首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mexico has higher mammalian diversity than expected for its size and geographic position. High environmental hetero geneity throughout Mexico is hypothesized to promote high turnover rates (β‐diversity), thus contributing more to observed species richness and composition than within‐habitat (α) diversity. This is true if species are strongly associated with their environments, such that changes in environmental attributes will result in changes in species composition. Also, greater heterogeneity in an area will result in greater species richness. This hypothesis has been deemed false for bats, as their ability to fly would reduce opportunities for habitat specialization. If so, we would expect no significant relationships between 1) species composition and environmental variables, 2) species richness and environmental heterogeneity, 3) β‐diversity and environmental heterogeneity. We tested these predictions using 31 bat assemblages distributed across Mexico. Using variance partitioning we evaluated the relative contribution of vegetation, climate, elevation, horizontal heterogeneity (a variate including vegetation, climate, and elevational heterogeneity), spatial variation (lat‐long), and vertical hetero geneity (of vegetation strata) to variation in bat species composition and richness. Variation in vegetation explained 92% of the variation in species composition and was correlated with all other variables examined, indicating that bats respond directly to habitat composition and structure. Beta‐diversity and vegetational heterogeneity were significantly correlated. Bat species richness was significantly correlated with vertical, but not horizontal, heterogeneity. Nonetheless, neither horizontal nor vertical heterogeneity were random; both were related to latitude and to elevation. Variation in bat community composition and richness in Mexico were primarily explained by local landscape heterogeneity and environmental factors. Significant relationships between β‐diversity and environmental variation reveal differences in habitat specialization by bats, and explain their high diversity in Mexico. Understanding mechanisms acting along environmental or geographic gradients is as important for understanding spatial variation in community composition as studying mechanisms that operate at local scales.  相似文献   

2.
Patterns of species richness for vascular plants in China's nature reserves   总被引:2,自引:0,他引:2  
Explaining the heterogeneous distribution of biodiversity across the Earth has long been a challenge to ecologists and biogeographers. Here, we document the patterns of plant species richness for different taxonomic groups in China's nature reserves, and discuss their possible explanations at national and regional scales, using vascular plant richness data coupled with information on climate and topographical variables. We found that water deficit, energy and elevation range (a surrogate of habitat heterogeneity) represent the primary explanations for variation in plant species richness of the nature reserves across China. There are consistent relationships between species richness and climate and habitat heterogeneity for different taxonomic vascular plant groups at the national scale. Habitat heterogeneity is strongly associated with plant richness in all regions, whereas climatic constraints to plant diversity vary regionally. In the regions where energy is abundant or water is scarce, plant richness patterns were determined by water and habitat heterogeneity, whereas in the region with low energy inputs, water interacting with energy, and habitat heterogeneity determined its species richness pattern. Our results also suggest that energy variables alone do not represent the primary predictor of plant richness.  相似文献   

3.
Aim Broad‐scale spatial variation in species richness relates to climate and physical heterogeneity but human activities may be changing these patterns. We test whether climate and heterogeneity predict butterfly species richness regionally and across Canada and whether these relationships change in areas of human activity. Location Canada. Methods We modelled the ranges of 102 butterfly species using genetic algorithms for rule‐set production (GARP). We then measured butterfly species richness and potentially important aspects of human activity and the natural environment. These were included in a series of statistical models to determine which factors are likely to affect butterfly species richness in Canada. We considered patterns across Canada, within predominantly natural areas, human‐dominated areas and particular ecozones. We examined independent observations of butterfly species currently listed under Canada's endangered species legislation to test whether these were consistent with findings from statistical models. Results Growing season temperature is the main determinant of butterfly species richness across Canada, with substantial contributions from habitat heterogeneity (measured using elevation). Only in the driest areas does precipitation emerge as a leading predictor of richness. The slope of relationships between all of these variables and butterfly species richness becomes shallower in human‐dominated areas, but butterfly richness is still highest there. Insecticide applications, habitat loss and road networks reduce butterfly richness in human‐dominated areas, but these effects are relatively small. All of Canada's at‐risk butterfly species are located in these human‐dominated areas. Main conclusions Temperature affects butterfly species richness to a greater extent than habitat heterogeneity at fine spatial scales and is generally far more important than precipitation, supporting both the species richness–energy and habitat heterogeneity hypotheses. Human activities, especially in southern Canada, appear to cause surprisingly consistent trends in biotic homogenization across this region, perhaps through range expansion of common species and loss of range‐restricted species.  相似文献   

