia in elderly patients with DM2.32 In addition, according to a 9-year-long longitudinal cohort study, the risk of developing Alzheimer''s disease was 65% higher in people with diabetes than in control subjects.33 A community-based cohort study also reported that higher plasma glucose concentrations are associated with an increased risk for dementia, because the higher glucose level has detrimental effects on the brain.31 High blood glucose level causes mitochondria-dependent apoptosis,34, 35, 36 and aggravates diverse neurological functions.37, 38 Inflammation and oxidative stress, which are commonly observed in people with diabetes, inhibit neurogenesis.39, 40, 41 Similarly, neurogenesis is decreased in mice and rats with genetically induced type I diabetes.42, 43 In addition, diabetic rodents have a decreased proliferation rate of neural progenitors.43, 44 Furthermore, several studies suggested that an HFD leads to neuroinflammation, the impairment of synaptic plasticity, and cognitive decline.45, 46Here, we investigated whether AdipoR1-mediated signaling is associated with cell death in the brain of mice on a HFD, and whether high glucose level modifies the proliferation and differentiation capacity of NSCs in vitro. Our study provides novel findings about the role of AdipoR1-mediated signaling in hyperglycemia-induced neuropathogenesis.  相似文献   

16.
17.
In 2008, clinical observations in our colony of sooty mangabeys (Cercocebus atys) suggested a high frequency of type 2 diabetes. Postmortem studies of diabetic animals revealed dense amyloid deposits in pancreatic islets. To investigate these findings, we screened our colony (97 male mangabeys; 99 female mangabeys) for the disease from 2008 to 2012. The overall prevalence of diabetes was 11% and of prediabetes was 7%, which is nearly double that reported for other primate species (less than 6%). Fructosamine and triglyceride levels were the best indicators of diabetes; total cholesterol and glycated hemoglobin were not associated with disease. Increasing age was a significant risk factor: prevalence increased from 0% in infants, juveniles, and young adults to 11% in adults and 19% in geriatric mangabeys. Sex, medroxyprogesterone acetate exposure, and SIV status were unrelated to disease. Weight was marginally higher in prediabetics, but body condition did not indicate obesity. Of the 49 mangabeys that were necropsied after clinical euthanasia or death from natural causes, 22 were diabetic; all 22 animals demonstrated pancreatic amyloid, and most had more than 75% of islets replaced with amyloid. We conclude that type 2 diabetes is more common in mangabeys than in other primate species. Diabetes in mangabeys has some unusual pathologic characteristics, including the absence of altered cholesterol levels and glycated hemoglobin but a robust association of pancreatic insular amyloidosis with clinical diabetes. Future research will examine the genetic basis of mangabey diabetes and evaluate additional diagnostic tools using imaging and serum markers.Abbreviations: HbA1c, glycated hemoglobin; MPA, medroxyprogesterone acetate; YNPRC, Yerkes National Primate Research CenterSooty mangabeys (Cercocebus atys) are Old World NHP that are native to West Africa. Historically their use in research has been limited to infectious disease studies, leprosy studies, and behavioral research.14,25 Over the past 20 to 30 y, they have been used in HIV–AIDS research. Mangabeys are natural hosts of SIVsmm, which is recognized as the origin of HIV2 infection in humans.7,8,30,36,42 SIV typically is nonpathogenic in mangabeys despite high levels of virus replication, which makes this species a unique and invaluable model in AIDS research.7,30,36,42 Our facility maintains a colony of approximately 200 sooty mangabeys. In 2008 clinical observations of relative hyperglycemia, glucosuria, and weight loss in our colony suggested that type 2 diabetes mellitus occurred at a relatively high frequency in this population. Spontaneous diabetes was found in 10% of the colony, and 5% of animals were prediabetic; this incidence is higher than that typically reported for other NHP species, such as cynomolgus macaques (less than 1% to 2%)22 and chimpanzees (less than 1%).37 The prevalence of spontaneous diabetes in humans is typically 8.3%.2,6,22,37 In addition, necropsies revealed that many affected animals had dense amyloid deposits in pancreatic islet cells. Insular amyloidosis was seen on histology, with a total replacement of islets by amyloid deposition in advanced diabetes. Advanced diabetes was determined by increased weight loss and severity of relative hyperglycemia. The increased clinical prevalence of diabetes in our mangabey colony prompted additional characterization of the clinicopathologic profile, risk factors, and prevalence of diabetes in our mangabey colony.The form of diabetes in this mangabey colony is characterized as type 2 diabetes mellitus, as they have hyperglycemia, hypertriglyceridemia, and islet amyloidosis. Type 2 diabetes mellitus is the most common of the 3 forms of diabetes, and has been documented in humans and NHP,22,31,37,55 including rhesus macaques (Macaca mulatta), cynomolgus macaques (Macaca fascicularis), Celebes crested macaques (Macaca nigra), bonnet macaques (Macaca radiate), pigtailed macaques (Macaca nemestrina), vervet monkeys (Chlorocebus pygerythrus), squirrel monkeys (Saimiri sciureus), chimpanzees (Pan troglodytes), and woolly monkeys (Lagothrix spp.).1,24,31,52,55 Type 2 diabetes is a chronic metabolic disorder in which insulin resistance occurs in liver, muscle, and adipose tissue. As type 2 diabetes progresses, it also can be characterized as a relative insulin deficiency.1,6,15,22,29,31,37,55 The initial clinical presentation of diabetes in humans and NHP includes polydipsia, polyuria, polyphagia, weight loss, and lethargy.1,6,22,27,31,37,55 Similar presentation was observed in our colony of diabetic mangabeys.Diagnostic criteria of diabetes in NHP species is similar to that for humans and is based on clinical symptoms and routine lab tests, including serum chemistry panel to evaluate persistent fasting hyperglycemia, hypertriglyceridemia, and hypercholesterolemia.2,6,11,16-18,21,22,29,31,37,48-50,52,55 Hypertriglyceridemia and hypercholesterolemia frequently are elevated due to diabetes and therefore are used as supportive diagnostic markers. In addition, the disease is characterized by transient hyperinsulinemia followed by insulin deficiency subsequent to glucose challenge. Urinalysis is used to evaluate glucosuria and ketonuria. These tests are not exclusive for diagnosing diabetes and can be inconsistent between species, thus making conclusive diagnosis challenging. For example, hyperglycemia can be a transient finding associated with recent food intake or stress associated with restraint for blood sample collection or anesthetic access, whereas hypertriglyceridemia can be seen in obese animals and those with other metabolic diseases such as pancreatitis and hypothyroidism.1,22,37,55The typical clinical approach to the diagnosis of diabetes in NHP and other veterinary patients includes evaluation of fructosamine and glycated hemoglobin (HbA1c) levels and glucose tolerance testing. These tests are indices of glycemic control and are used in clinical settings primarily to assess prognosis and response to treatment; they are also useful for the initial diagnosis of diabetes when used in parallel with serum chemistry markers. Fructosamine and HbA1c can both provide information on long-term glycemic control, because fructosamine reflects average blood glucose levels over 2 to 3 wk whereas HbA1c reflects average blood glucose over 2 to 3 mo preceding blood collection. HbA1c is the primary test for diabetes in human medicine,6,31,35,37 whereas fructosamine is commonly used in veterinary medicine. Glucose tolerance testing provides an indirect measure of insulin sensitivity, but it is not frequently used clinically in NHP because of the requirement for prolonged physical restraint or sedation.1,21,22,26,27,34,37,55Prevention and management of diabetes in NHP and humans can be achieved by identifying potential risk factors, including age, weight, sex, genetics, hormone drug exposure, and viral status.1,6,15,22,29,31,37,42,55 Advanced age, obesity, sex, and genetics are associated with diabetes in some species of NHP and humans.1,6,15,22,29,31,37,55 In addition, exposure to drugs such as medroxyprogesterone acetate (MPA) is suspected to be linked to diabetes due to the hormonal effects of progesterone impacting glucoregulatory function.1,6,10,22,23,31,34,55 MPA exposure is of interest, because it is used regularly in our mangabey colony as both a contraceptive and as therapy for endometriosis. In addition, SIV status is being evaluated as a risk factor, because a portion of our colony is SIV positive. Although HIV is not thought to be associated with diabetes in people, SIV pathogenesis in mangabeys differs; therefore it was of interest to explore the possible association of SIV and diabetes in mangabeys.7,30,36,42 Pancreatic insular amyloidosis has been documented to be associated with type 2 diabetes in several species. Amyloidosis is a group of disorders that are caused by extracellular deposition of misfolded proteins that can result in impaired function of any organ.15,20,23,28,32,43,45,48,49 Because a high incidence of pancreatic insular amyloid was noted at necropsy, we sought to document the relationship with clinical diabetes in mangabeys.Spontaneous type 2 diabetes mellitus has been well documented in several species of NHP. Because the literature contains little information regarding the clinicopathologic features (the ‘profile’), risk factors, and prevalence of spontaneous diabetes mellitus in sooty mangabeys, the primary aims of the current study were 1) to determine whether elevated levels of fasting blood glucose, fructosamine, HbA1c, triglycerides, and total cholesterol levels are reliable diagnostic markers of type 2 diabetes mellitus in this NHP species; 2) to determine whether age, sex, MPA exposure, and SIV status influence the risk of diabetes; 3) to determine whether body weight influences diabetic status; 4) to evaluate the relationship between pancreatic amyloidosis and diabetes mellitus; and 5) to characterize the prevalence of diabetes mellitus in the mangabey population at our institution. To our knowledge, this report is the first to describe the natural occurrence of type 2 diabetes mellitus within a captive colony of sooty mangabeys. We hypothesized that blood glucose, fructosamine, HbA1c, triglyceride, and total cholesterol would be reliable diagnostic markers and that age, sex, and MPA exposure would influence the risk of diabetes in this species.  相似文献   

18.
