首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gap junctions (GJs) belong to one of the most conserved cellular structures in multicellular organisms. They probably serve similar functions in all Metazoa, providing one of the most common forms of intercellular communication. GJs are widely distributed in embryonic cells and tissues and have been attributed an important role in development, modulating cell growth and differentiation. These channels have been also implicated in mediating electrical synaptic signaling; Coupling through GJs is now accepted as a major pathway that supports network behavior and contributes to physiological rhythms. Here we focus on the physiology and molecular biology of GJs in a recently established model for the study of rhythm-generating networks and their role in behavior: the frontal ganglion (FG) of the desert locust, Schistocerca gregaria. Four novel genes of the invertebrate GJs (innexin) gene family were found to be expressed in the FG: Sg-inx1, Sg-inx2, Sg-inx3 and Sg-inx4. Immunohistochemistry revealed that some of the neurons in the FG express at least one innexin protein, INX1. We also established the presence of functional gap junction proteins in the FG and demonstrated functional electrical coupling between the neurons in the FG. This study forms the basis for further investigation of the role of GJs in network development and behavior.  相似文献   

2.
The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons.  相似文献   

3.
The importance of connexins (Cxs) in cochlear functions has been demonstrated by the finding that mutations in Cx genes cause a large proportion of sensorineural hearing loss cases. However, it is still unclear how Cxs contribute to the cochlear function. Recent data (33) obtained from Cx30 knockout mice showing that a reduction of Cx diversity in assembling gap junctions is sufficient to cause deafness suggest that functional interactions of different subtypes of Cxs may be essential in normal hearing. In this work we show that the two major forms of Cxs (Cx26 and Cx30) in the cochlea have overlapping expression patterns beginning at early embryonic stages. Cx26 and Cx30 were colocalized in most gap junction plaques in the cochlea, and their coassembly was tested by coimmunoprecipitation. To compare functional differences of gap junctions with different molecular configurations, homo- and heteromeric gap junctions composed of Cx26 and/or Cx30 were reconstituted by transfections in human embryonic kidney-293 cells. The ratio imaging technique and fluorescent tracer diffusion assays were used to assess the function of reconstituted gap junctions. Our results revealed that gap junctions with different molecular configurations show differences in biochemical coupling, and that intercellular Ca2+ signaling across heteromeric gap junctions consisting of Cx26 and Cx30 was at least twice as fast as their homomerically assembled counterparts. Our data suggest that biochemical permeability and the dynamics of intercellular signaling through gap junction channels, in addition to gap junction-mediated intercellular ionic coupling, may be important factors to consider for studying functional roles of gap junctions in the cochlea. cochlea; coassembly; deafness  相似文献   

4.
Effects of cAMP on intercellular coupling and osteoblast differentiation   总被引:4,自引:0,他引:4  
Bone-forming cells are organized in a multicellular network interconnected by gap junctions. Direct intercellular communication via gap junctions is an important component of bone homeostasis, coordinating cellular responses to external signals and promoting osteoblast differentiation. The cAMP pathway, a major intercellular signal transduction mechanism, regulates osteoblastic function and metabolism. We investigated the effects of this second messenger on junctional communication and on the expression of differentiation markers in human HOBIT osteoblastic cells. Increased levels of cAMP induce posttranslational modifications (i.e., phosphorylations) of connexin43 and enhancement of gap junction assembly, resulting in an increased junctional permeance to Lucifer yellow and to a positive modulation of intercellular Ca(2+) waves. Increased intercellular communication, however, was accompanied by a parallel decrease of alkaline phosphatase activity and by an increase of osteocalcin expression. cAMP-dependent stimulation of cell-to-cell coupling induces a complex modulation of bone differentiation markers.  相似文献   

