首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work extends our previous quantitative brain SPECT research to breast imaging-SPECT mammotomography. A cost-effective dedicated SPECT mammotomography system is presented, which aims to acquire sufficient information for efficient reconstruction of large volumetric images. A very short focal-length fan-beam collimation is designed to maximize the information collected from a relitively small vital organ that has a uniform attenuation property. Data noise of a Poisson nature is accurately modeled and effectively treated in sinogram space, followed by efficient compensation for Compton scattering, uniform attenuation, and collimater response. This sinogram-space statistical approach has the potential to reconstruct high-resolution images at a very fast speed. Yet it provides the same image quality as iterative reconstruction algorithms did, in terms of abnormality detectability by observer studies.  相似文献   

2.
In single photon emission computed tomography (SPECT), accurate attenuation maps are needed to perform essential attenuation compensation for high quality radioactivity estimation. Formulating the SPECT activity and attenuation reconstruction tasks as coupled signal estimation and system parameter identification problems, where the activity distribution and the attenuation parameter are treated as random variables with known prior statistics, we present a nonlinear dual reconstruction scheme based on the unscented Kalman filtering (UKF) principles. In this effort, the dynamic changes of the organ radioactivity distribution are described through state space evolution equations, while the photon-counting SPECT projection data are measured through the observation equations. Activity distribution is then estimated with sub-optimal fixed attenuation parameters, followed by attenuation map reconstruction given these activity estimates. Such coupled estimation processes are iteratively repeated as necessary until convergence. The results obtained from Monte Carlo simulated data, physical phantom, and real SPECT scans demonstrate the improved performance of the proposed method both from visual inspection of the images and a quantitative evaluation, compared to the widely used EM-ML algorithms. The dual estimation framework has the potential to be useful for estimating the attenuation map from emission data only and thus benefit the radioactivity reconstruction.  相似文献   

3.
目的应用Evolution CDR补偿技术对骨断层图像质量的改善进行评价。方法随机选择32例骨断层显像,分别进行全时采集OSEM迭代处理,1/2时采集OSEM处理以及1/2时采集Evolution处理和全时采集Evolution处理。通过盲法读片,对三种不同图像采集处理技术获得图像进行图像质量评分。结果1/2时采集Evolution重建图像质量与全时采集OS-EM重建图像质量相当;而全时采集Evolution重建的图像质量明显优于全时采集OSEM重建。结论Evolution重建技术通过对CDR补偿,能降低图像噪声,明显改善图像质量,或者在得到与全时采集OSEM迭代重建相当的图像质量的情况下,可以大女降低采键时间.  相似文献   

4.
We evaluate a newly developed dedicated cone-beam transmission computed mammotomography (CmT) system configuration using an optimized quasi-monochromatic cone beam technique for attenuation correction of SPECT in a planned dual-modality emission and transmission system for pendant, uncompressed breasts. In this study, we perform initial CmT acquisitions using various sized breast phantoms to evaluate an offset cone-beam geometry. This offset geometry provides conjugate projections through a full 360 degree gantry rotation, and thus yields a greatly increased effective field of view, allowing a much wider range of breast sizes to be imaged without truncation in reconstructed images. Using a tungsten X-ray tube and digital flat-panel X-ray detector in a compact geometry, we obtained initial CmT scans without shift and with the offset geometry, using geometrical frequency/resolution phantoms and two different sizes of breast phantoms. Acquired data were reconstructed using an ordered subsets transmission iterative algorithm. Projection images indicate that the larger, 20 cm wide, breast requires use of a half-cone-beam offset scan to eliminate truncation artifacts. Reconstructed image results illustrate elimination of truncation artifacts, and that the novel quasi-monochromatic beam yields reduced beam hardening. The offset geometry CmT system can indeed potentially be used for structural imaging and accurate attenuation correction for the functional dedicated breast SPECT system.  相似文献   

