首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyglutamine (polyQ) amyloid fibrils are observed in disease tissue and have been implicated as toxic agents responsible for neurodegeneration in expanded CAG repeat diseases such as Huntington's disease. Despite intensive efforts, the mechanism of amyloid toxicity remains unknown. As a novel approach to probing polyQ toxicity, we investigate here how some cellular and physical properties of polyQ amyloid vary with the chirality of the glutamine residues in the polyQ. We challenged PC12 cells with small amyloid fibrils composed of either l- or d-polyQ peptides and found that d-fibrils are as cytotoxic as l-fibrils. We also found using fluorescence microscopy that both aggregates effectively seed the aggregation of cell-produced l-polyQ proteins, suggesting a surprising lack of stereochemical restriction in seeded elongation of polyQ amyloid. To investigate this effect further, we studied chemically synthesized d- and l-polyQ in vitro. We found that, as expected, d-polyQ monomers are not recognized by proteins that recognize l-polyQ monomers. However, amyloid fibrils prepared from d-polyQ peptides can efficiently seed the aggregation of l-polyQ monomers in vitro, and vice versa. This result is consistent with our cell results on polyQ recruitment but is inconsistent with previous literature reports on the chiral specificity of amyloid seeding. This chiral cross-seeding can be rationalized by a model for seeded elongation featuring a “rippled β-sheet” interface between seed fibril and docked monomers of opposite chirality. The lack of chiral discrimination in polyQ amyloid cytotoxicity is consistent with several toxicity mechanisms, including recruitment of cellular polyQ proteins.  相似文献   

2.
Formation of protein amyloid fibrils consists of a series of intermediates including oligomeric aggregates, proto-fibrillar structures, and finally mature fibrils. Recent studies show higher toxicity for oligomeric and proto-fibrillar intermediates of protein relative to their mature fibrils. Here the kinetic of the insulin amyloid fibrillation was evaluated using a variety of techniques including ThT fluorescence, Congo red absorbance, circular dichroism, and atomic force microscopy (AFM). The solution surface tension changes were attributed to hydrophobic changes in insulin structure and were detected by Du Noüy Ring method. Determination of the surface tension of insulin oligomeric, proto-fibrillar and fibrillar forms indicated that the hydrophobicity of solution is enhanced by the formation of the oligomeric forms of insulin compared to other forms. In order to investigate the toxicity of the different forms of insulin we monitored morphological alterations of the differentiated neuron-like PC12 cells following incubation with native, oligomeric aggregates, proto-fibrillar, and fibrillar forms of insulin. The cell body area, average neurite length, neurite width, number of primary neurites, and percent of bipolar cells and node/primary neurite ratios were used to assess the growth and complexity of PC12 cells exposed to different forms of insulin. We observed that the oligomeric form of insulin impaired the growth and complexity of PC12 cells compared to other forms. Together our data suggest that the lower surface tension of oligomers and their perturbation affects the morphology of PC12 cells, mainly due to their enhanced hydrophobicity and detergent-like structures.  相似文献   

3.
The accumulation of amyloid fibrils is a feature of amyloid diseases, where cell toxicity is due to soluble oligomeric species that precede fibril formation or are formed by fibril fragmentation, but the mechanism(s) of fragmentation is still unclear. Neutrophil-derived elastase and histones were found in amyloid deposits from patients with different systemic amyloidoses. Neutrophil extracellular traps (NETs) are key players in a death mechanism in which neutrophils release DNA traps decorated with proteins such as elastase and histones to entangle pathogens. Here, we asked whether NETs are triggered by amyloid fibrils, reasoning that because proteases are present in NETs, protease digestion of amyloid may generate soluble, cytotoxic species. We show that amyloid fibrils from three different sources (α-synuclein, Sup35, and transthyretin) induced NADPH oxidase-dependent NETs in vitro from human neutrophils. Surprisingly, NET-associated elastase digested amyloid fibrils into short species that were cytotoxic for BHK-21 and HepG2 cells. In tissue sections from patients with primary amyloidosis, we also observed the co-localization of NETs with amyloid deposits as well as with oligomers, which are probably derived from elastase-induced fibril degradation (amyloidolysis). These data reveal that release of NETs, so far described to be elicited by pathogens, can also be triggered by amyloid fibrils. Moreover, the involvement of NETs in amyloidoses might be crucial for the production of toxic species derived from fibril fragmentation.  相似文献   

