首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Defoliation by herbivores may alter the source:sink balance of trees leading to transient decreases in carbon (C) stores. When C stores are replenished concurrently with re-growth both processes may compete, store formation proceeding at the expenses of growth. However, the interactions between both processes are not fully understood. We investigated the effects of defoliation by the pine processionary moth (PPM, Thaumetopoea pityocampa Dennis and Schiff.) on the non-structural carbohydrate (NSC) and nitrogen (N) stores and the growth of Pinus nigra Arnold trees. Short-term effects were evaluated immediately after a PPM outbreak and at the end of the first growing season in trees suffering a range of defoliation damage. Long-term effects were explored by a 17-year-long PPM defoliation experiment, with 11?years of repeated defoliation treatments followed by 6?years of recovery. Defoliation by PPM was followed by transient NSC decreases, but trees were able to exceed initial NSC pools and compensate growth in just one growing season. Such recovery was linked to increased foliage N. Repeated severe defoliations decreased growth and survival of trees in the long-term, but trees increased starch allocation to stems. Defoliation led to an accumulation of C storage compounds in P. nigra trees irrespective of their ability to re-grow. In trees included in the short-term experiment, the accumulation of stores proceeded concurrently with re-growth. However, the repeated severe defoliations included in our long-term experiment impaired the growth of trees, surplus C being accumulated as stores. These results indicate that, growth declines in pines defoliated by PPM are not due to C (source) limitation but may respond to the reduced sink strength of growing meristems due to defoliation, and thus, a decrease in C allocation to growth.  相似文献   

2.
Greenhouse studies examined population densities of Meloidogyne incognita race 4 on soybean (Glycine max ''Davis'') defoliated by larvae of soybean looper (Pseudoplusia indudens (Walker)). Plants were defoliated over a 2-week period beginning 5 weeks after seedlings were transplanted. Four groups of plants were infested with nematodes (5,000 eggs/pot) at 2-week intervals to allow harvesting of plants at 0, 2, 4, and 6 weeks postdefoliation (WPD). Plants in each group were harvested 4 weeks after nematode infestation. Root and nodule weights of defoliated plants were suppressed at 0 WPD, but differences were not detectable at 2, 4, and 6 WPD. Population densities of M. incognita were similar on defoliated and control plants at 0 WPD but were greater on defoliated plants at 4 and 6 WPD. Percentage hatching of eggs produced on the latter plants also was higher. Effects of insect-induced defoliation on development of M. incognita remained detectable even after soybean plant growth apparently returned to normal.  相似文献   

3.
Summary Plant growth and allocation to root, shoot and carbon-based leaf chemical defense were measured in response to defoliation and nitrate limitation inHeterotheca subaxillaris. Field and greenhouse experiments demonstrated that, following defoliation, increased allocation to the shoot results in an equal root/shoot ratio between moderately defoliated (9% shoot mass removed) and non-defoliated plants. High defoliation (28% shoot mass or >25% leaf area removed) resulted in greater proportional shoot growth, reducing the root/shot ratio relative to moderate or non-defoliated plants. However, this latter effect was dependent on nutritional status. Despite the change in distribution of biomass, defoliation and nitrate limitation slowed the growth and development ofH. subaxillaris. Chronic defoliation decreased the growth of nitrate-rich plants more than that of nitrate-limited plants. The concentration of leaf mono- and sesqui-terpenes increased with nitrate-limitation and increasing defoliation. Nutrient stress resulting from reduced allocation to root growth with defoliation may explain the greater allocation to carbon-based leaf defenses, as well as the defoliation-related greater growth reduction of nitrate-rich plants.  相似文献   

4.
Growth, morphology and leaf characteristics were assessed in late spring following simulated autumnal defoliation in second-year saplings of three Chinese subtropical evergreen tree species.Castanopsis fargesii showed strong compensatory growth in terms of plant biomass after removal of both 50 and 75% of leaf biomass and slight compensatory growth after 90% defoliation. DefoliatedC. fargesii saplings had more leaves per unit shoot length than non-defoliated saplings. New leaves on defoliated plants were smaller and had higher per area nitrogen content than new leaves on non-defoliated plants.Pinus massoniana andElaeocarpus japonicus showed strong and no compensatory growth, respectively, after 50% defoliation. The strong compensatory growth inP. massoniana andC. fargesii may partly explain why these species predominate in the early and late successional phases of evergreen broad-leaved forests  相似文献   