5.
6.
Dual-isotope SPECT (DI-SPECT) studies offer significant advantages over sequential scans, foremost among them faster acquisition and perfect image registration. However, reconstructed images may be affected by substantial cross-talk contamination rendering them inadequate for diagnosis. This effect is especially strong for isotopes with close photopeak energies, such as 99mTc (140 keV) and 123I (159 keV). In this paper we present an iterative DI-SPECT reconstruction method which includes accurate, analytically computed scatter corrections provided by the APD (analytical photon distribution) algorithm. This algorithm calculates first and second order Compton scatter (based on the Klein–Nishina formula) and first order Rayleigh scatter. Both self-scatter and cross-talk between the two isotopes are evaluated using patient specific attenuation maps and an initial activity distribution estimate. To validate our method we performed experiments using the Data Spectrum, Inc. thorax phantom and a SPECT/CT camera system. Reconstructed images demonstrate significant improvement in data quantitation. Their quantitative accuracy increases up to a factor of two, even for activity ratios which strongly enhance cross-talk effects and seriously degrade projections.  相似文献   

7.
IntroductionCardiac contraction significantly degrades quality and quantitative accuracy of gated myocardial perfusion SPECT (MPS) images. In this study, we aimed to explore different techniques in motion-compensated temporal processing of MPS images and their impact on image quality and quantitative accuracy.Material and method50 patients without known heart condition underwent gated MPS. 3D motion compensation methods using Motion Freezing by Cedars Sinai (MF), Log-domain Diffeomorphic Demons (LDD) and Free-Form Deformation (FFD) were applied to warp all image phases to fit the end-diastolic (ED) phase. Afterwards, myocardial wall thickness, myocardial to blood pool contrast, and image contrast-to noise ratio (CNR) were measured in summed images with no motion compensation (NoMC) and compensated images (MF, LDD and FFD). Total Perfusion Defect (TPD) was derived from Cedars-Sinai software, on the basis of sex-specific normal limits.ResultLeft ventricle (LV) lateral wall thickness was reduced after applying motion compensation (p < 0.05). Myocardial to blood pool contrast and CNR in compensated images were greater than NoMC (p < 0.05). TPD_LDD was in good agreement with the corresponding TPD_MF (p = 0.13).ConclusionAll methods have improved image quality and quantitative performance relative to NoMC. LDD and FFD are fully automatic and do not require any manual intervention, while MF is dependent on contour definition. In terms of diagnostic parameters LDD is in good agreement with MF which is a clinically accepted method. Further investigation along with diagnostic reference standards, in order to specify diagnostic value of each technique is recommended.  相似文献   

8.

Background

Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT) or positron emission tomography (PET) with computed tomography (CT). Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR) on the image quality of the low-dose CT images.

Methodology/Principal Findings

Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU) values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88) and the contrast-to-noise ratio (CNR) was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04). In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001).

Conclusion/Significance

In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality.  相似文献   

9.
Emission tomography provides three-dimensional, quantitative images of the distribution of radiotracers used to mark physiological, metabolic, or pathological processes. Quantitative single photon emission computed tomography (SPECT) requires correction for the image-degrading effects due to photon attenuation and scatter. Phantom experiments have shown that radioactive concentrations can be assessed within some percentage of the true value when relevant corrections are applied. SPECT is widely spread, and radiotracers are available that are easy to use and comparably inexpensive. Compared with other methods, SPECT suffers from a lower spatial resolution, and the time required for image acquisition is longer than for some alternative methods. In contrast to some other methods, SPECT allows simultaneous imaging of more than one process, e.g., both regional blood flow and ventilation, for the whole lung. SPECT has been used to explore the influence of posture and clinical interventions on the spatial distribution of lung blood flow and ventilation. Lung blood flow is typically imaged using macroaggregates of albumin. Both radioactive gases and particulate aerosols labeled with radioactivity have been used for imaging of regional ventilation. However, all radiotracers are not equally suited for quantitative measurements; all have specific advantages and limitations. With SPECT, both blood flow and ventilation can be marked with radiotracers that remain fixed in the lung tissue, which allows tracer administration during conditions different from those at image registration. All SPECT methods have specific features that result from the used radiotracer, the manner in which it is administered, and how images are registered and analyzed.  相似文献   

