首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A recent rise in the reporting of diseases in marine organisms has raised concerns that ocean health is deteriorating. The goal of this study was to determine whether or not there has been a recent deterioration in marine mammal health by investigating the trends in disease reports over the past 40 years (categorized by the method of study, the species affected, and the etiology of the disease) and by exploring the changes in frequency of mass mortality events among marine mammals reported in the United States since 1978. The number of papers on marine mammal disease published each year has increased since 1966, although the annual publication rate appears to have stabilized since ∼1992. Those published in the 1960s and 1970s were largely about helminth and bacterial disease, those investigating viruses emerged in the late 1970s and increased in the 1980s and 1990s, whereas protozoal diseases and harmful algal toxins were largely not reported until the 1990s. The annual number of mass mortality events in the U.S. approximately doubled between 1980 and 1990 but since 2000 has been between seven and eight events per year. Causes of mass mortality events have included biotoxins, viruses, bacteria, parasites, human interactions, oil spills, and changes in oceanographic conditions. Events due to biotoxins appear to be increasing, but the change in the frequency of mass mortality events from other causes over the past 40 years cannot be determined from the available published literature due to changes in marine mammal abundance, inconsistencies in effort and extent of resources for pathological investigation, and advances in technology that have allowed improved detection of pathogens and toxins in more recent years. To ensure future information on the true incidence of marine diseases and their underlying causes is more reliable, specific and directed marine health monitoring programs, well-equipped stranding networks, and dedicated diagnostic laboratories are needed.  相似文献   

2.
Verrucomicrobia is a bacterial phylum that is commonly detected in soil, but little is known about the distribution and diversity of this phylum in the marine environment. To address this, we analyzed the marine microbial community composition in 506 samples from the International Census of Marine Microbes as well as 11 coastal samples taken from the California Current. These samples from both the water column and sediments covered a wide range of environmental conditions. Verrucomicrobia were present in 98% of the analyzed samples, and thus appeared nearly ubiquitous in the ocean. Based on the occurrence of amplified 16S ribosomal RNA sequences, Verrucomicrobia constituted on average 2% of the water column and 1.4% of the sediment bacterial communities. The diversity of Verrucomicrobia displayed a biogeography at multiple taxonomic levels and thus, specific lineages appeared to have clear habitat preference. We found that subdivision 1 and 4 generally dominated marine bacterial communities, whereas subdivision 2 was more frequent in low salinity waters. Within the subdivisions, Verrucomicrobia community composition were significantly different in the water column compared with sediment as well as within the water column along gradients of salinity, temperature, nitrate, depth and overall water column depth. Although we still know little about the ecophysiology of Verrucomicrobia lineages, the ubiquity of this phylum suggests that it may be important for the biogeochemical cycle of carbon in the ocean.  相似文献   

3.
Quantifying the spatial distribution of taxa is an important prerequisite for the preservation of biodiversity, and can provide a baseline against which to measure the impacts of climate change. Here we analyse patterns of marine mammal species richness based on predictions of global distributional ranges for 115 species, including all extant pinnipeds and cetaceans. We used an environmental suitability model specifically designed to address the paucity of distributional data for many marine mammal species. We generated richness patterns by overlaying predicted distributions for all species; these were then validated against sightings data from dedicated long-term surveys in the Eastern Tropical Pacific, the Northeast Atlantic and the Southern Ocean. Model outputs correlated well with empirically observed patterns of biodiversity in all three survey regions. Marine mammal richness was predicted to be highest in temperate waters of both hemispheres with distinct hotspots around New Zealand, Japan, Baja California, the Galapagos Islands, the Southeast Pacific, and the Southern Ocean. We then applied our model to explore potential changes in biodiversity under future perturbations of environmental conditions. Forward projections of biodiversity using an intermediate Intergovernmental Panel for Climate Change (IPCC) temperature scenario predicted that projected ocean warming and changes in sea ice cover until 2050 may have moderate effects on the spatial patterns of marine mammal richness. Increases in cetacean richness were predicted above 40° latitude in both hemispheres, while decreases in both pinniped and cetacean richness were expected at lower latitudes. Our results show how species distribution models can be applied to explore broad patterns of marine biodiversity worldwide for taxa for which limited distributional data are available.  相似文献   

