首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P-bodies are cytoplasmic granules that are linked to mRNA decay, mRNA storage, and RNA interference (RNAi). They are known to interact with stress granules in stressed cells, and with late endosomes. Here, we report that P-bodies also interact with mitochondria, as previously described for P-body-related granules in germ cells. The interaction is dynamic, as a large majority of P-bodies contacts mitochondria at least once within a 3-min interval, and for about 18 s. This association requires an intact microtubule network. The depletion of P-bodies does not seem to affect mitochondria, nor the mitochondrial activity to be required for their contacts with P-bodies. However, inactivation of mitochondria leads to a strong decrease of miRNA-mediated RNAi efficiency, and to a lesser extent of siRNA-mediated RNAi. The defect occurs during the assembly of active RISC and is associated with a specific delocalization of endogeneous Ago2 from P-bodies. Our study reveals the possible involvement of RNAi defect in pathologies involving mitochondrial deficiencies.  相似文献   

2.
Processing bodies (P-bodies) are cytoplasmic foci implicated in the regulation of mRNA translation, storage, and degradation. Key effectors of microRNA (miRNA)-mediated RNA interference (RNAi), such as Argonaute-2 (Ago2), miRNAs, and their cognate mRNAs, are localized to these structures; however, the precise role that P-bodies and their component proteins play in small interfering RNA (siRNA)-mediated RNAi remains unclear. Here, we investigate the relationship between siRNA-mediated RNAi, RNAi machinery proteins, and P-bodies. We show that upon transfection into cells, siRNAs rapidly localize to P-bodies in their native double-stranded conformation, as indicated by fluorescence resonance energy transfer imaging and that Ago2 is at least in part responsible for this siRNA localization pattern, indicating RISC involvement. Furthermore, siRNA transfection induces up-regulated expression of both GW182, a key P-body component, and Ago2, indicating that P-body localization and interaction with GW182 and Ago2 are important in siRNA-mediated RNAi. By virtue of being centers where these proteins and siRNAs aggregate, we propose that the P-body microenvironment, whether as microscopically visible foci or submicroscopic protein complexes, facilitates siRNA processing and siRNA-mediated silencing through the action of its component proteins.  相似文献   

3.
4.
The antiviral role of RNA interference (RNAi) in humans remains to be better understood. In RNAi, Ago2 proteins and microRNAs (miRNAs) or small interfering RNAs (siRNAs) form endonucleolytically active complexes which down-regulate expression of target mRNAs. P-bodies, cytoplasmic centers of mRNA decay, are involved in these pathways. Evidence exists that hepatitis C virus (HCV) utilizes host cellular RNAi machinery, including miRNA-122, Ago1-4, and Dicer proteins for replication and viral genome translation in Huh7 cells by, so far, nebulous mechanisms. Conversely, synthetic siRNAs have been used to suppress HCV replication. Here, using a combination of biochemical, transfection, confocal imaging, and digital image analysis approaches, we reveal that replication of HCV RNA depends on recruitment of Ago2 and miRNA-122 to lipid droplets, while suppression of HCV RNA by siRNA and Ago2 involves interaction with P-bodies. Such partitioning of Ago2 proteins into different complexes and separate subcellular domains likely results in modulation of their activity by different reaction partners. We propose a model in which partitioning of host RNAi and viral factors into physically and functionally distinct subcellular compartments emerges as a mechanism regulating the dual interaction of cellular RNAi with HCV RNA.  相似文献   

5.
Sequence-specific gene silencing triggered by double-stranded RNA is a fundamental gene regulatory mechanism present in almost all eukaryotes. Argonaute2 (Ago2) is the central protein component of RNA-induced silencing complex (RISC), and resides in cytoplasmic processing bodies (P-bodies). In the present study, we demonstrated one human mutant Ago2 protein containing 6 point mutations (G32W, F128L, R196Q, P458S, T741A, S752G) failed to accumulate in P-bodies. Analysis of the different Ago2 revertants indicates the S752 as a key amino acid for P-body localization of Ago2. The S752 is evolutionary conserved in the Piwi domain of Ago2 homologs from worms, insects, plants and mammals. We further showed the single point mutation S752G interfering the interaction between Ago2 and Dcp1a, a key component of P-bodies.  相似文献   