4.
Population genetic diversity is widely accepted as important to the conservation and management of wildlife. However, habitat features may differentially affect evolutionary processes that facilitate population genetic diversity among sympatric species. We measured genetic diversity for two pond‐breeding amphibian species (Dwarf salamanders, Eurycea quadridigitata; and Southern Leopard frogs, Lithobates sphenocephalus) to understand how habitat characteristics and spatial scale affect genetic diversity across a landscape. Samples were collected from wetlands on a longleaf pine reserve in Georgia. We genotyped microsatellite loci for both species to assess population structures and determine which habitat features were most closely associated with observed heterozygosity and rarefied allelic richness. Both species exhibited significant population genetic structure; however, structure in Southern Leopard frogs was driven primarily by one outlier site. Dwarf salamander allelic richness was greater at sites with less surrounding road area within 0.5 km and more wetland area within 1.0 and 2.5 km, and heterozygosity was greater at sites with more wetland area within 0.5 km. In contrast, neither measure of Southern Leopard frog genetic diversity was associated with any habitat features at any scale we evaluated. Genetic diversity in the Dwarf salamander was strongly associated with land cover variables up to 2.5 km away from breeding wetlands, and/or results suggest that minimizing roads in wetland buffers may be beneficial to the maintenance of population genetic diversity. This study suggests that patterns of genetic differentiation and genetic diversity have associations with different habitat features across different spatial scales for two syntopic pond‐breeding amphibian species.  相似文献   

5.
Species richness is influenced both by mechanisms occurring at landscape scales, such as habitat availability, and local‐scale processes, that are related to abiotic conditions and plant–plant interactions. However, it is rarely tested to what extent local species richness can be explained by the combined effect of factors measured at multiple spatial scales. In this study, we quantified the simultaneous influence of historical landscape‐scale factors (past human population density, and past habitat availability – an index combining area and connectivity) and small‐scale environmental conditions (shrub cover, and heterogeneity of light, soil depth, and other soil environmental variables) on plant species richness in dry calcareous grasslands (alvars). By applying structural equation modelling (SEM) we found that both landscape conditions and local environmental factors had significant direct and indirect (i.e. through the modification of another factor), effects on species richness. At the landscape scale, we found a direct positive influence of historical habitat availability on species richness, and indirect positive influence of past human population (via its effects on historical habitat availability). At small scales, we found a positive direct influence of light heterogeneity and shrub cover on species richness. Conversely, we found that small‐scale soil environmental heterogeneity, which was mainly determined by soil depth heterogeneity, had a negative effect on species richness. Our study indicates that patterns of species richness in alvar grasslands are positively influenced by the anthropogenic management regime that maintained the landscape habitat conditions in the past. However, the abandonment of management, leading to shrub invasion and increased competition for light resources also influenced species richness. In contrast to the positive heterogeneity–diversity relationship we found that soil heterogeneity reduced species richness. Environmental heterogeneity, occurring at the plant neighbourhood scale (i.e. centimetres), can increase the isolation among suitable soil patches and thus hinder the normal functioning of populations. The combination of previous knowledge of the system with new ecological theories facilitates disentangling how species richness responds to complex relationships among factors operating at multiple scales.  相似文献   

6.
We analyzed geographic patterns of richness in both the breeding and winter season in relation to a remotely sensed index of seasonal production (normalized difference vegetation index [NDVI]) and to measures of habitat heterogeneity at four different spatial resolutions. The relationship between avian richness and NDVI was consistent between seasons, suggesting that the way in which available energy is converted to bird species is similar at these ecologically distinct times of year. The number and proportion of migrant species in breeding communities also increased predictably with the degree of seasonality. The NDVI was a much better predictor of seasonal richness at finer spatial scales, whereas habitat heterogeneity best predicted richness at coarser spatial resolutions. While we find strong support for a positive relationship between available energy and species richness, seasonal NDVI explained at most 61% of the variation in richness. Seasonal NDVI and habitat heterogeneity together explain up to 69% of the variation in richness.  相似文献   