5.
Deciduous trees can survive severe defoliation by herbivores and often refoliate in the same season. Refoliation following severe defoliation represents compensatory regrowth to recover foliage biomass. Although the relationship between defoliation intensity and degree of refoliation at the individual level has been quantified following artificial defoliation for saplings and small trees, no study has examined the relationship for canopy trees and interspecific differences in this relationship. In this study, defoliation by gypsy moths in an outbreak year and subsequent refoliation were visually surveyed for canopy trees of Fagus crenata (n?=?80) and Quercus crispula (n?=?113) in central Japan. Defoliation and refoliation estimates were scored in 10% classes as the ratio to foliage present before defoliation. The degree of refoliation and the proportion of refoliated trees were high in severely defoliated trees. For 60 and 100% defoliated trees, respective refoliations were 2 and 66% for F. crenata, and 37 and 88% for Q. crispula. All of the 90 and 100% defoliated trees refoliated. These results indicate that severely defoliated trees show an increased need for refoliation to maintain metabolism. Beta regression analysis showed that Q. crispula possessed higher refoliation capability than F. crenata. This is likely associated with the relatively large storage reserves and recurrent growth flush pattern of oak species, which are strong characteristics of oaks and adaptive for response to herbivory and catastrophic disturbances. Interspecific differences in refoliation capability may exert differential effects on forest ecosystem processes, such as influencing the growth of understory species.  相似文献   

6.
Clonal integration and effects of simulated herbivory in old-field perennials   总被引:12,自引:0,他引:12  
Summary We compared the growth, phenology and leaf demography of partly defoliated, connected shoots with that of partly defoliated, severed shoots in four old-field perennials (Solidago canadensis, S. altissima, S. gigantea, Aster lanceolatus) with differing genet architectures (rhizome systems), in a common garden and in the field. Our main hypothesis was that defoliation would have fewer negative effects on shoot performance if shoots were connected than if their rhizomes were severed. Since degree of clonal integration is related to differences in genet architecture, our second hypothesis was that the effects of defoliation would be less pronounced in more integrated than in less integrated clones. Removing about 50% of the total leaf area from shoots had different effects depending on plant species, shoot density, and in particular whether rhizome connections between shoots were left intact or severed. In agreement with our prediction, experimentally isolated shoots in the field or in high density clumps in the garden suffered the most from defoliation, while shoots with intact connections or in low density clumps suffered the least. Our second prediction was neither confirmed nor falsified in the present study. Solidago altissima showed overcompensation in response to simulated herbivory in the common garden, i.e. defoliated shoots grew faster and were larger at harvest than their non-defoliated neighbours.  相似文献   

7.
1 During outbreaks of the pine looper, Bupalus piniarius, its host, Pinus sylvestris, is severely defoliated. The larvae of this geometrid normally feed on mature needles. However, because trees are totally defoliated during outbreaks, the next generation is forced to feed on current-year needles. 2 Bupalus piniarius larvae feeding on previously defoliated trees may show lower performance either because of induced resistance or because larvae have to feed on needles not normally fed upon (current instead of mature). 3 These hypotheses were tested in an experiment where larvae were reared on (i) shoots naturally defoliated the previous year, and thus, bearing only current-year needles, (ii) non-defoliated shoots where larvae had access only to current-year needles, and (iii) control shoots with access to both current and mature needles. 4 There was no support for the induction hypothesis. Survival was lower on naturally defoliated shoots than on control shoots (81.3 vs. 90.9%), but survival was lower also on non-defoliated shoots where larvae had access only to current-year needles (78.8%). Data on larval feeding distribution showed a strong preference for mature needles. 5 Needle nitrogen concentration of current-year needles was 38% higher on defoliated trees than on non-defoliated trees. 6 It is concluded that defoliation affected larval performance primarily through the removal of the preferred type of needles and not because of an induced resistance. Effects of increased concentrations of allelochemicals in defoliated shoots, if present, were probably cancelled out by increased nitrogen concentrations.  相似文献   

8.
Piper FI  Fajardo A 《Annals of botany》2011,108(5):907-917

Background and Aims

Trees universally decrease their growth with age. Most explanations for this trend so far support the hypothesis that carbon (C) gain becomes limited with age; though very few studies have directly assessed the relative reductions of C gain and C demand with tree age. It has also been suggested that drought enhances the effect of C gain limitation in trees. Here tests were carried out to determine whether C gain limitation is causing the growth decay with tree age, and whether drought accentuates its effect.