6.
Chu CY  Rana TM 《PLoS biology》2006,4(7):e210
RNA interference is triggered by double-stranded RNA that is processed into small interfering RNAs (siRNAs) by Dicer enzyme. Endogenously, RNA interference triggers are created from small noncoding RNAs called microRNAs (miRNAs). RNA-induced silencing complexes (RISC) in human cells can be programmed by exogenously introduced siRNA or endogenously expressed miRNA. siRNA-programmed RISC (siRISC) silences expression by cleaving a perfectly complementary target mRNA, whereas miRNA-induced silencing complexes (miRISC) inhibits translation by binding imperfectly matched sequences in the 3′ UTR of target mRNA. Both RISCs contain Argonaute2 (Ago2), which catalyzes target mRNA cleavage by siRISC and localizes to cytoplasmic mRNA processing bodies (P-bodies). Here, we show that RCK/p54, a DEAD box helicase, interacts with argonaute proteins, Ago1 and Ago2, in affinity-purified active siRISC or miRISC from human cells; directly interacts with Ago1 and Ago2 in vivo, facilitates formation of P-bodies, and is a general repressor of translation. Disrupting P-bodies by depleting Lsm1 did not affect RCK/p54 interactions with argonaute proteins and its function in miRNA-mediated translation repression. Depletion of RCK/p54 disrupted P-bodies and dispersed Ago2 throughout the cytoplasm but did not significantly affect siRNA-mediated RNA functions of RISC. Depleting RCK/p54 released general, miRNA-induced, and let-7-mediated translational repression. Therefore, we propose that translation repression is mediated by miRISC via RCK/p54 and its specificity is dictated by the miRNA sequence binding multiple copies of miRISC to complementary 3′ UTR sites in the target mRNA. These studies also suggest that translation suppression by miRISC does not require P-body structures, and location of miRISC to P-bodies is the consequence of translation repression.  相似文献   

7.
The nonstructural protein (NS1) of influenza A virus performs multiple functions in the virus life cycle. Proteomic screening for cellular proteins which interact with NS1 identified the cellular protein RAP55, which is one of the components of cellular processing bodies (P-bodies) and stress granules. To verify whether NS1 interacts with cellular P-bodies, interactions between NS1, RAP55, and other P-body-associated proteins (Ago1, Ago2, and DCP1a) were confirmed using coimmunoprecipitation and cellular colocalization assays. Overexpression of RAP55 induced RAP55-associated stress granule formation and suppressed virus replication. Knockdown of RAP55 with small interfering RNA (siRNA) or expression of a dominant-negative mutant RAP55 protein with defective interaction with P-bodies blocked NS1 colocalization to P-bodies in cells. Expression of NS1 inhibited RAP55 expression and formation of RAP55-associated P-bodies/stress granules. The viral nucleoprotein (NP) was found to be targeted to stress granules in the absence of NS1 but localized to P-bodies when NS1 was coexpressed. Restriction of virus replication via P-bodies occurred in the early phases of infection, as the number of RAP55-associated P-bodies in cells diminished over the course of virus infection. NS1 interaction with RAP55-associated P-bodies/stress granules was associated with RNA binding and mediated via a protein kinase R (PKR)-interacting viral element. Mutations introduced into either RNA binding sites (R38 and K41) or PKR interaction sites (I123, M124, K126, and N127) caused NS1 proteins to lose the ability to interact with RAP55 and to inhibit stress granules. These results reveal an interplay between virus and host during virus replication in which NP is targeted to P-bodies/stress granules while NS1 counteracts this host restriction mechanism.  相似文献   

8.
Various kinds of stress on human cells induce the formation of endogenous stress granules (SGs). Human Argonaute 2 (hAgo2), the catalytic core component of the RNA-induced silencing complex (RISC), can be recruited to SGs as well as P-bodies (PBs) indicating that the dynamic intracellular distribution of hAgo2 in SGs, in PBs or at other sub-cellular sites could be related to the efficiency of the RNA interference (RNAi) machinery. Here, we studied the influence of heat shock, sodium arsenite (NaAsO2), cycloheximide (CHX) and Lipofectamine 2000-mediated transfection of phosphorothioate (PS)-modified oligonucleotides (ON) on the intracellular localization of hAgo2 and the efficiency of RNAi. Fluorescence microscopy and sedimentation analysis of cell fractions indicate stress-induced accumulation of hAgo2 in SGs and the loss of distinctly composed complexes containing hAgo2 or their sub-cellular context. Transfection of cells with PS-ON induces cell stress that is phenotypically similar to the established inducers heat shock and NaAsO2. The intracellular re-distribution of hAgo2 is related to its increased metabolic stability and to decreased RNAi directed by microRNA or by short interfering RNA. Here, we propose a functional model of the relationship between cell stress, translocation of hAgo2 to SGs providing a depot function, and loss of RNAi activity.  相似文献   