5.
During development, signaling networks control the formation of multicellular patterns. To what extent quantitative fluctuations in these complex networks may affect multicellular phenotype remains unclear. Here, we describe a computational approach to predict and analyze the phenotypic diversity that is accessible to a developmental signaling network. Applying this framework to vulval development in C. elegans, we demonstrate that quantitative changes in the regulatory network can render ~500 multicellular phenotypes. This phenotypic capacity is an order-of-magnitude below the theoretical upper limit for this system but yet is large enough to demonstrate that the system is not restricted to a select few outcomes. Using metrics to gauge the robustness of these phenotypes to parameter perturbations, we identify a select subset of novel phenotypes that are the most promising for experimental validation. In addition, our model calculations provide a layout of these phenotypes in network parameter space. Analyzing this landscape of multicellular phenotypes yielded two significant insights. First, we show that experimentally well-established mutant phenotypes may be rendered using non-canonical network perturbations. Second, we show that the predicted multicellular patterns include not only those observed in C. elegans, but also those occurring exclusively in other species of the Caenorhabditis genus. This result demonstrates that quantitative diversification of a common regulatory network is indeed demonstrably sufficient to generate the phenotypic differences observed across three major species within the Caenorhabditis genus. Using our computational framework, we systematically identify the quantitative changes that may have occurred in the regulatory network during the evolution of these species. Our model predictions show that significant phenotypic diversity may be sampled through quantitative variations in the regulatory network without overhauling the core network architecture. Furthermore, by comparing the predicted landscape of phenotypes to multicellular patterns that have been experimentally observed across multiple species, we systematically trace the quantitative regulatory changes that may have occurred during the evolution of the Caenorhabditis genus.  相似文献   

6.
The fine structure of the dicyemid mesozoan, Dicyema acuticephalum, from Octopus vulgaris, was studied with special attention to intercellular junctional complexes between various kinds of cells. Two types of intercellular junction, namely, adherens junctions and gap junctions, were found in both vermiform stages and in infusoriform embryos. Adherens junctions were classified into two types. Zonulae adherentes-like junctions were observed between adjacent peripheral cells at vermiform stages, between adjacent external cells of infusoriform embryos, and between members of groups of internal cells that covered the urn in infusoriform embryos. Maculae adherentes-like junctions were seen between a peripheral cell and an axial cell at vermiform stages. In infusoriform embryos, these junctions were observed between various types of cells, excluding urn cells. Gap junctions were found between adjacent peripheral cells at vermiform stages, whereas in infusoriform embryos these junctions were located between various types of cells excluding urn cells. Dicyemids might be the most primitive multicellular animals to possess these basic types of cell junctions. Ciliary rootlet systems at vermiform stages and in infusoriform embryos were unique in structure compared with those of other primitive multicellular animals. J Morphol 231:297–305, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
Abstract

With each heartbeat, billions of cardiomyocytes work in concert to propagate the electrical excitation needed to effectively circulate blood. Regulated expression and timely delivery of connexin proteins to form gap junctions at the specialized cell–cell contact region, known as the intercalated disc, is essential to ventricular cardiomyocyte coupling. We focus this review on several regulatory mechanisms that have been recently found to govern the lifecycle of connexin 43 (Cx43), the short-lived and most abundantly expressed connexin in cardiac ventricular muscle. The Cx43 lifecycle begins with gene expression, followed by oligomerization into hexameric channels, and then cytoskeletal-based transport toward the disc region. Once delivered, hemichannels interact with resident disc proteins and are organized to effect intercellular coupling. We highlight recent studies exploring regulation of Cx43 localization to the intercalated disc, with emphasis on alternatively translated Cx43 isoforms and cytoskeletal transport machinery that together regulate Cx43 gap junction coupling between cardiomyocytes.  相似文献   

8.
9.
Gap junctions—clusters of intercellular channels built by connexins (Cx)—are thought to be important for vascular cell functions such as differentiation, control of tone, or growth. In the vascular system, gap junctions can be formed by four different connexins (Cx37, Cx40, Cx43 and Cx45). The permeability of these connexin-formed gap junctions determines the amount of intercellular coupling and can be modulated by several vasoactive substances such as prostacyclin or nitric oxide (NO). We demonstrate here that NO has specific effects on certain connexins. Using two different techniques—injection of a fluorescent dye in single cells as well as detection of the de novoformation of gap junctions by a flow cytometry based technique—we found that NO decreases the functional coupling in Cx37 containing gap junctions whereas it increases the de novoformation of gap junctions containing Cx40. We conclude that NO, in addition to its known vasomotor effects, has a novel role in controlling intercellular coupling resulting in opposing effects depending on the specific connexin expressed in the cells.  相似文献   