7.
We study how species richness of arthropods relates to theories concerning net primary productivity, ambient energy, water-energy dynamics and spatial environmental heterogeneity. We use two datasets of arthropod richness with similar spatial extents (Scandinavia to Mediterranean), but contrasting spatial grain (local habitat and country). Samples of ground-dwelling spiders, beetles, bugs and ants were collected from 32 paired habitats at 16 locations across Europe. Species richness of these taxonomic groups was also determined for 25 European countries based on the Fauna Europaea database. We tested effects of net primary productivity (NPP), annual mean temperature (T), annual rainfall (R) and potential evapotranspiration of the coldest month (PETmin) on species richness and turnover. Spatial environmental heterogeneity within countries was considered by including the ranges of NPP, T, R and PETmin. At the local habitat grain, relationships between species richness and environmental variables differed strongly between taxa and trophic groups. However, species turnover across locations was strongly correlated with differences in T. At the country grain, species richness was significantly correlated with environmental variables from all four theories. In particular, species richness within countries increased strongly with spatial heterogeneity in T. The importance of spatial heterogeneity in T for both species turnover across locations and for species richness within countries suggests that the temperature niche is an important determinant of arthropod diversity. We suggest that, unless climatic heterogeneity is constant across sampling units, coarse-grained studies should always account for environmental heterogeneity as a predictor of arthropod species richness, just as studies with variable area of sampling units routinely consider area.  相似文献   

8.
Questions: What is the observed relationship between plant species diversity and spatial environmental heterogeneity? Does the relationship scale predictably with sample plot size? What are the relative contributions to diversity patterns of variables linked to productivity or available energy compared to those corresponding to spatial heterogeneity? Methods: Observational and experimental studies that quantified relationships between plant species richness and within‐sample spatial environmental heterogeneity were reviewed. Effect size in experimental studies was quantified as the standardized mean difference between control (homogeneous) and heterogeneous treatments. For observational studies, effect sizes in individual studies were examined graphically across a gradient of plot size (focal scale). Relative contributions of variables representing spatial heterogeneity were compared to those representing available energy using a response ratio. Results: Forty‐one observational and 11 experimental studies quantified plant species diversity and spatial environmental heterogeneity. Observational studies reported positive species diversity‐spatial heterogeneity correlations at all points across a plot size gradient from ~1.0 × 10?1 to ~1.0 × 1011 m2, although many studies reported spatial heterogeneity variables with no significant relationships to species diversity. The cross‐study effect size in experimental studies was not significantly different from zero. Available energy variables explained consistently more of the variance in species richness than spatial heterogeneity variables, especially at the smallest and largest plot sizes. Main conclusions: Species diversity was not related to spatial heterogeneity in a way predictable by plot size. Positive heterogeneity‐diversity relationships were common, confirming the importance of niche differentiation in species diversity patterns, but future studies examining a range of spatial scales in the same system are required to determine the role of dispersal and available energy in these patterns.  相似文献   

9.
It is widely accepted that species diversity is contingent upon the spatial scale used to analyze patterns and processes. Recent studies using coarse sampling grains over large extents have contributed much to our understanding of factors driving global diversity patterns. This advance is largely unmatched on the level of local to landscape scales despite being critical for our understanding of functional relationships across spatial scales. In our study on West African bat assemblages we employed a spatially explicit and nested design covering local to regional scales. Specifically, we analyzed diversity patterns in two contrasting, largely undisturbed landscapes, comprising a rainforest area and a forest‐savanna mosaic in Ivory Coast, West Africa. We employed additive partitioning, rarefaction, and species richness estimation to show that bat diversity increased significantly with habitat heterogeneity on the landscape scale through the effects of beta diversity. Within the extent of our study areas, habitat type rather than geographic distance explained assemblage composition across spatial scales. Null models showed structure of functional groups to be partly filtered on local scales through the effects of vegetation density while on the landscape scale both assemblages represented random draws from regional species pools. We present a mixture model that combines the effects of habitat heterogeneity and complexity on species richness along a biome transect, predicting a unimodal rather than a monotonic relationship with environmental variables related to water. The bat assemblages of our study by far exceed previous figures of species richness in Africa, and refute the notion of low species richness of Afrotropical bat assemblages, which appears to be based largely on sampling biases. Biome transitions should receive increased attention in conservation strategies aiming at the maintenance of ecological and evolutionary processes.  相似文献   