Methods

The balance between C gain and C demand across tree age and height ranges was estimated. For this, the concentration of non-structural carbohydrates (NSCs) in stems and roots of trees of different ages and heights was measured in the deciduous temperate species Nothofagus pumilio. An ontogenetic decrease in NSCs indicates support for C limitation. Furthermore, the importance of drought in altering the C balance with ontogeny was assessed by sampling the same species in Mediterranean and humid climate locations in the southern Andes of Chile. Wood density (WD) and stable carbon isotope ratios (δ13C) were also determined to examine drought constraints on C gain.

Key Results

At both locations, it was effectively found that tree growth ultimately decreased with tree age and height. It was found, however, that NSC concentrations did not decrease with tree age or height when WD was considered, suggesting that C limitation is not the ultimate mechanism causing the age/height-related declining tree growth. δ13C decreased with tree age/height at the Mediterranean site only; drought effect increased with tree age/height, but this pattern was not mirrored by the levels of NSCs.

Conclusions

The results indicate that concentrations of C storage in N. pumilio trees do not decrease with tree age or height, and that reduced C assimilation due to summer drought does not alter this pattern.  相似文献   

9.
Summary A study of the effects of defoliation by insects on the chemistry of lodgepole pine (Pinus contorta), and on the performance of Panolis flammea (Lepidoptera; Noctuidae) larvae, was carried out in a forest in northwest Scotland I year after a severe outbreak of P. flammea had caused extensive defoliation. Larval weight and survival were not significantly different on trees that had experienced different levels of defoliation in 1986. The nitrogen and tannin content of current and previous years' pine needles was not significantly affected by defoliation (although both were slightly greater in the foliage of defoliated trees). Phosphorus content of young pine foliage was lower (but not significantly lower except on one occasion) on heavily defoliated trees. On all sampling occasions, however, the nitrogen: phosphorus ratio was significantly higher on heavily defoliated trees. There were large differences in monoterpene composition of the previous year's shoots associated with defoliation intensity, but these differences had largely disappeared in the new growth. The results are discussed in relation to other studies on the effects of insect damage on plant chemistry and insect performance and in relation to the abundance of P. flammea in Scotland.  相似文献   

10.

Background and Aims

Tolerance and defence against herbivory are among the many mechanisms attributed to the success of invasive plants in their novel ranges. Because tolerance and defence against herbivory differ with the ontogeny of a plant, the effects of herbivore damage on plant fitness vary with ontogenetic stage and are compounded throughout a plant''s lifetime. Environmental stresses such as light and nutrient limitations can further influence the response of the plant. Much is known about the response of plants in the seedling and reproductive adult stages, but less attention has been given to the pre-reproductive juvenile stage.

Methods

Juvenile plants of the North American invasive Lonicera maackii were exposed to simulated herbivory under high and low light and nitrogen availability and growth, allocation patterns and foliar defensive chemistry were measured. In a second experiment, complete nutrient availability and damage type (generalist caterpillar or simulated) were manipulated.

Key Results

Juvenile plants receiving 50 % defoliation had lower total biomass and a higher root^:^shoot ratio than controls for all treatment combinations except low nitrogen/low light. Low light and defoliation increased root^:^shoot ratio. Light, fertilization and defoliation had little impact on foliar defensive chemistry. In the second experiment, there was a reduction in total biomass when caterpillar damage was applied. The root^:^shoot ratio increased under low soil fertility and was not affected by defoliation. Stem-diameter growth rates and specific leaf area did not vary by damage type or fertilization. Foliar protein increased through time, and more strongly in defoliated plants than in controls, while peroxidase activity and total flavonoids decreased with time. Overall, resource limitations were more influential than damage in the growth of juvenile L. maackii plants.

Conclusions

The findings illustrate that even when resources are limited, the tolerance and defence against herbivory of a woody invasive plant in the juvenile stage may contribute to the establishment and persistence of some species in a variety of habitats.  相似文献   

11.

Background and Aims

To understand whether root responses to aerial rhythmic growth and contrasted defoliation treatments can be interpreted under the common frame of carbohydrate availability; root growth was studied in parallel with carbohydrate concentrations in different parts of the root system on oak tree seedlings.

Methods

Quercus pubescens seedlings were submitted to selective defoliation (removal of mature leaves, cotyledons or young developing leaves) at appearance of the second flush and collected 1, 5 or 10 d later for morphological and biochemical measurements. Soluble sugar and starch concentrations were measured in cotyledons and apical and basal root parts.