4.
As anthropogenic stressors threaten the health of marine ecosystems, there is a need to better understand how the public processes and responds to information about ocean health. Recent studies of public perceptions about ocean issues report high concern but limited knowledge, prompting calls for information campaigns to mobilize public support for ocean restoration policy. Drawing on the literature from communication, psychology and related social science disciplines, we consider a set of social-cognitive challenges that researchers and advocates are likely to encounter when communicating with the public about ocean health and emerging marine diseases—namely, the psychological distance at which ocean issues are construed, the unfamiliarity of aquatic systems to many members of the public and the potential for marine health issues to be interpreted through politicized schemas that encourage motivated reasoning over the dispassionate consideration of scientific evidence. We offer theory-based strategies to help public outreach efforts address these challenges and present data from a recent experiment exploring the role of message framing (emphasizing the public health or environmental consequences of marine disease) in shaping public support for environmental policy.  相似文献   

5.
Marine mammals are at risk for infection by fecal-associated zoonotic pathogens when they swim and feed in polluted nearshore marine waters. Because of their tendency to consume 25-30% of their body weight per day in coastal filter-feeding invertebrates, southern sea otters (Enhydra lutris nereis) can act as sentinels of marine ecosystem health in California. Feces from domestic and wildlife species were tested to determine prevalence, potential virulence, and diversity of selected opportunistic enteric bacterial pathogens in the Monterey Bay region. We hypothesized that if sea otters are sentinels of coastal health, and fecal pollution flows from land to sea, then sea otters and terrestrial animals might share the same enteric bacterial species and strains. Twenty-eight percent of fecal samples tested during 2007-2010 were positive for one or more potential pathogens. Campylobacter spp. were isolated most frequently, with an overall prevalence of 11%, followed by Vibrio cholerae (9%), Salmonella spp. (6%), V. parahaemolyticus (5%), and V. alginolyticus (3%). Sea otters were found positive for all target bacteria, exhibiting similar prevalences for Campylobacter and Salmonella spp. but greater prevalences for Vibrio spp. when compared to terrestrial animals. Fifteen Salmonella serotypes were detected, 11 of which were isolated from opossums. This is the first report of sea otter infection by S. enterica Heidelberg, a serotype also associated with human clinical disease. Similar strains of S. enterica Typhimurium were identified in otters, opossums, and gulls, suggesting the possibility of land-sea transfer of enteric bacterial pathogens from terrestrial sources to sea otters.  相似文献   

6.
Understanding the effects of climatic variability on marine mammals is challenging due to the complexity of ecological interactions. We used general linear models to analyze a 15-year database documenting marine mammal strandings (1994–2008; n = 1,193) and nine environmental parameters known to affect marine mammal survival, from regional (sea ice) to continental scales (North Atlantic Oscillation, NAO). Stranding events were more frequent during summer and fall than other seasons, and have increased since 1994. Poor ice conditions observed during the same period may have affected marine mammals either directly, by modulating the availability of habitat for feeding and breeding activities, or indirectly, through changes in water conditions and marine productivity (krill abundance). For most species (75%, n = 6 species), a low volume of ice was correlated with increasing frequency of stranding events (e.g. R2 adj = 0.59, hooded seal, Cystophora cristata). This likely led to an increase in seal mortality during the breeding period, but also to increase habitat availability for seasonal migratory cetaceans using ice-free areas during winter. We also detected a high frequency of stranding events for mysticete species (minke whale, Balaenoptera acutorostrata) and resident species (beluga, Delphinapterus leucas), correlated with low krill abundance since 1994. Positive NAO indices were positively correlated with high frequencies of stranding events for resident and seasonal migratory cetaceans, as well as rare species (R2 adj = 0.53, 0.81 and 0.34, respectively). This contrasts with seal mass stranding numbers, which were negatively correlated with a positive NAO index. In addition, an unusual multiple species mortality event (n = 114, 62% of total annual mortality) in 2008 was caused by a harmful algal bloom. Our findings provide an empirical baseline in understanding marine mammal survival when faced with climatic variability. This is a promising step in integrating stranding records to monitor the consequences of environmental changes in marine ecosystems over long time scales.  相似文献   

7.
The isoprenoid lipid crenarchaeol is widespread in hot springs of California and Nevada. Terrestrial and marine data together suggest a maximum relative abundance of crenarchaeol at ~40°C. This warm temperature optimum may have facilitated colonization of the ocean by (hyper)thermophilic Archaea and the major marine radiation of Crenarchaeota.  相似文献   