9.
Argonaute proteins are the core components of the RNA-induced silencing complex, the central effector of the mammalian RNA interference pathway. In the cytoplasm, they associate with at least two types of cytoplasmic RNA granules; processing bodies and stress granules, which function in mRNA degradation and translational repression, respectively. The significance of Argonaute association with these RNA granules is not entirely clear but it is likely related to their activities within the RNAi pathway. Understanding what regulates targeting of Argonautes to RNA granules may provide clues as to their functions at these organelles. To this end, there are a number of conflicting reports that describe the role of small RNAs in targeting Argonaute proteins in mammalian cells. We employed quantitative microscopic analyses of human Argonaute 2 (hAgo2) mutants to study factors that govern localization of this RNA-binding protein to cytoplasmic RNA granules. We report, for the first time, that hAgo2 is recruited to stress granules as a consequence of its interaction with miRNAs. Moreover, loading of small RNAs onto hAgo2 is not required for its stability, suggesting that a pool of unloaded hAgo2 may exist for extended periods of time in the cytoplasm.  相似文献   

10.
P-bodies (processing bodies) are observed in different organisms such as yeast, Caenorhabditis elegans and mammals. A typical eukaryotic cell contains several types of spatially formed granules, such as P-bodies, stress granules and a variety of ribonucleoprotein bodies. These microdomains play important role in mRNA processing, including RNA interference, repression of translation and mRNA decay. The P-bodies components as well as stress granules may play an important role in host defense against viral infection. The complete set of P-bodies protein elements is still poor known. They contain conserved protein core limited to different organisms or to stress status of the cell. P-bodies are related also to some neuronal mRNA granules as well as to maternal RNA granules or male germ cell granules. In this mini-review, we focus on the structure of P-bodies and their function in the mRNA utilization and processing because of the high mRNA's dynamics between different cellular compartments and its key role in modulation of gene expression.  相似文献   

11.
A role for the P-body component GW182 in microRNA function   总被引:2,自引:0,他引:2  
In animals, the majority of microRNAs regulate gene expression through the RNA interference (RNAi) machinery without inducing small-interfering RNA (siRNA)-directed mRNA cleavage. Thus, the mechanisms by which microRNAs repress their targets have remained elusive. Recently, Argonaute proteins, which are key RNAi effector components, and their target mRNAs were shown to localize to cytoplasmic foci known as P-bodies or GW-bodies. Here, we show that the Argonaute proteins physically interact with a key P-/GW-body subunit, GW182. Silencing of GW182 delocalizes resident P-/GW-body proteins and impairs the silencing of microRNA reporters. Moreover, mutations that prevent Argonaute proteins from localizing in P-/GW-bodies prevent translational repression of mRNAs even when Argonaute is tethered to its target in a siRNA-independent fashion. Thus, our results support a functional link between cytoplasmic P-bodies and the ability of a microRNA to repress expression of a target mRNA.  相似文献   

12.

Background

The quaking viable (qkv) mouse has several developmental defects that result in rapid tremors in the hind limbs. The qkI gene expresses three major alternatively spliced mRNAs (5, 6 and 7 kb) that encode the QKI-5, QKI-6 and QKI-7 RNA binding proteins that differ in their C-terminal 30 amino acids. The QKI isoforms are known to regulate RNA metabolism within oligodendrocytes, however, little is known about their roles during cellular stress.

Methodology/Principal Findings

In this study, we report an interaction between the QKI-6 isoform and a component of the RNA induced silencing complex (RISC), argonaute 2 (Ago2). We show in glial cells that QKI-6 co-localizes with Ago2 and the myelin basic protein mRNA in cytoplasmic stress granules.

Conclusions

Our findings define the QKI isoforms as Ago2-interacting proteins. We also identify the QKI-6 isoform as a new component of stress granules in glial cells.  相似文献   

13.
Translation and messenger RNA (mRNA) degradation are important sites of gene regulation, particularly during stress where translation and mRNA degradation are reprogrammed to stabilize bulk mRNAs and to preferentially translate mRNAs required for the stress response. During stress, untranslating mRNAs accumulate both in processing bodies (P-bodies), which contain some translation repressors and the mRNA degradation machinery, and in stress granules, which contain mRNAs stalled in translation initiation. How signal transduction pathways impinge on proteins modulating P-body and stress granule formation and function is unknown. We show that during stress in Saccharomyces cerevisiae, Dcp2 is phosphorylated on serine 137 by the Ste20 kinase. Phosphorylation of Dcp2 affects the decay of some mRNAs and is required for Dcp2 accumulation in P-bodies and specific protein interactions of Dcp2 and for efficient formation of stress granules. These results demonstrate that Ste20 has an unexpected role in the modulation of mRNA decay and translation and that phosphorylation of Dcp2 is an important control point for mRNA decapping.  相似文献   