4.
Primary amyloidosis (AL) results from overproduction of unstable monoclonal immunoglobulin light chains (LCs) and the deposition of insoluble fibrils in tissues, leading to fatal organ disease. Glycosaminoglycans (GAGs) are associated with AL fibrils and have been successfully targeted in the treatment of other forms of amyloidosis. We investigated the role of GAGs in LC fibrillogenesis. Ex vivo tissue amyloid fibrils were extracted and examined for structure and associated GAGs. The GAGs were detected along the length of the fibril strand, and the periodicity of heparan sulfate (HS) along the LC fibrils generated in vitro was similar to that of the ex vivo fibrils. To examine the role of sulfated GAGs on AL oligomer and fibril formation in vitro, a κ1 LC purified from urine of a patient with AL amyloidosis was incubated in the presence or absence of GAGs. The fibrils generated in vitro at physiologic concentration, temperature, and pH shared morphologic characteristics with the ex vivo κ1 amyloid fibrils. The presence of HS and over-O-sulfated-heparin enhanced the formation of oligomers and fibrils with HS promoting the most rapid transition. In contrast, GAGs did not enhance fibril formation of a non-amyloidogenic κ1 LC purified from urine of a patient with multiple myeloma. The data indicate that the characteristics of the full-length κ1 amyloidogenic LC, containing post-translational modifications, possess key elements that influence interactions of the LC with HS. These findings highlight the importance of the variable and constant LC regions in GAG interaction and suggest potential therapeutic targets for treatment.  相似文献   

5.
Tauopathies are neurodegenerative diseases characterized by accumulation of Tau amyloids, and include Alzheimer disease and certain frontotemporal dementias. Trans-neuronal propagation of amyloid mediated by extracellular Tau may underlie disease progression. Consistent with this, active and passive vaccination studies in mouse models reduce pathology, although by unknown mechanisms. We previously reported that intracerebroventricular administration of three anti-Tau monoclonal antibodies (HJ8.5, HJ9.3, and HJ9.4) reduces pathology in a model overexpressing full-length mutant (P301S) human Tau. We now study effects of these three antibodies and a negative control antibody (HJ3.4) on Tau aggregate uptake into BV2 microglial-like cells and primary neurons. Antibody-independent Tau uptake into BV2 cells was blocked by heparin, consistent with a previously described role for heparan sulfate proteoglycans. Two therapeutic antibodies (HJ8.5 and HJ9.4) promoted uptake of full-length Tau fibrils into microglia via Fc receptors. Surprisingly, HJ9.3 promoted uptake of fibrils composed of the Tau repeat domain or Alzheimer disease-derived Tau aggregates, but failed to influence full-length recombinant Tau fibrils. Size fractionation of aggregates showed that antibodies preferentially promote uptake of larger oligomers (n ≥∼20-mer) versus smaller oligomers (n ∼10-mer) or monomer. No antibody inhibited uptake of full-length recombinant fibrils into primary neurons, but HJ9.3 blocked neuronal uptake of Tau repeat domain fibrils and Alzheimer disease-derived Tau. Antibodies thus have multiple potential mechanisms, including clearance via microglia and blockade of neuronal uptake. However these effects are epitope- and aggregate size-dependent. Establishing specific mechanisms of antibody activity in vitro may help in design and optimization of agents that are more effective in vivo.  相似文献   