19.
Neutral sphingomyelinase (nSMase) activation in response to environmental stress or inflammatory cytokine stimuli generates the second messenger ceramide, which mediates the stress-induced apoptosis. However, the signaling pathways and activation mechanism underlying this process have yet to be elucidated. Here we show that the phosphorylation of nSMase1 (sphingomyelin phosphodiesterase 2, SMPD2) by c-Jun N-terminal kinase (JNK) signaling stimulates ceramide generation and apoptosis and provide evidence for a signaling mechanism that integrates stress- and cytokine-activated apoptosis in vertebrate cells. An nSMase1 was identified as a JNK substrate, and the phosphorylation site responsible for its effects on stress and cytokine induction was Ser-270. In zebrafish cells, the substitution of Ser-270 for alanine blocked the phosphorylation and activation of nSMase1, whereas the substitution of Ser-270 for negatively charged glutamic acid mimicked the effect of phosphorylation. The JNK inhibitor SP600125 blocked the phosphorylation and activation of nSMase1, which in turn blocked ceramide signaling and apoptosis. A variety of stress conditions, including heat shock, UV exposure, hydrogen peroxide treatment, and anti-Fas antibody stimulation, led to the phosphorylation of nSMase1, activated nSMase1, and induced ceramide generation and apoptosis in zebrafish embryonic ZE and human Jurkat T cells. In addition, the depletion of MAPK8/9 or SMPD2 by RNAi knockdown decreased ceramide generation and stress- and cytokine-induced apoptosis in Jurkat cells. Therefore the phosphorylation of nSMase1 is a pivotal step in JNK signaling, which leads to ceramide generation and apoptosis under stress conditions and in response to cytokine stimulation. nSMase1 has a common central role in ceramide signaling during the stress and cytokine responses and apoptosis.The sphingomyelin pathway is initiated by the hydrolysis of sphingomyelin to generate the second messenger ceramide.1 Sphingomyelin hydrolysis is a major pathway for stress-induced ceramide generation. Neutral sphingomyelinase (nSMase) is activated by a variety of environmental stress conditions, such as heat shock,1, 2, 3 oxidative stress (hydrogen peroxide (H2O2), oxidized lipoproteins),1 ultraviolet (UV) radiation,1 chemotherapeutic agents,4 and β-amyloid peptides.5, 6 Cytokines, including tumor necrosis factor (TNF)-α,7, 8, 9 interleukin (IL)-1β,10 Fas ligand,11 and their associated proteins, also trigger the activation of nSMase.12 Membrane-bound Mg2+-dependent nSMase is considered to be a strong candidate for mediating the effects of stress and inflammatory cytokines on ceramide.3Among the four vertebrate nSMases, nSMase1 (SMPD2) was the first to be cloned and is localized in the endoplasmic reticulum (ER) and Golgi apparatus.13 Several studies have focused on the potential signaling roles of nSMase1, and some reports have suggested that nSMase1 is important for ceramide generation in response to stress.5, 6, 14, 15 In addition, nSMase1 is responsible for heat-induced apoptosis in zebrafish embryonic cultured (ZE) cells, and a loss-of-function study showed a reduction in ceramide generation, caspase-3 activation, and apoptosis in zebrafish embryos.16 However, nSMase1-knockout mice showed no lipid storage diseases or abnormalities in sphingomyelin metabolism.17 Therefore, the molecular mechanisms by which nSMase1 is activated have yet to be elucidated.Environmental stress and inflammatory cytokines1, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 stimulate stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) signaling, which involves the sequential activation of members of the mitogen-activated protein kinase (MAPK) family, including MAPK/ERK kinase kinase (MEKK)1/MAPK kinase (MKK)4, and/or SAPK/ERK kinase (SEK)1/MKK7, JNK, and c-jun. Both the JNK and sphingomyelin signaling pathways coordinately mediate the induction of apoptosis.1 However, possible crosstalk between the JNK and sphingomyelin signaling pathways has not yet been characterized. Previously, we used SDS-PAGE to determine that nSMase1 polypeptides migrated at higher molecular masses,16 suggesting that the sphingomyelin signaling pathway might cause the production of a chemically modified phosphorylated nSMase1, which is stimulated under stressed conditions in ZE cells.16 Here, we demonstrate that JNK signaling results in the phosphorylation of Ser-270 of nSMase1, which initiates ceramide generation and apoptosis. We also provide evidence for a signaling mechanism that integrates cytokine- and stress-activated apoptosis in vertebrate cells. We studied stress-induced ceramide generation in two cell types: ZE cells and human leukemia Jurkat T-lymphoid cells. Stress-induced apoptosis has been investigated in these systems previously.16, 28  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号