Key Results

Soluble sugar concentration in the root apices diminished during the expansion of the second aerial flush and increased after the end of aerial growth in control seedlings. Starch concentration in cotyledons regularly decreased. Continuous removal of young leaves did not alter either root growth or apical sugar concentration. Starch storage in basal root segments was increased. After removal of mature leaves (and cotyledons), root growth strongly decreased. Soluble sugar concentration in the root apices drastically decreased and starch reserves in the root basal segments were emptied 5 d after defoliation, illustrating a considerable shortage in carbohydrates. Soluble sugar concentrations recovered 10 d after defoliation, after the end of aerial growth, suggesting a recirculation of sugar. No supplementary recourse to starch in cotyledons was observed.

Conclusions

The parallel between apical sugar concentration and root growth patterns, and the correlations between hexose concentration in root apices and their growth rate, support the hypothesis that the response of root growth to aerial periodic growth and defoliation treatments is largely controlled by carbohydrate availability.  相似文献   

12.
In order to improve the basis for utilising nitrogen (N) fixed by white clover (Trifolium repens L.) in northern agriculture, we studied how defoliation stress affected the N contents of major plant organs in late autumn, N losses during the winter and N accumulation in the following spring. Plants were established from stolon cuttings and transplanted to pots that were dug into the field at Apelsvoll Research Centre (60°42′ N, 10°51′ E) and at Holt Research Centre (69°40′ N, 18°56′ E) in spring 2001 and 2002. During the first growing season, the plants were totally stripped of leaves down to the stolon basis, cut at 4 cm height or left undisturbed. The plants were sampled destructively in late autumn, early spring the second year and after 6 weeks of new spring growth. The plant material was sorted into leaves, stolons and roots. Defoliation regime did not influence the total amount of leaf N harvested during and at the end of the first growing season. However, for intensively defoliated plants, the repeated leaf removal and subsequent regrowth occurred at the expense of stolon and root development and resulted in a 61–85% reduction in the total plant N present in late autumn and a 21–59% reduction in total accumulation of plant N (plant N present in autumn + previously harvested leaf N). During the winter, the net N loss from leaf tissue (N not recovered in living nor dead leaves in the spring) ranged from 57% to 74% of the N present in living leaves in the autumn, while N stored in stolons and roots was much better conserved. However, the winter loss of stolon N from severely defoliated plants (19%) was significantly larger than from leniently defoliated (12%) and non-defoliated plants (6%). Moreover, the fraction of stolon N determined as dead in the spring was 63% for severely defoliated as compared to 14% for non-defoliated plants. Accumulation in absolute terms of new leaf N during the spring was highly correlated to total plant N in early spring (R2 = 0.86), but the growth rates relative to plant N present in early spring were not and, consequently, were similar for all treatments. The amount of inorganic N in the soil after snowmelt and the N uptake in plant root simulator probes (PRSTM) during the spring were small, suggesting that microbial immobilisation, leaching and gas emissions may have been important pathways for N lost from plant tissue.  相似文献   

13.
Cao G  Xue L  Li Y  Pan K 《Annals of botany》2011,107(8):1413-1419

Background and Aims

Allocation of resources to floral traits often declines distally within inflorescences in flowering plants. Architecture and resource competition have been proposed as underlying mechanisms. The aim of the present study is to assess the relative importance of resource competition and architectural effects in pollen and ovule production on racemes of Hosta ventricosa, an apomictic perennial herb.

Methods

Combinations of two defoliation treatments (intact and defoliated) and two fruit-set treatments (no-fruit and fruit) were created, and the roles of architecture and resource competition at each resource level were assessed.

Key Results

Pollen and ovule number per flower increased after defoliation, but pollen to ovule ratio per flower did not change. Pollen, ovules and the pollen to ovule ratio per flower declined distally on racemes at each resource level. In the intact treatment, fruit development of early flowers did not affect either pollen or ovule number of late flowers. In the defoliated treatment, fruit development of early flowers reduced both pollen and ovule numbers of late flowers due to over-compensation caused by defoliation. Late flowers on defoliated fruit racemes produced less pollen than intact fruit racemes but the same number of ovules; therefore, the reduction in pollen number was not caused by over-compensation. In addition, the fruit-set rate of early flowers during flowering was higher in intact racemes than in defoliated racemes.