6.
By using an amyloid sequence pattern, here we have identified putative six-residue amyloidogenic stretches in several relevant amyloid proteins. Hexapeptides synthesized on the bases of the sequence stretches matching the pattern have been shown to form amyloid fibrils in vitro. As larger pathological peptides such as Aβ1-42 do, these short amyloid peptides form heterogeneous mixtures of small aggregates that induce cell death in PC12 cells and primary hippocampal neurons. Toxic mixtures of small aggregates from these hexapeptides bind to cell membranes and can be further internalized, as also observed for natural amyloid proteins. In neurons, toxic aggregates obtained from the full length Aβ1-42 amyloid peptide or their amyloid stretch Aβ16-21 peptide preferentially localize in synapses, leading to the re-organization of the underlying actin cytoskeleton. This process does not involve stereospecific interactions between membrane and toxic species as D-sequences are as toxic as L ones, suggesting that is not receptor mediated. Based on these results, we propose here that regardless of polypeptide sequence, length and amino acid chirality, amyloid prefibrillar aggregates exert their cytotoxic effect through a common cell death mechanism related to a particular quaternary structure. The degree of toxicity of these species seems to depend, however, on cell membrane composition.  相似文献   

7.
Amyloid deposition accompanies over 20 degenerative diseases in human, including Alzheimer's, Parkinson's, and prion diseases. Recent studies revealed the importance of other type of protein aggregates, e.g., non-specific aggregates, protofibrils, and small oligomers in the development of such diseases and proved their increased toxicity for living cells in comparison with mature amyloid fibrils. We carried out a comparative structural analysis of different monomeric and aggregated states of β2-microglobulin, a protein responsible for hemodialysis-related amyloidosis. We investigated the structure of the native and acid-denatured states, as well as that of mature fibrils, immature fibrils, amorphous aggregates, and heat-induced filaments, prepared under various in vitro conditions. Infrared spectroscopy demonstrated that the β-sheet compositions of immature fibrils, heat-induced filaments and amorphous aggregates are characteristic of antiparallel intermolecular β-sheet structure while mature fibrils are different from all others suggesting a unique overall structure and assembly. Filamentous aggregates prepared by heat treatment are of importance in understanding the in vivo disease because of their stability under physiological conditions, where amyloid fibrils and protofibrils formed at acidic pH depolymerize. Atomic force microscopy of heat-induced filaments represented a morphology similar to that of the low pH immature fibrils. At a pH close to the pI of the protein, amorphous aggregates were formed readily with association of the molecules in native-like conformation, followed by formation of intermolecular β-sheet structure in a longer time-scale. Extent of the core buried from the solvent in the various states was investigated by H/D exchange of the amide protons.  相似文献   

8.
The mechanisms linking deposits of insoluble amyloid fibrils to the debilitating neuronal cell death characteristic of neurodegenerative diseases remain enigmatic. Recent findings implicate transiently formed intermediates of mature amyloid fibrils as the principal toxic agent. Hence, determining which intermediate aggregates represent on-pathway precursors or off-pathway side branches is critical for understanding amyloid self-assembly, and for devising therapeutic approaches targeting relevant toxic species. We examined amyloid fibril self-assembly in acidic solutions, using the model protein hen egg-white lysozyme. Combining in situ dynamic light scattering with calibrated atomic-force microscopy, we monitored the nucleation and growth kinetics of multiple transient aggregate species, and characterized both their morphologies and physical dimensions. Upon incubation at elevated temperatures, uniformly sized oligomers formed at a constant rate. After a lag period of several hours, protofibrils spontaneously nucleated. The nucleation kinetics of protofibrils and the tight match of their widths and heights with those of oligomers imply that protofibrils both nucleated and grew via oligomer fusion. After reaching several hundred nanometers in length, protofibrils assembled into mature fibrils. Overall, the amyloid fibril assembly of lysozyme followed a strict hierarchical aggregation pathway, with amyloid monomers, oligomers, and protofibrils forming on-pathway intermediates for assembly into successively more complex structures.  相似文献   