10.
Determinants of avian species richness at different spatial scales   总被引:10,自引:1,他引:9  
ABSTRACT. Studies of factors influencing avian biodiversity yield very different results depending on the spatial scale at which species richness is calculated. Ecological studies at small spatial scales (plot size 0.0025–0.4 km2) emphasize the importance of habitat diversity, whereas biogeographical studies at large spatial scales (quadrat size 400–50,000 km2) emphasize variables related to available energy such as temperature. In order to bridge the gap between those two approaches the bird atlas data set of Lake Constance was used to study factors determining avian species diversity at the intermediate spatial scales of landscapes (quadrat size 4–36 km2). At these spatial scales bird species richness was influenced by habitat diversity and not by variables related to available energy probably because, at the landscape scale, variation in available energy is small. Changing quadrat size between 4 and 36 km2, but keeping the geographical extension of the study constant resulted in profound changes in the degree to which the amount of different habitat types was correlated with species richness. This suggests that high species diversity is achieved by different management regimes depending on the spatial scale at which species richness is calculated. However, generally, avian species diversity seems to be determined by spatial heterogeneity at the corresponding spatial scale. Thus, protecting the diversity of landscapes and ecosystems appears to ensure also high levels of species diversity.  相似文献   

11.
Although land use change is a key driver of biodiversity change, related variables such as habitat area and habitat heterogeneity are seldom considered in modeling approaches at larger extents. To address this knowledge gap we tested the contribution of land use related variables to models describing richness patterns of amphibians, reptiles and passerines in the Iberian Peninsula. We analyzed the relationship between species richness and habitat heterogeneity at two spatial resolutions (i.e., 10 km × 10 km and 50 km × 50 km). Using both ordinary least square and simultaneous autoregressive models, we assessed the relative importance of land use variables, climate variables and topographic variables. We also compare the species–area relationship with a multi-habitat model, the countryside species–area relationship, to assess the role of the area of different types of habitats on species diversity across scales. The association between habitat heterogeneity and species richness varied with the taxa and spatial resolution. A positive relationship was detected for all taxa at a grain size of 10 km × 10 km, but only passerines responded at a grain size of 50 km × 50 km. Species richness patterns were well described by abiotic predictors, but habitat predictors also explained a considerable portion of the variation. Moreover, species richness patterns were better described by a multi-habitat species-area model, incorporating land use variables, than by the classic power model, which only includes area as the single explanatory variable. Our results suggest that the role of land use in shaping species richness patterns goes beyond the local scale and persists at larger spatial scales. These findings call for the need of integrating land use variables in models designed to assess species richness response to large scale environmental changes.  相似文献   

12.
One of the major determinants of species richness is the amount of energy available, often measured as primary productivity. Heterogeneity of environmental variables has also been found to influence species richness. Predicting species distributions across landscapes and identifying areas that have high species richness, or vulnerable groups of species, is useful for land management. Remotely sensed data may help identify such areas, with the Normalized Difference Vegetation Index (NDVI) providing an estimate of primary productivity. We examined the relationship between maximum productivity (NDVI), heterogeneity of productivity, and species richness of birds and butterflies at multiple spatial scales. We also explored relationships between productivity, functional guilds and residency groups of birds, and vagility classes of butterflies. Positive linear relationships between maximum NDVI and number of functional guilds of birds were found at two spatial scales. We also found positive linear relationships between maximum NDVI and species richness of neotropical migrant birds at two scales. Heterogeneity of NDVI, by contrast, was negatively associated with number of functional guilds of birds and species richness of resident birds. Maximum NDVI was associated with species richness of all butterflies and of the most vagile butterflies. No association was found between heterogeneity of NDVI and species richness of butterflies. In the Great Basin, where high greenness and availability of water correspond to areas of high species richness and maximum NDVI, our results suggest that NDVI can provide a reliable basis for stratifying surveys of biodiversity, by highlighting areas of potentially high biodiversity across large areas. Measures of heterogeneity of NDVI appear to be less useful in explaining species richness.  相似文献   

13.
Understanding the factors that regulate geographical variation in species richness has been one of the fundamental questions in ecology for decades, but our knowledge of the cause of geographical variation in species richness remains poor. This is particularly true for herpetofaunas (including amphibians and reptiles). Here, using correlation and regression analyses, we examine the relationship of herpetofaunal species richness in 245 localities across China with 30 environmental factors, which include nearly all major environmental factors that are considered to explain broad-scale species richness gradients in such theories as ambient energy, water–energy dynamics, productivity, habitat heterogeneity, and climatic stability. We found that the species richness of amphibians and reptiles is moderately to strongly correlated with most of the environmental variables examined, and that the best fit models, which include explanatory variables of temperature, precipitation, net primary productivity, minimum elevation, and range in elevation, explain ca 70% the variance in species richness for both amphibians and reptiles after accounting for sample area. Although water and temperature are important explanatory variables to both amphibians and reptiles, water variables explain more variance in amphibian species richness than in reptile species richness whereas temperature variables explain more variance in reptile species richness than in amphibian species richness, which is consistent with different physiological requirements of the two groups of organisms.  相似文献   