Conclusions

In flowering plants, the relative importance of architecture and resource competition in allocation to pollen and ovules may vary with the resource pools or the overall resource availability of maternal plants.  相似文献   

14.
Tree carbohydrate reserves are usually compromised following insect outbreak, which results in a delay in leaf emergence and a reduction in growth, especially in cold environments. However, in recent times, severe defoliation of subarctic mountain birches (Betula pubescens ssp. czerepanovii) by the winter moth (Operophtera brumata) has not induced such responses. This may be the result of a warming climate stimulating plant primary metabolism. We examined if increasing thermal sum (sum of daily mean temperatures above +5 °C, d.d.) and complete foliage loss affected the concentrations of carbohydrates in sap, juvenile leaves, and fine roots of mountain birches in northern Finland and Norway. The sampling was conducted at the beginning of the growing season, two years after the insect outbreak. We also investigated the morphologic properties of mature leaves and the shoot growth of the trees. Our results showed that the carbohydrate concentrations in leaves and roots (averages 67.8 and 12.5 mg g?1 DW, respectively) decreased in defoliated trees with increasing thermal sum (>400 d.d.), whereas the response in intact trees was the opposite. The carbohydrates in the sap were unaffected by defoliation or thermal sum accumulation. The leaf area of mature leaves and the height growth of long shoots were greater in trees at warmer sites, irrespective of defoliation. However, defoliation increased the leaf weight per area (SLW: specific leaf weight). We conclude that under warmer growing conditions, low early-season leaf and fine root carbohydrate concentrations of previously defoliated trees cannot be used as indicators of aboveground growth.  相似文献   

15.
近年来,森林食叶害虫在全世界呈爆发趋势.树木的非结构性碳水化合物(NSC)如何响应叶片损失对其生长和生存至关重要.雌雄异株植物在维持森林生态系统稳定性方面扮演着重要角色.然而,目前对该类植物性别之间如何响应去叶的研究还比较少.本文以我国重要的经济和生态恢复树种青杨(Populus cathayana)为研究材料,比较了...  相似文献   

16.
为探索红松雌球果发育和新枝生长的养分来源和供需关系,对生殖母枝进行环剥、去叶及两者相结合处理,研究不同处理对雌球果发育和枝生长及不同组织和器官中碳水化合物(NSC)、氮(N)和磷(P)含量的影响.结果表明:环剥处理对雌球果发育和新枝生长及不同组织和器官中NSC、N和P含量影响显著,去叶处理的影响较小.环剥后母枝木质部和韧皮部NSC含量显著低于对照(CK,不环剥+0%去叶),并随去叶程度的增加显著减少,尤其是环剥+100%去叶的木质部和韧皮部中NSC含量分别比CK减少59.0%和64.8%,NSC的不足导致母枝、新枝死亡和雌球果败育.环剥处理下,0%、50%和100%去叶处理的母枝木质部和韧皮部中N和P含量显著高于CK,其中木质部中N含量比CK分别高17.3%、18.2%和24.3%,P含量比CK分别高17.9%、7.1%和3.6%,韧皮部中N含量比CK分别高39.3%、35.2%和48.9%,P含量比CK分别高31.0%、28.2%和14.8%.红松雌球果发育和新枝生长消耗大量的碳水化合物、N和P,母枝本身制造或贮存的碳水化合物和矿质养分不能满足雌球果发育和新枝生长的需求,碳水化合物和矿质养分需要从母枝以外的其他组织输入.  相似文献   

17.
Young plants of a rhizomatous grass Calamagrostis epigejos (L.) Roth were grown from seed in nutrient solutions containing nitrogen in concentrations 0.1, 1.0, and 10 mM. After six weeks of cultivation the plants were defoliated and changes in growth parameters and in content of storage compounds were measured in the course of regrowth under highly reduced nitrogen availability. Plants grown at higher nitrogen supply before defoliation had higher amount of all types of nitrogen storage compounds (nitrates, free amino acids, soluble proteins), which was beneficial for their regrowth rate, in spite of lower content of storage saccharides. Amino acids and soluble proteins from roots and stubble bases were the most important sources of storage compounds for regrowth of the shoot. Faster growth of plants with higher N content was mediated by greater leaf area expansion and greater number of leaves. In plants with lower contents of N compounds number of green leaves decreased after defoliation significantly and senescing leaves presumably served as N source for other growing organs. Results suggest that internal N reserves can support regrowth of plants after defoliation even under fluctuating external N availability. Faster regrowth of C. epigejos with more reserves was mediated mainly by changes in plant morphogenesis.  相似文献   