8.
As many marine mammal populations have increased following bans on their harvest, there has been a growing need to understand potential impacts of these population changes on coastal marine ecosystems. Quantifying consumption of prey species, such as fish, is particularly important when those same prey are also targeted by commercial fisheries. Estimating the impact of marine mammal predators on prey fish depends upon knowledge of marine mammal diet composition; scientific advances over the last century have improved understanding of diets but have also led to inconsistent methods that challenge attempts at synthesis and comparison. Meta-analysis techniques offer the opportunity to overcome such challenges, yet have not been widely applied to synthesize marine mammal diets over space and time. As a case study, we focus on synthesizing diet studies of Chinook (king) salmon (Oncorhynchus tshawytscha) by four species of marine mammal predators in the Northeast Pacific Ocean: Steller sea lions (Eumetopias jubatus), California sea lions (Zalophus californianus), harbor seals (Phoca vitulina), and killer whales (Orcinus orca). We also highlight several simple meta-analyses for which these types of diet databases may be employed. Our assembled database consists of > 330 records, spanning more than 100 years. Results indicate that the frequency of occurrence of Chinook salmon in killer whale studies is high (63%) relative to pinniped studies (< 10%). They also suggest a strong increasing ability to discriminate Chinook salmon from other salmonids, which we attribute to switches in diet studies from lethal or observational sampling toward molecular methods (DNA, fatty acids). Our database and analysis code are published as supplementary material, which we hope will be useful for other researchers and will inspire more of these syntheses.  相似文献   

9.
A decade of visual and acoustic detections of marine megafauna around offshore Oil & Gas (O&G) installations in the North and Irish Seas are presented. Marine megafauna activity was monitored visually and acoustically by Joint Nature Conservation Committee (JNCC) qualified and experienced Marine Mammal Observers (MMO) and Passive Acoustic Monitoring (PAM) Operators respectively, with real-time towed PAM in combination with industry standard software, PAMGuard. Monitoring was performed during routine O&G industrial operations for underwater noise mitigation purposes, and to ensure adherence to regulatory guidelines. Incidental sightings by off-effort MMOs and installation crew were also reported. Visual and acoustic monitoring spanned 55 non-consecutive days between 2004 and 2014. A total of 47 marine mammal sightings were recorded by MMOs on dedicated watch, and 10 incidental sightings of marine megafauna were reported over 10 years. Species included: harbour porpoise (Phocoena phocoena), Atlantic white-sided dolphin (Lagenorhynchus acutus), white beaked dolphin (Lagenorhynchus albirostris), common dolphin (Delphinus delphis), minke whale (Balaenoptera acutorostrata), common seal (Phoca vitulina), grey seal (Halichoerus grypus) and, basking shark (Cetorhinus maximus). Passive Acoustic Monitoring was conducted on two occasions in 2014; 160 PAM hours over 12 days recorded a total of 308 individual clicks identified as harbour porpoises. These appear to be the first such acoustic detections obtained from a North Sea drilling rig whilst using a typically configured hydrophone array designed for towing in combination with real-time PAMGuard software. This study provides evidence that marine megafauna are present around mobile and stationary offshore O&G installations during routine operational activities. On this basis, Environmental Impact Assessments (EIAs) for decommissioning O&G platforms should be carried-out on a case-by-case basis, and must include provisions for hitherto overlooked marine megafauna.  相似文献   

10.
Marine mammal Brucella spp. have been isolated from pinnipeds (B. pinnipedialis) and cetaceans (B. ceti) from around the world. Although the zoonotic potential of marine mammal brucellae is largely unknown, reports of human disease exist. There are few studies of the mechanisms of bacterial intracellular invasion and multiplication involving the marine mammal Brucella spp. We examined the infective capacity of two genetically different B. pinnipedialis strains (reference strain; NTCT 12890 and a hooded seal isolate; B17) by measuring the ability of the bacteria to enter and replicate in cultured phagocytes and epithelial cells. Human macrophage-like cells (THP-1), two murine macrophage cell lines (RAW264.7 and J774A.1), and a human malignant epithelial cell line (HeLa S3) were challenged with bacteria in a gentamicin protection assay. Our results show that B. pinnipedialis is internalized, but is then gradually eliminated during the next 72 – 96 hours. Confocal microscopy revealed that intracellular B. pinnipedialis hooded seal strain colocalized with lysosomal compartments at 1.5 and 24 hours after infection. Intracellular presence of B. pinnipedialis hooded seal strain was verified by transmission electron microscopy. By using a cholesterol-scavenging lipid inhibitor, entrance of B. pinnipedialis hooded seal strain in human macrophages was significantly reduced by 65.8 % (± 17.3), suggesting involvement of lipid-rafts in intracellular entry. Murine macrophages invaded by B. pinnipedialis do not release nitric oxide (NO) and intracellular bacterial presence does not induce cell death. In summary, B. pinnipedialis hooded seal strain can enter human and murine macrophages, as well as human epithelial cells. Intracellular entry of B. pinnipedialis hooded seal strain involves, but seems not to be limited to, lipid-rafts in human macrophages. Brucella pinnipedialis does not multiply or survive for prolonged periods intracellulary.  相似文献   