14.
Argonaute (Ago) proteins form the core of RNA-induced silencing complexes (RISCs) and mediate small RNA-guided gene silencing. In RNAi, short interfering RNAs (siRNAs) guide RISCs to complementary target RNAs, leading to cleavage by the endonuclease Ago2. Noncatalytic Ago proteins, however, contribute to RNAi as well but cannot cleave target RNA and often generate off-target effects. Here we show that synthetic siRNA duplexes interact with all Ago proteins, but a functional RISC rapidly assembles only around Ago2. By stabilizing the siRNA duplex, we show that the noncatalytic Ago proteins Ago1, -3, and -4 can be selectively blocked and do not form functional RISCs. In addition, stabilized siRNAs form an Ago2-RISC more efficiently, leading to increased silencing activity. Our data suggest novel parameters for the design of siRNAs with selective activation of the endonuclease Ago2.  相似文献   

15.
Gene silencing using small interfering RNA (siRNA) is a valuable laboratory tool and a promising approach to therapeutics for a variety of human diseases. Recently, RNA interference (RNAi) has been linked to cytoplasmic GW bodies (GWB). However, the correlation between RNAi and the formation of GWB, also known as mammalian processing bodies, remains unclear. In this report, we show that transfection of functional siRNA induced larger and greater numbers of GWB. This siRNA-induced increase of GWB depended on the endogenous expression of the target mRNA. Knockdown of GW182 or Ago2 demonstrated that the siRNA-induced increase of GWB required these two proteins and correlated with RNAi. Furthermore, knockdown of rck/p54 or LSm1 did not prevent the reassembly of GWB that were induced by and correlated with siRNA-mediated RNA silencing. We propose that RNAi is a key regulatory mechanism for the assembly of GWB, and in some cases, GWB may serve as markers for RNAi in mammalian cells.  相似文献   

16.
GW182 family proteins play important roles in microRNA (miRNA)-mediated RNA silencing. They directly interact with Argonaute (Ago) proteins in processing bodies (P bodies), cytoplasmic foci involved in mRNA degradation and storage. Recently, we revealed that a human GW182 family protein, TNRC6A, is a nuclear-cytoplasmic shuttling protein, and its subcellular localization is regulated by its own nuclear localization signal and nuclear export signal. Regarding the further controlling mechanism of TNRC6A subcellular localization, we found that TNRC6A protein is tethered in P bodies by direct interaction with Ago2 under Ago2 overexpression condition in HeLa cells. Furthermore, it was revealed that such Ago proteins might be strongly tethered in the P bodies through Ago-bound small RNAs. Thus, our results indicate that TNRC6A subcellular localization is substantially controlled by the interaction with Ago proteins. Furthermore, it was also revealed that the TNRC6A subcellular localization affects the RNA silencing activity.  相似文献   

17.
18.
19.
Members of the APOBEC (apolipoprotein B mRNA-editing enzyme catalytic polypeptide 1-like) family of cytidine deaminases inhibit host cell genome invasion by exogenous retroviruses and endogenous retrotransposons. Because these enzymes can edit DNA or RNA and potentially mutate cellular targets, their activities are presumably regulated; for instance, APOBEC3G (A3G) recruitment into high-molecular-weight ribonucleoprotein (RNP) complexes has been shown to suppress its enzymatic activity. We used tandem affinity purification together with mass spectrometry (MS) to identify protein components within A3G-containing RNPs. We report that numerous cellular RNA-binding proteins with diverse roles in RNA function, metabolism, and fate determination are present in A3G RNPs but that most interactions with A3G are mediated via binding to shared RNAs. Confocal microscopy demonstrated that substantial quantities of A3G localize to cytoplasmic microdomains that are known as P bodies and stress granules (SGs) and are established sites of RNA storage and metabolism. Indeed, subjecting cells to stress induces the rapid redistribution of A3G and a number of P-body proteins to SGs. Among these proteins are Argonaute 1 (Ago1) and Argonaute 2 (Ago2), factors that are important for RNA silencing and whose interactions with A3G are resistant to RNase treatment. Together, these findings reveal that A3G associates with RNPs that are found throughout the cytosol as well as in discrete microdomains. We also speculate that the interplay between A3G, RNA-silencing pathways, and cellular sites of RNA metabolism may contribute to A3G's role as an inhibitor of retroelement mobility and as a possible regulator of cellular RNA function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号