9.
BackgroundThe surface of nanoparticles (NPs) is an important factor affecting the process of poly/peptides' amyloid aggregation. We have investigated the in vitro effect of trisodium citrate (TC), gum arabic (GA) and citric acid (CA) surface-modified magnetite nanoparticles (COAT-MNPs) on hen egg-white lysozyme (HEWL) amyloid fibrillization and mature HEWL fibrils.MethodsDynamic light scattering (DLS) was used to characterize the physico-chemical properties of studied COAT-MNPs and determine the adsorption potential of their surface towards HEWL. The anti-amyloid properties were studied using thioflavin T (ThT) and tryptophan (Trp) intrinsic fluorescence assays, and atomic force microscopy (AFM). The morphology of amyloid aggregates was analyzed using Gwyddion software. The cytotoxicity of COAT-MNPs was determined utilizing Trypan blue (TB) assay.ResultsAgents used for surface modification affect the COAT-MNPs physico-chemical properties and modulate their anti-amyloid potential. The results from ThT and intrinsic fluorescence showed that the inhibitory activities result from the more favorable interactions of COAT-MNPs with early pre-amyloid species, presumably reducing nuclei and oligomers formation necessary for amyloid fibrillization. COAT-MNPs also possess destroying potential, which is presumably caused by the interaction with hydrophobic residues of the fibrils, resulting in the interruption of an interface between β-sheets stabilizing the amyloid fibrils.ConclusionCOAT-MNPs were able to inhibit HEWL fibrillization and destroy mature fibrils with different efficacy depending on their properties, TC-MNPs being the most potent nanoparticles.General significanceThe study reports findings regarding the general impact of nanoparticles' surface modifications on the amyloid aggregation of proteins.  相似文献   

10.
α-Synuclein is the major amyloidogenic component observed in the Lewy bodies of Parkinson's disease. Amyloid fibrils of α-synuclein prepared in vitro were instantaneously disintegrated by dequalinium (DQ). Double-headed cationic amphipathic structure of DQ with two aminoquinaldinium rings at both ends turned out to be crucial to exert the disintegration activity. The defibrillation activity was shown to be selective toward the fibrils of α-synuclein and Aβ40 while the other β2-microglobulin amyloid fibrils were not susceptible so much. Besides the common cross β-sheet conformation of amyloid fibrils, therefore, additional specific molecular interactions with the target amyloidogenic proteins have been expected to be involved for DQ to exhibit its defibrillation activity. The disintegrating activity of DQ was also evaluated in vivo with the yeast system overexpressing α-synuclein-GFP. With the DQ treatment, the intracellular green inclusions turned into green smears, which resulted in the enhanced cell death. Based on the data, the previous observation that DQ led to the predominant protofibril formation of α-synuclein could be explained by the dual function of DQ showing both the facilitated self-oligomerization of α-synuclein and the instantaneous defibrillation of its amyloid fibrils. In addition, amyloidosis-related cytotoxicity has been demonstrated to be amplified by the fragmentation of mature amyloid fibrils by DQ.  相似文献   

11.
Intracellular α-synuclein (α-syn) aggregates are the pathological hallmark in several neurodegenerative diseases including Parkinson’s disease, dementia with Lewy bodies and multiple system atrophy. Recent evidence suggests that small oligomeric aggregates rather than large amyloid fibrils represent the main toxic particle species in these diseases. We recently characterized iron-dependent toxic α-syn oligomer species by confocal single molecule fluorescence techniques and used this aggregation model to identify several N′-benzylidene-benzohydrazide (NBB) derivatives inhibiting oligomer formation in vitro. In our current work, we used the bioluminescent protein-fragment complementation assay (BPCA) to directly analyze the formation of toxic α-syn oligomers in cell culture and to investigate the effect of iron and potential drug-like compounds in living cells. Similar to our previous findings in vitro, we found a converse modulation of toxic α-syn oligomers by NBB derivates and ferric iron, which was characterized by an increase in aggregate formation by iron and an inhibitory effect of certain NBB compounds. Inhibition of α-syn oligomer formation by the NBB compound 293G02 was paralleled by a reduction in cytotoxicity indicating that toxic α-syn oligomers are present in the BPCA cell culture model and that pharmacological inhibition of oligomer formation can reduce toxicity. Thus, this approach provides a suitable model system for the development of new disease-modifying drugs targeting toxic oligomer species. Moreover, NBB compounds such as 293G02 may provide useful tool compounds to dissect the functional role of toxic oligomer species in cell culture models and in vivo.  相似文献   