10.
11.
Coupled heterocellular arrays in the brain   总被引:3,自引:0,他引:3  
Gap junctions are transcellular pathways that enable a dynamic metabolic coupling and a selective exchange of biological signaling mediators. Throughout the course of the brain development these intercellular channels are assembled into regionally and temporally defined patterns. The present review summarizes the possibilities of heterocellular gap junctional pairing in the brain parenchyma, involving glial cells, neurons and neural precursors as well as it highlights on the meaningfulness of these coupled arrays to the concept of brain functional compartments.  相似文献   

12.
Gap junctions mediate communication between adjacent cells and are fundamental to the development and homeostasis in multicellular organisms. In invertebrates, gap junctions are formed by transmembrane proteins called innexins. Gap junctions allow the passage of small molecules through an intercellular channel, between a cell and another adjacent cell. The dipteran Rhynchosciara americana has contributed to studying the biology of invertebrates and the study of the interaction and regulation of genes during biological development. Therefore, this paper aimed to study the R. americana innexin-2 by molecular characterization, analysis of the expression profile and cellular localization. The molecular characterization results confirm that the message is from a gap junction protein and analysis of the expression and cellular localization profile shows that innexin-2 can participate in many physiological processes during the development of R. americana.  相似文献   

13.
Actomyosin contraction generates mechanical forces that influence cell and tissue structure. During convergent extension in Drosophila melanogaster, the spatially regulated activity of the myosin activator Rho-kinase promotes actomyosin contraction at specific planar cell boundaries to produce polarized cell rearrangement. The mechanisms that direct localized Rho-kinase activity are not well understood. We show that Rho GTPase recruits Rho-kinase to adherens junctions and is required for Rho-kinase planar polarity. Shroom, an asymmetrically localized actin- and Rho-kinase–binding protein, amplifies Rho-kinase and myosin II planar polarity and junctional localization downstream of Rho signaling. In Shroom mutants, Rho-kinase and myosin II achieve reduced levels of planar polarity, resulting in decreased junctional tension, a disruption of multicellular rosette formation, and defective convergent extension. These results indicate that Rho GTPase activity is required to establish a planar polarized actomyosin network, and the Shroom actin-binding protein enhances myosin contractility locally to generate robust mechanical forces during axis elongation.  相似文献   

14.
15.
Cells in mechanically active environments form extensive, cadherin-mediated intercellular junctions that are important in tissue remodeling and differentiation. Currently, it is unknown whether adherens junctions in connective tissue fibroblasts transmit mechanical signals and coordinate multicellular adaptations to physical forces. We hypothesized that cadherins mediate intercellular mechanotransduction by activating calcium-permeable, stretch-sensitive channels. Human gingival fibroblasts in suspension were plated on established homotypic monolayer cultures. The cells formed intercellular adherens junctions. Controlled mechanical forces were applied to intercellular junctions by electromagnets acting on cells containing internalized magnetite beads. At early but not later stages of intercellular attachment, force application visibly displaced magnetite bead-loaded cells and induced robust Ca(2+) transients (65 +/- 9.4 nm above base line). Similar Ca(2+) transients were induced by force application to anti-N-cadherin antibody-coated magnetite beads. Ca(2+) responses depended on influx of extracellular Ca(2+) through mechanosensitive channels because both Ca(2+) chelation and gadolinium chloride abolished the response and MnCl(2) quenched fura-2 fluorescence after force application. Force application induced accumulation of microinjected rhodamine-actin at intercellular contacts; actin assembly was inhibited by buffering intracellular calcium fluxes. Our results indicate that mechanical forces applied to adherens junctions activate stretch-sensitive calcium-permeable channels and increase actin polymerization. We suggest that N-cadherins in fibroblasts are intercellular mechanotransducers.  相似文献   