14.
Explaining geographic variation in plant species richness at broad spatial scales has long been a major challenge. Many hypotheses have been proposed during the last 200 yr, but recent work has focused on a few major alternatives. Among these, two hypotheses contend that plant species richness reflects 1) variation in energy and water availability among sampling units (the species-energy hypothesis) and 2) habitat and topographic heterogeneity within sampling units (the spatial heterogeneity hypothesis). We used a large botanical database and regression models to simultaneously confront the predictions from both hypotheses against an estimate of vascular plant richness across northwest South America. This estimate provided similar support for both hypotheses, a result that may be seen as contrasting with the notion that variation in energy and water availability among sampling units is the main determinant of plant species richness. We discuss potential explanations for this apparent discrepancy. Regression models that incorporated the relative contributions of both hypotheses predicted that the highest plant species richness in northwest South America is found in topographically complex areas. In contrast to several of the most recent mapping efforts, lowland Amazonia was predicted to be a plant richness trough in the study region. We suggest that diverging portrayals of plant richness across northwest South America result from differences in estimates of the relative importance of the species-energy and the spatial heterogeneity hypotheses.  相似文献   

15.
The causes of variation in animal species richness at large spatial scales are intensively debated. Here, we examine whether the diversity of food plants, contemporary climate and energy, or habitat heterogeneity determine species richness patterns of avian frugivores across sub-Saharan Africa. Path models indicate that species richness of Ficus (their fruits being one of the major food resources for frugivores in the tropics) has the strongest direct effect on richness of avian frugivores, whereas the influences of variables related to water-energy and habitat heterogeneity are mainly indirect. The importance of Ficus richness for richness of avian frugivores diminishes with decreasing specialization of birds on fruit eating, but is retained when accounting for spatial autocorrelation. We suggest that a positive relationship between food plant and frugivore species richness could result from niche assembly mechanisms (e.g. coevolutionary adaptations to fruit size, fruit colour or vertical stratification of fruit presentation) or, alternatively, from stochastic speciation-extinction processes. In any case, the close relationship between species richness of Ficus and avian frugivores suggests that figs are keystone resources for animal consumers, even at continental scales.  相似文献   

16.
The positive monotonic relationship between habitat heterogeneity and species richness is a cornerstone of ecology. Recently, it was suggested that this relationship should be unimodal rather than monotonic due to a tradeoff between environmental heterogeneity and population sizes, which increases local species extinctions at high heterogeneity levels. Here, we studied the richness–heterogeneity relationship for an avian community using two different environmental variables, foliage‐height diversity and cover type diversity. We analyzed the richness–heterogeneity within different habitat types (grasslands, savannas, or woodlands) and at the landscape scale. We found strong evidence that both positive and unimodal relationships exist at the landscape scale. Within habitats we found positive relationships between richness and heterogeneity in grasslands and woodlands, and unimodal relationships in savannas. We suggest that the length of the environmental heterogeneity gradient (which is affected by both spatial scale and the environmental variable being analyzed) affects the type of the richness–heterogeneity relationship. We conclude that the type of the relationship between species richness and environmental heterogeneity is non‐ubiquitous, and varies both within and among habitats and environmental variables.  相似文献   