12.
Many questions in the field of protein aggregation to amyloid fibrils remain open. In this review we describe predominantly in vitro studies of oligomerization and amyloid fibril formation by human stefins A and B. In human stefin B amyloidogenesis in vitro we have observed some general and many specific properties of its prefibrillar oligomers and amyloid fibrils. One characteristic feature in common to stefins and cystatins (and possibly some other amyloid proteins) is domain-swapping. In addition to solution structure of the domain-swapped dimer of stefin A, we recently have determined 3D structure of stefin B tetramer, which proved to be composed from two domain-swapped dimers, whose interaction occurs by a proline switch in the loop surrounding the conserved Pro 74. Studying the mechanism of fibril formation by stefin B, we found that the nucleation and fibril elongation reactions have energies of activation (Ea’s) in the range of proline isomerisation, strongly indicating importance of the Pro at site 74 and/or other prolines in the sequence. Correlation between toxicity of the prefibrillar oligomers and their interaction with acidic phospholipids was demonstrated. Stefin B was shown to interact with amyloid-beta peptide of Alzheimer’s disease in an oligomer specific manner, both in vitro and in the cells. It also has been shown that endogenous stefin B (with E at site 31) but especially the EPM1 mutant R68X and Y31-stefin B variant, and to a lesser extent EPM1 mutant G4R, are prone to form aggregates in cells.  相似文献   

13.
Amyloid deposition accompanies over 20 degenerative diseases in human, including Alzheimer's, Parkinson's, and prion diseases. Recent studies revealed the importance of other type of protein aggregates, e.g., non-specific aggregates, protofibrils, and small oligomers in the development of such diseases and proved their increased toxicity for living cells in comparison with mature amyloid fibrils. We carried out a comparative structural analysis of different monomeric and aggregated states of beta(2)-microglobulin, a protein responsible for hemodialysis-related amyloidosis. We investigated the structure of the native and acid-denatured states, as well as that of mature fibrils, immature fibrils, amorphous aggregates, and heat-induced filaments, prepared under various in vitro conditions. Infrared spectroscopy demonstrated that the beta-sheet compositions of immature fibrils, heat-induced filaments and amorphous aggregates are characteristic of antiparallel intermolecular beta-sheet structure while mature fibrils are different from all others suggesting a unique overall structure and assembly. Filamentous aggregates prepared by heat treatment are of importance in understanding the in vivo disease because of their stability under physiological conditions, where amyloid fibrils and protofibrils formed at acidic pH depolymerize. Atomic force microscopy of heat-induced filaments represented a morphology similar to that of the low pH immature fibrils. At a pH close to the pI of the protein, amorphous aggregates were formed readily with association of the molecules in native-like conformation, followed by formation of intermolecular beta-sheet structure in a longer time-scale. Extent of the core buried from the solvent in the various states was investigated by H/D exchange of the amide protons.  相似文献   

14.
Soluble amyloid oligomers are potent neurotoxins that are involved in a wide range of human degenerative diseases, including Alzheimer disease. In Alzheimer disease, amyloid β (Aβ) oligomers bind to neuronal synapses, inhibit long term potentiation, and induce cell death. Recent evidence indicates that several immunologically distinct structural variants exist as follows: prefibrillar oligomers (PFOs), fibrillar oligomers (FOs), and annular protofibrils. Despite widespread interest, amyloid oligomers are poorly characterized in terms of structural differences and pathological significance. FOs are immunologically related to fibrils because they react with OC, a conformation-dependent, fibril-specific antibody and do not react with antibodies specific for other types of oligomers. However, fibrillar oligomers are much smaller than fibrils. FOs are soluble at 100,000 × g, rich in β-sheet structures, but yet bind weakly to thioflavin T. EPR spectroscopy indicates that FOs display significantly more spin-spin interaction at multiple labeled sites than PFOs and are more structurally similar to fibrils. Atomic force microscopy indicates that FOs are approximately one-half to one-third the height of mature fibrils. We found that Aβ FOs do not seed the formation of thioflavin T-positive fibrils from Aβ monomers but instead seed the formation of FOs from Aβ monomers that are positive for the OC anti-fibril antibody. These results indicate that the lattice of FOs is distinct from the fibril lattice even though the polypeptide chains are organized in an immunologically identical conformation. The FOs resulting from seeded reactions have the same dimensions and morphology as the initial seeds, suggesting that the seeds replicate by growing to a limiting size and then splitting, indicating that their lattice is less stable than fibrils. We suggest that FOs may represent small pieces of single fibril protofilament and that the addition of monomers to the ends of FOs is kinetically more favorable than the assembly of the oligomers into fibrils via sheet stacking interaction. These studies provide novel structural insight into the relationship between fibrils and FOs and suggest that the increased toxicity of FOs may be due to their ability to replicate and the exposure of hydrophobic sheet surfaces that are otherwise obscured by sheet-sheet interactions between protofilaments in a fibril.  相似文献   