16.
17.
Dynamic remodeling of intercellular junctions is a critical determinant of epithelial barrier function in both physiological and pathophysiological states. While the disassembly of epithelial tight junctions (TJ) and adherens junctions (AJ) has been well-described in response to pathogens and other external stressors, the role of stress-related signaling in TJ/AJ regulation remains poorly understood. The aim of this study was to define the role of stress-activated c-Jun N-terminal kinase (JNK) in disruption of intercellular junctions in model intestinal epithelia. We show that rapid AJ/TJ disassembly triggered by extracellular calcium depletion of T84 and SK-CO15 cell monolayers was accompanied by activation (phosphorylation) of JNK, and prevented by pharmacological inhibitors of JNK. The opposite process, TJ/AJ reassembly, was accelerated by JNK inhibition and suppressed by the JNK activator anisomycin. JNK1 but not JNK2 was found to colocalize with intercellular junctions, and siRNA-mediated down-regulation of JNK1 attenuated the TJ/AJ disruption caused by calcium depletion. JNK inhibition also blocked formation of characteristic contractile F-actin rings in calcium-depleted epithelial cells, suggesting that JNK regulates junctions by remodeling the actin cytoskeleton. In this role JNK acts downstream of the actin-reorganizing Rho-dependent kinase (ROCK), since ROCK inhibition abrogated JNK phosphorylation and TJ/AJ disassembly after calcium depletion. Furthermore, JNK acts upstream of F-actin-membrane linker proteins of the ERM (ezrin-radixin-moesin) family, but in a complex relationship yet to be fully elucidated. Taken together, our findings suggest a novel role for JNK in the signaling pathway that links ROCK and F-actin remodeling during disassembly of epithelial junctions.  相似文献   

18.
19.
Properly regulated intercellular adhesion is critical for normal development of all metazoan organisms. Adherens junctions play an especially prominent role in development because they link the adhesive function of cadherin–catenin protein complexes to the dynamic forces of the actin cytoskeleton, which helps to orchestrate a spatially confined and very dynamic assembly of intercellular connections. Intriguingly, in addition to maintaining intercellular adhesion, cadherin–catenin proteins are linked to several major developmental signaling pathways crucial for normal morphogenesis. In this article we will highlight the key genetic studies that uncovered the role of cadherin–catenin proteins in vertebrate development and discuss the potential role of these proteins as molecular biosensors of external cellular microenvironment that may spatially confine signaling molecules and polarity cues to orchestrate cellular behavior throughout the complex process of normal morphogenesis.Development of any multicellular organism is impossible without a dynamic and properly regulated intercellular adhesion. Adhesive contacts between cells provide a physical anchoring system that is necessary to form highly organized tissues, and these contacts are essential for effective intercellular communication that ensures the homeostasis and survival of the entire organism. A number of unique developmental processes, including such early events as embryonic compaction and first cell fate specification, as well as later tissue morphogenesis and organogenesis, rely on a dynamic balance between cellular adhesion and migration. Cadherin–catenin protein complexes, which constitute the core of a specialized subtype of cellular adhesion structures termed adherens junctions (AJs), play a particularly important role during these processes. Apart from maintaining adhesive contacts at the cell–cell junctions, they are actively involved in epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions, which are crucial to sustain the tissue plasticity during development. Most importantly, the components of cadherin–catenin complexes are tightly linked to several major signaling networks controlling cell division, differentiation, and apoptosis and this feature is crucial for the broad roles of the AJs throughout the vertebrate development (see Cavey and Lecuit 2009).This article will focus on the role of cadherin–catenin proteins in regulating the signaling events critical for vertebrate development. Altering the expression pattern of particular cadherin–catenin complex components in the developing embryo often leads to major developmental defects, which reflect their role in both signaling and mechanical adhesion. In this article, we will highlight crucial findings suggesting that cadherin–catenin complexes provide not only the structural integrity of the tissue, but may also serve as biosensors of the external cellular microenvironment that modulate cellular behavior and make individual cells work together to ensure the fitness of the entire organism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号