11.
Norman SA 《EcoHealth》2008,5(3):257-267
The use of spatial epidemiology and geographical information systems (GIS) facilitates the incorporation of spatial relationships into epidemiological investigations of marine mammal diseases and conservation medicine. Spatial epidemiology is the study of the spatial variation in disease risk or incidence and explicitly addresses spatial structures and functions that factor into disease. The GIS consists of input, management, analysis, and presentation of spatial disease data and can act as an integrative tool so that a range of varied data sources can be combined to describe different environmental aspects of wild animals and their diseases. The use of modern spatial analyses and GIS is becoming well developed in the field of marine mammal ecology and biology, but has just recently started to gain more use in disease research. The use of GIS methodology and spatial analysis in nondisease marine mammal studies is briefly discussed, while examples of the specific uses of these tools in mapping, surveillance and monitoring, disease cluster detection, identification of environmental predictors of disease in wildlife populations, risk assessment, and modeling of diseases, is presented. Marine mammal disease investigations present challenges, such as less consistent access to animals for sampling, fewer baseline data on diseases in wild populations, and less robust epidemiologic study designs, but several recommendations for future research are suggested. Since location is an integral part of investigating disease, spatial epidemiology and GIS should be incorporated as a data management and analysis tool in the study of marine mammal diseases and conservation medicine.  相似文献   

12.
Marine mammal Brucella strains with different genomic characteristics according to distribution of IS711 elements in their genomes were analysed for their intracellular behaviour in human THP-1 macrophage-like cells. Seven different groups of marine mammal strains were identified including a human isolate from New Zealand presumably from marine origin. Entry and intracellular survival of strains representative of these groups in THP-1 human macrophage-like cells were analysed at several times of infection. Three patterns of infection were identified. The Brucella strain isolated from the human case from New Zealand, and two other groups of strains belonging to B. ceti or B. pinnipedialis were able to infect THP-1 macrophage cells to the same extent as the virulent strains B. suis 1330 or B. melitensis 16M. Three other groups of strains belonging to B. ceti or B. pinnipedialis were able to enter the cells as classical virulent strains but were eliminated after 48 h. The last group was composed only of strains isolated from hooded seals (Cystophora cristata) and was even unable to enter and infect THP-1 macrophage cells. Thus, several groups of marine mammal Brucella strains appear to be non-infectious for human macrophages.  相似文献   

13.
The iron-limited Southern Ocean plays an important role in regulating atmospheric CO2 levels. Marine mammal respiration has been proposed to decrease the efficiency of the Southern Ocean biological pump by returning photosynthetically fixed carbon to the atmosphere. Here, we show that by consuming prey at depth and defecating iron-rich liquid faeces into the photic zone, sperm whales (Physeter macrocephalus) instead stimulate new primary production and carbon export to the deep ocean. We estimate that Southern Ocean sperm whales defecate 50 tonnes of iron into the photic zone each year. Molar ratios of Cexport ∶Feadded determined during natural ocean fertilization events are used to estimate the amount of carbon exported to the deep ocean in response to the iron defecated by sperm whales. We find that Southern Ocean sperm whales stimulate the export of 4 × 105 tonnes of carbon per year to the deep ocean and respire only 2 × 105 tonnes of carbon per year. By enhancing new primary production, the populations of 12 000 sperm whales in the Southern Ocean act as a carbon sink, removing 2 × 105 tonnes more carbon from the atmosphere than they add during respiration. The ability of the Southern Ocean to act as a carbon sink may have been diminished by large-scale removal of sperm whales during industrial whaling.  相似文献   