15.
Human amylin (hA), a 37-amino-acid polypeptide, is one of a number of peptides with the ability to form amyloid fibrils and cause disease. It is the main constituent of the pancreatic amyloid deposits associated with type 2 diabetes. Increasing interest in early assembly intermediates rather than the mature fibrils as the cytotoxic agent has led to this study in which the smallest hA oligomers have been captured by atomic force microscopy. These are 2.3 +/- 1.9 nm in height, 23 +/- 14 nm in length, and consist of an estimated 16 hA molecules. Oligomers first grow to a height of about 6 nm before they begin to significantly elongate into fibrils. Congo red inhibits elongation but not the growth in height of hA oligomers. Two distinct phases have thus been identified in hA fibrillogenesis: lateral growth of oligomers followed by longitudinal growth into mature fibrils. These observations suggest that mature fibrils are assembled directly via longitudinal growth of full-width oligomers, making assembly by lateral association of protofibrils appear less likely.  相似文献   

16.
We have previously shown that a subpopulation of naturally occurring human IgGs were cross-reactive against conformational epitopes on pathologic aggregates of Aβ, a peptide that forms amyloid fibrils in the brains of patients with Alzheimer disease, inhibited amyloid fibril growth, and dissociated amyloid in vivo. Here, we describe similar anti-amyloidogenic activity that is a general property of free human Ig γ heavy chains. A γ1 heavy chain, F1, had nanomolar binding to an amyloid fibril-related conformational epitope on synthetic oligomers and fibrils as well as on amyloid-laden tissue sections. F1 did not bind to native Aβ monomers, further indicating the conformational nature of its binding site. The inherent anti-amyloidogenic activity of Ig γ heavy chains was demonstrated by nanomolar amyloid fibril and oligomer binding by polyclonal and monoclonal human heavy chains that were isolated from inert or weakly reactive antibodies. Most importantly, the F1 heavy chain prevented in vitro fibril growth and reduced in vivo soluble Aβ oligomer-induced impairment of rodent hippocampal long term potentiation, a cellular mechanism of learning and memory. These findings demonstrate that free human Ig γ heavy chains comprise a novel class of molecules for developing potential therapeutics for Alzheimer disease and other amyloid disorders. Moreover, establishing the molecular basis for heavy chain-amyloidogenic conformer interactions should advance understanding on the types of interactions that these pathologic assemblies have with biological molecules.  相似文献   

17.
Systemic amyloidosis is a fatal disease caused by misfolding of native globular proteins, which then aggregate extracellularly as insoluble fibrils, damaging the structure and function of affected organs. The formation of amyloid fibrils in vivo is poorly understood. We recently identified the first naturally occurring structural variant, D76N, of human β2-microglobulin (β2m), the ubiquitous light chain of class I major histocompatibility antigens, as the amyloid fibril protein in a family with a new phenotype of late onset fatal hereditary systemic amyloidosis. Here we show that, uniquely, D76N β2m readily forms amyloid fibrils in vitro under physiological extracellular conditions. The globular native fold transition to the fibrillar state is primed by exposure to a hydrophobic-hydrophilic interface under physiological intensity shear flow. Wild type β2m is recruited by the variant into amyloid fibrils in vitro but is absent from amyloid deposited in vivo. This may be because, as we show here, such recruitment is inhibited by chaperone activity. Our results suggest general mechanistic principles of in vivo amyloid fibrillogenesis by globular proteins, a previously obscure process. Elucidation of this crucial causative event in clinical amyloidosis should also help to explain the hitherto mysterious timing and location of amyloid deposition.  相似文献   