17.
Habitat heterogeneity contributes to the maintenance of diversity, but the extent that landscape-scale rather than local-scale heterogeneity influences the diversity of soil invertebrates—species with small range sizes—is less clear. Using a Scottish habitat heterogeneity gradient we correlated Collembola and lumbricid worm species richness and abundance with different elements (forest cover, habitat richness and patchiness) and qualities (plant species richness, soil variables) of habitat heterogeneity, at landscape (1 km2) and local (up to 200 m2) scales. Soil fauna assemblages showed considerable turnover in species composition along this habitat heterogeneity gradient. Soil fauna species richness and turnover was greatest in landscapes that were a mosaic of habitats. Soil fauna diversity was hump-shaped along a gradient of forest cover, peaking where there was a mixture of forest and open habitats in the landscape. Landscape-scale habitat richness was positively correlated with lumbricid diversity, while Collembola and lumbricid abundances were negatively and positively related to landscape spatial patchiness. Furthermore, soil fauna diversity was positively correlated with plant diversity, which in turn peaked in the sites that were a mosaic of forest and open habitat patches. There was less evidence that local-scale habitat variables (habitat richness, tree cover, plant species richness, litter cover, soil pH, depth of organic horizon) affected soil fauna diversity: Collembola diversity was independent of all these measures, while lumbricid diversity positively and negatively correlated with vascular plant species richness and tree canopy density. Landscape-scale habitat heterogeneity affects soil diversity regardless of taxon, while the influence of habitat heterogeneity at local scales is dependent on taxon identity, and hence ecological traits, e.g. body size. Landscape-scale habitat heterogeneity by providing different niches and refuges, together with passive dispersal and population patch dynamics, positively contributes to soil faunal diversity. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
South East Asia is widely regarded as a centre of threatened biodiversity owing to extensive logging and forest conversion to agriculture. In particular, forests degraded by repeated rounds of intensive logging are viewed as having little conservation value and are afforded meagre protection from conversion to oil palm. Here, we determine the biological value of such heavily degraded forests by comparing leaf-litter ant communities in unlogged (natural) and twice-logged forests in Sabah, Borneo. We accounted for impacts of logging on habitat heterogeneity by comparing species richness and composition at four nested spatial scales, and examining how species richness was partitioned across the landscape in each habitat. We found that twice-logged forest had fewer species occurrences, lower species richness at small spatial scales and altered species composition compared with natural forests. However, over 80 per cent of species found in unlogged forest were detected within twice-logged forest. Moreover, greater species turnover among sites in twice-logged forest resulted in identical species richness between habitats at the largest spatial scale. While two intensive logging cycles have negative impacts on ant communities, these degraded forests clearly provide important habitat for numerous species and preventing their conversion to oil palm and other crops should be a conservation priority.  相似文献   

19.
Luo Z  Tang S  Li C  Fang H  Hu H  Yang J  Ding J  Jiang Z 《PloS one》2012,7(4):e35514

Background

Explaining species richness patterns is a central issue in biogeography and macroecology. Several hypotheses have been proposed to explain the mechanisms driving biodiversity patterns, but the causes of species richness gradients remain unclear. In this study, we aimed to explain the impacts of energy, environmental stability, and habitat heterogeneity factors on variation of vertebrate species richness (VSR), based on the VSR pattern in China, so as to test the energy hypothesis, the environmental stability hypothesis, and the habitat heterogeneity hypothesis.

Methodology/Principal Findings

A dataset was compiled containing the distributions of 2,665 vertebrate species and eleven ecogeographic predictive variables in China. We grouped these variables into categories of energy, environmental stability, and habitat heterogeneity and transformed the data into 100×100 km quadrat systems. To test the three hypotheses, AIC-based model selection was carried out between VSR and the variables in each group and correlation analyses were conducted. There was a decreasing VSR gradient from the southeast to the northwest of China. Our results showed that energy explained 67.6% of the VSR variation, with the annual mean temperature as the main factor, which was followed by annual precipitation and NDVI. Environmental stability factors explained 69.1% of the VSR variation and both temperature annual range and precipitation seasonality had important contributions. By contrast, habitat heterogeneity variables explained only 26.3% of the VSR variation. Significantly positive correlations were detected among VSR, annual mean temperature, annual precipitation, and NDVI, whereas the relationship of VSR and temperature annual range was strongly negative. In addition, other variables showed moderate or ambiguous relations to VSR.

Conclusions/Significance

The energy hypothesis and the environmental stability hypothesis were supported, whereas little support was found for the habitat heterogeneity hypothesis.  相似文献   

20.
宏生态尺度上景观破碎化对物种丰富度的影响   总被引:3,自引:0,他引:3  
生物多样性的地理格局及其形成机制是宏生态学与生物地理学的研究热点。大量研究表明,景观尺度上的生境破碎化对物种多样性的分布格局具有重要作用,但目前尚不清楚这种作用是否足以在宏生态尺度上对生物多样性地理格局产生显著影响。利用中国大陆鸟类和哺乳动物的物种分布数据,在100 km×100 km网格的基础上生成了这两个类群生物的物种丰富度地理格局,进一步利用普通最小二乘法模型和空间自回归模型研究了物种丰富度与气候、生境异质性、景观破碎化的相关关系。结果表明,景观破碎化因子与鸟类和哺乳动物的物种丰富度都具有显著的关联关系,其方差贡献率可达约30%—50%(非空间模型)和60%—80%(空间模型),略低于或接近于气候和生境异质性因子。方差分解结果显示,景观破碎化因子与气候和生境异质性因子的方差贡献率的重叠部分达20%—40%。相对鸟类而言,景观破碎化对哺乳动物物种丰富度的地理格局具有更高的解释率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号