14.
The sensitivity and specificity of the microscopic agglutination test (MAT) as a method for detection of exposure to Leptospira spp. in California sea lions (Zalophus californianus) were determined. Sera came from individuals that demonstrated clinical signs of renal disease, had lesions suggestive of leptospirosis at necropsy, and had visible leptospires in silver stained kidney sections as positive controls. Sera from unexposed captive individuals were used as negative controls. The test was 100% sensitive at 1:3,200 for confirming renal infection and 100% specific at negative < 1:100 for detection of Leptospira interrogans scrovar pomona antibodies by MAT in California sea lions. Leptospira interrogans serovar pomona was used as a screening serovar because it has been isolated previously from the kidneys and placentas of California sea lions, and there appears to be cross-reactivity between serovar pomona and other serovars. Sera from 225 free-ranging California sea lions presented to one of three participating California (USA) coastal marine mammal rehabilitation centers in 1996 were then evaluated for antibodies to serovar pomona using the MAT. The overall seroprevalence was 38.2% (86/225), although the prevalence varied among locations from 100% (38/38) in animals at the Marine Mammal Care Center (Fort MacArthur, California, USA) to 0% (0/14) at SeaWorld California (San Diego, California). At The Marine Mammal Center (Sausalito, California) [prevalence 27.8% (48/173)], the majority of seropositive animals were subadults and adults, and males were 4.7 times more likely to be seropositive to serovar pomona than females. When combining results from all three centers, subadult and adult animals were more likely to be seropositive than pups and juvenile sea lions, and the highest proportion of seropositive animals presented during the autumn months. Serum elevations of blood urea nitrogen, creatinine, phosphorus, and/or calcium were associated with seropositivity to serovar pomona. We found no association between potassium or sodium levels and seropositivity.  相似文献   

15.
In 1995, one of the largest outbreaks of human toxoplasmosis occurred in the Pacific Northwest region of North America. Genetic typing identified a novel Toxoplasma gondii strain linked to the outbreak, in which a wide spectrum of human disease was observed. For this globally-distributed, water-borne zoonosis, strain type is one variable influencing disease, but the inability of strain type to consistently explain variations in disease severity suggests that parasite genotype alone does not determine the outcome of infection. We investigated polyparasitism (infection with multiple parasite species) as a modulator of disease severity by examining the association of concomitant infection of T. gondii and the related parasite Sarcocystis neurona with protozoal disease in wild marine mammals from the Pacific Northwest. These hosts ostensibly serve as sentinels for the detection of terrestrial parasites implicated in water-borne epidemics of humans and wildlife in this endemic region. Marine mammals (151 stranded and 10 healthy individuals) sampled over 6 years were assessed for protozoal infection using multi-locus PCR-DNA sequencing directly from host tissues. Genetic analyses uncovered a high prevalence and diversity of protozoa, with 147/161 (91%) of our sampled population infected. From 2004 to 2009, the relative frequency of S. neurona infections increased dramatically, surpassing that of T. gondii. The majority of T. gondii infections were by genotypes bearing Type I lineage alleles, though strain genotype was not associated with disease severity. Significantly, polyparasitism with S. neurona and T. gondii was common (42%) and was associated with higher mortality and more severe protozoal encephalitis. Our finding of widespread polyparasitism among marine mammals indicates pervasive contamination of waterways by zoonotic agents. Furthermore, the significant association of concomitant infection with mortality and protozoal encephalitis identifies polyparasitism as an important factor contributing to disease severity in marine mammals.  相似文献   

16.
Bacteria and archaea in the dark ocean (>200 m) comprise 0.3–1.3 billion tons of actively cycled marine carbon. Many of these microorganisms have the genetic potential to fix inorganic carbon (autotrophs) or assimilate single-carbon compounds (methylotrophs). We identified the functions of autotrophic and methylotrophic microorganisms in a vent plume at Axial Seamount, where hydrothermal activity provides a biogeochemical hot spot for carbon fixation in the dark ocean. Free-living members of the SUP05/Arctic96BD-19 clade of marine gamma-proteobacterial sulfur oxidizers (GSOs) are distributed throughout the northeastern Pacific Ocean and dominated hydrothermal plume waters at Axial Seamount. Marine GSOs expressed proteins for sulfur oxidation (adenosine phosphosulfate reductase, sox (sulfur oxidizing system), dissimilatory sulfite reductase and ATP sulfurylase), carbon fixation (ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO)), aerobic respiration (cytochrome c oxidase) and nitrogen regulation (PII). Methylotrophs and iron oxidizers were also active in plume waters and expressed key proteins for methane oxidation and inorganic carbon fixation (particulate methane monooxygenase/methanol dehydrogenase and RuBisCO, respectively). Proteomic data suggest that free-living sulfur oxidizers and methylotrophs are among the dominant primary producers in vent plume waters in the northeastern Pacific Ocean.  相似文献   