18.
Renal failure impairs the clearance of β2-microglobulin from the serum, with the result that this protein accumulates in joints under the form of amyloid fibrils. While the molecular mechanism leading to deposition of amyloid in vivo is not totally understood, some organic compounds, such as trifluoroethanol (TFE), are commonly used to promote the elongation of amyloid fibrils in vitro. This article gives some insights into the structural properties and the conformational states of β2-microglobulin in the presence of TFE, using both the wild-type protein and the mutant Trp60Gly. The structure of the native state of the protein is rather insensitive to the presence of the alcohol, but the stability of this state is lowered in comparison to some other conformational states. In particular, a native-like folding intermediate is observed in the presence of moderate concentrations of TFE. Instead, at higher concentrations of the alcohol, the population of a disordered native-unlike state is dominant and correlates with the ability to elongate fibrils.  相似文献   

19.
The aggregation of soluble amyloid‐beta (Aβ) peptide into oligomers/fibrils is one of the key pathological features in Alzheimer's disease (AD). The Aβ aggregates are considered to play a pivotal role in the pathogenesis of AD. Therefore, inhibiting Aβ aggregation and destabilizing preformed Aβ fibrils would be an attractive therapeutic target for prevention and treatment of AD. S14G‐humanin (HNG), a synthetic derivative of Humanin (HN), has been shown to be a strong neuroprotective agent against various AD‐related insults. Recent studies have shown that HNG can significantly improve cognitive deficits and reduce insoluble Aβ levels as well as amyloid plaque burden without affecting amyloid precursor protein processing and Aβ production in transgenic AD models. However, the potential mechanisms by which HNG reduces Aβ‐related pathology in vivo remain obscure. In the present study, we found that HNG could significantly inhibit monomeric Aβ1–42 aggregation into fibrils and destabilize preformed Aβ1–42 fibrils in a concentration‐dependent manner by Thioflavin T fluorescence assay. In transmission electron microscope study, we observed that HNG was effective in inhibiting Aβ1–42 fibril formation and disrupting preformed Aβ1–42 fibrils, exhibiting various types of amorphous aggregates without identifiable Aβ fibrils. Furthermore, HNG‐treated monomeric or fibrillar Aβ1–42 was found to significantly reduce Aβ1–42‐mediated cytotoxic effects on PC12 cells in a dose‐dependent manner by MTT assay. Collectively, our results demonstrate for the first time that HNG not only inhibits Aβ1–42 fibril formation but also disaggregates preformed Aβ1–42 fibrils, which provides the novel evidence that HNG may have anti‐Aβ aggregation and fibrillogenesis, and fibril‐destabilizing properties. Together with previous studies, we concluded that HNG may have promising therapeutic potential as a multitarget agent for the prevention and/or treatment of AD. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Formation of toxic amyloid structures is believed to be associated with various late‐onset neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. The fact that many proteins in addition to those that are associated with clinical conditions have the potential to form amyloid fibrils in vitro provides opportunities for studying the fundamentals of protein aggregation and amyloid formation in model systems. Accordingly, considerable interest and effort has been directed toward developing small molecules to inhibit the formation of fibrillar assemblies and their associated toxicities. In the present study, we investigated the inhibitory effect of crocin and safranal, two principal components of saffron, on fibrillation of apo‐α‐lactalbumin (a‐α‐LA), used as a model protein, under amyloidogenic conditions. In the absence of any ligand, formation of soluble oligomers became evident after 18 h of incubation, followed by subsequent appearance of mature fibrils. Upon incubation with crocin or safranal, while transition phase to monomeric beta structures was not significantly affected, formation of soluble oligomers and following fibrillar assemblies were inhibited. While both safranal and crocin had the ability to bind to hydrophobic patches provided in the intermediate structures, and thereby inhibit protein aggregation, crocin was found more effective, possibly due to its simultaneous hydrophobic and hydrophilic character. Cell viability assay indicated that crocin could diminish toxicity while safranal act in reverse order. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 854–865, 2010.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号