18.
Three parameters (i.e. the water content, soluble sugar content and minimal air temperature) can be used to predict the cold acclimation process of walnut trees. In order to test this assumption, two-year-old walnuts were defoliated at two different dates, i.e. mechanical defoliation in early October (early leaf fall, EF) or natural defoliation in early November (natural leaf fall, NF) and conditioned in either outdoor freeze-deprived or cold-deprived (Tmin > 13 °C) greenhouses over winter. Even if early defoliation date could have affected short day signal perception (SDSP), water balance and carbohydrate metabolism were more altered. EF treatment, by stopping transpiration, significantly increased tree's water content and at warm temperature high root activity stopped normal winter dehydration. Starch content decreased in all treatments, but there was only a significant increase in soluble sugar content when water content had sufficiently decreased. Thus, depending on date of defoliation, cold-deprived trees were or were not able to acclimate to frost (minimal frost hardiness = −21.8 °C vs. −22.1 °C in controls (freeze-deprived) for NF and −13.7 °C vs. −25.3 °C in controls for EF). Different treatments showed the relationship between minimal water content observed during winter and maximal soluble sugars synthesized. Thus, the cold acclimation process appeared dependent on these physiological parameters (water and soluble sugar contents) through the interaction between air temperature and timing of leaf fall.  相似文献   

19.
Carbon allocation and N acquisition by plants following defoliation may be linked through plant-microbe interactions in the rhizosphere. Plant C allocation patterns and rhizosphere interactions can also be affected by rising atmospheric CO(2) concentrations, which in turn could influence plant and microbial responses to defoliation. We studied two widespread perennial grasses native to rangelands of western North America to test whether (1) defoliation-induced enhancement of rhizodeposition would stimulate rhizosphere N availability and plant N uptake, and (2) defoliation-induced enhancement of rhizodeposition, and associated effects on soil N availability, would increase under elevated CO(2). Both species were grown at ambient (400 μL L(-1)) and elevated (780 μL L(-1)) atmospheric [CO(2)] under water-limiting conditions. Plant, soil and microbial responses were measured 1 and 8 days after a defoliation treatment. Contrary to our hypotheses, we found that defoliation and elevated CO(2) both reduced carbon inputs to the rhizosphere of Bouteloua gracilis (C(4)) and Pascopyrum smithii (C(3)). However, both species also increased N allocation to shoots of defoliated versus non-defoliated plants 8 days after treatment. This response was greatest for P. smithii, and was associated with negative defoliation effects on root biomass and N content and reduced allocation of post-defoliation assimilate to roots. In contrast, B. gracilis increased allocation of post-defoliation assimilate to roots, and did not exhibit defoliation-induced reductions in root biomass or N content. Our findings highlight key differences between these species in how post-defoliation C allocation to roots versus shoots is linked to shoot N yield, but indicate that defoliation-induced enhancement of shoot N concentration and N yield is not mediated by increased C allocation to the rhizosphere.  相似文献   

20.
Subarctic mountain birch (Betula pubescens ssp. czerepanovii) forests in northern Fennoscandia have shown a slight recovery from recent severe defoliation by the winter moth (Operophtera brumata). This development in trees is hypothesized to be a result of ameliorated growing conditions through increased summer temperatures. We examined if accumulated thermal sum affects the ability of mountain birches to tolerate foliage losses. We quantified the number of leaf-bearing short shoots, the emergence of inflorescences and the seasonal height growth of long shoots in both intact and defoliated trees. We also determined the concentrations of carbon and nitrogen in leaves and carbohydrates in roots. Our results show that defoliation constrained the growth of long shoots, as well as the emergence of inflorescences regardless of thermal sum accumulation. However, the number of leaf-bearing short shoots did not differ between intact and defoliated trees. In the both tree groups, the amounts of emerging leaves increased as a response to thermal sum accumulation. Also the leaf carbon concentration increased in defoliated trees at higher thermal sums, whereas it decreased in intact controls. Generally, the mean carbohydrate concentrations were greater in roots of defoliated than intact trees. However, with increased thermal sums, root carbohydrates increased in intact trees but remained the same in defoliated trees. We conclude that thermal sum accumulation does not greatly promote the recovery of mountain birches. Although the damaged trees produced more leaves at warmer growing sites, this did not increase their height growth or carbohydrate gain in roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号