17.
Bottlenose dolphins (Tursiops truncatus), as long-lived, long-term residents of bays, sounds, and estuaries, can serve as important sentinels of the health of coastal marine ecosystems. As top-level predators on a wide variety of fishes and squids, they concentrate contaminants through bioaccumulation and integrate broadly across the ecosystem in terms of exposure to environmental impacts. A series of recent large-scale bottlenose dolphin mortality events prompted an effort to develop a proactive approach to evaluating risks by monitoring living dolphin populations rather than waiting for large numbers of carcasses to wash up on the beach. A team of marine mammal veterinarians and biologists worked together to develop an objective, quantitative, replicable means of scoring the health of dolphins, based on comparison of 19 clinically diagnostic blood parameters to normal baseline values. Though the scoring system appears to roughly reflect dolphin health, its general applicability is hampered by interlaboratory variability, a lack of independence between some of the variables, and the possible effects of weighting variables. High score variance seems to indicate that the approach may lack the sensitivity to identify trends over time at the population level. Potential solutions to this problem include adding or replacing health parameters, incorporating only the most sensitive measures, and supplementing these with additional measures of health, body condition, contaminant loads, or biomarkers of contaminants or their effects that can also be replicated from site to site. Other quantitative approaches are also being explored.  相似文献   

18.
A weak and emaciated California sea otter (Enhydra lutris) was found stranded on Atascadero Beach in Morro Bay, California. It died three weeks after capture. A diagnosis of coccidioidomycosis was confirmed by histology, serology and culture. This is believed to be the first reported case of this disease from the Morro Bay area of San Luis Obispo County, California as well as the first reported case in a free-ranging marine mammal.  相似文献   

19.
QUANTITATIVE DETERMINATION OF OPTIMUM SUSTAINABLE POPULATION LEVEL   总被引:1,自引:0,他引:1  
Quantitative methods are reviewed and compared for determining whether a marine mammal population is at an optimum sustainable population (OSP) level, a management goal specified by the U.S. Marine Mammal Protection Act. Methods of OSP determination fall into two general types: those that require an estimate of a population's maximum net productivity level ( e.g. , the back-calculation method) and those that do not ( e.g. , dynamic response analysis). The two types differ in the data they require and in whether they determine OSP with respect to present or historical carrying capacity. Back-calculation and dynamic response analyses are compared using data on the California gray whale ( Eschrichtius robustus. ) Marine mammal monitoring programs should be designed to detect trends in both the abundance of a population and its condition relative to carrying capacity, because both quantities are involved in the definition of OSP. The value of using both abundance and condition indices in an assessment is illustrated with data on the northern fur seal ( Callorhinus ursinus. )  相似文献   

20.
The National Science Foundation’s EarthCube End User Workshop was held at USC Wrigley Marine Science Center on Catalina Island, California in August 2013. The workshop was designed to explore and characterize the needs and tools available to the community that is focusing on microbial and physical oceanography research with a particular emphasis on ‘omic research. The assembled researchers outlined the existing concerns regarding the vast data resources that are being generated, and how we will deal with these resources as their volume and diversity increases. Particular attention was focused on the tools for handling and analyzing the existing data, on the need for the construction and curation of diverse federated databases, as well as development of shared, interoperable, “big-data capable” analytical tools. The key outputs from this workshop include (i) critical scientific challenges and cyber infrastructure constraints, (ii) the current and future ocean ‘omics science grand challenges and questions, and (iii) data management, analytical and associated and cyber-infrastructure capabilities required to meet critical current and future scientific challenges. The main thrust of the meeting and the outcome of this report is a definition of the ‘omics tools, technologies and infrastructures that facilitate continued advance in ocean science biology, marine biogeochemistry, and biological oceanography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号