10.
PurposePatient-specific dosimetry in MRT relies on quantitative imaging, pharmacokinetic assessment and absorbed dose calculation. The DosiTest project was initiated to evaluate the uncertainties associated with each step of the clinical dosimetry workflow through a virtual multicentric clinical trial. This work presents the generation of simulated clinical SPECT datasets based on GATE Monte Carlo modelling with its corresponding experimental CT image, which can subsequently be processed by commercial image workstations.MethodsThis study considers a therapy cycle of 6.85 GBq 177Lu-labelled DOTATATE derived from an IAEA-Coordinated Research Project (E23005) on “Dosimetry in Radiopharmaceutical therapy for personalised patient treatment”. Patient images were acquired on a GE Infinia-Hawkeye 4 gamma camera using a medium energy (ME) collimator. Simulated SPECT projections were generated based on experimental time points and validated against experimental SPECT projections using flattened profiles and gamma index. The simulated projections were then incorporated into the patient SPECT/CT DICOM envelopes for processing and their reconstruction within a commercial image workstation.ResultsGamma index passing rate (2% − 1 pixel criteria) between 95 and 98% and average gamma between 0.28 and 0.35 among different time points revealed high similarity between simulated and experimental images. Image reconstruction of the simulated projections was successful on HERMES and Xeleris workstations, a major step forward for the initiation of a multicentric virtual clinical dosimetry trial based on simulated SPECT/CT images.ConclusionsRealistic 177Lu patient SPECT projections were generated in GATE. These modelled datasets will be circulated to different clinical departments to perform dosimetry in order to assess the uncertainties in the entire dosimetric chain.  相似文献   

11.
Fusing or image registration improves the information obtained by correlating images from various imaging modalities. We “fused” radiolabeled antibody SPECT with CT in patients with colorectal or lung cancer. We identified corresponding landmarks on cross-sectional images and used standard graphics algorithms for untilting to match planes of reconstruction and for two-dimensional warping or ransformation of images or regions of interest. Fusing localizes activity on SPECT to specific anatomic structures and decreases SPECT false positives and CT false negatives.  相似文献   

12.
Effective intraoperative tumor margin assessment is needed to reduce re‐excision rates in breast‐conserving surgery (BCS). Mapping the attenuation coefficient in optical coherence tomography (OCT) throughout a sample to create an image (attenuation imaging) is one promising approach. For the first time, three‐dimensional OCT attenuation imaging of human breast tissue microarchitecture using a wide‐field (up to ~45 × 45 × 3.5 mm) imaging system is demonstrated. Representative results from three mastectomy and one BCS specimen (from 31 specimens) are presented with co‐registered postoperative histology. Attenuation imaging is shown to provide substantially improved contrast over OCT, delineating nuanced features within tumors (including necrosis and variations in tumor cell density and growth patterns) and benign features (such as sclerosing adenosis). Additionally, quantitative micro‐elastography (QME) images presented alongside OCT and attenuation images show that these techniques provide complementary contrast, suggesting that multimodal imaging could increase tissue identification accuracy and potentially improve tumor margin assessment.  相似文献   

13.
Although iterative reconstruction is widely applied in SPECT/PET, its introduction in clinical CT is quite recent, in the past the demand for extensive computer power and long image reconstruction times have stopped the diffusion of this technique. Recently Iterative Reconstruction in Image Space (IRIS) has been introduced on Siemens top CT scanners. This recon method works on image data area, reducing the time-consuming loops on raw data and noise removal is obtained in subsequent iterative steps with a smoothing process. We evaluated image noise, low contrast resolution, CT number linearity and accuracy, transverse and z-axis spatial resolution using some dedicated phantoms in single, dual source and cardiac mode. We reconstructed images with a traditional filtered back-projection algorithm and with IRIS. The iterative procedure preserves spatial resolution, CT number accuracy and linearity moreover decreases image noise. These preliminary results support the idea that dose reduction with preserved image quality is possible with IRIS, even if studies on patients are necessary to confirm these data.  相似文献   

14.
IntroductionAccurate activity quantification is applied in radiation dosimetry. Planar images are important for quantification of whole-body images, enabling assessment of biodistribution from radionuclide administrations. We evaluated the effect of tumour geometry on quantification accuracy of 123I planar phantom studies, including various tumour sizes, tumour-liver distances and two tumour-background ratios.Methods and materialsAn in-house manufactured abdominal phantom was equipped with a liver, different size cylindrical tumours, and a rod for tumour-liver distance variation. The geometric mean method with scatter and attenuation corrections was used for image processing. Scatter and attenuation corrections were made using the triple energy window scatter correction technique and a printed transmission sheet source, respectively. Region definitions for tumour activity distribution compensated for the partial volume effect (PVE). Activity measured in the dose calibrator served as reference for determining quantification accuracy.ResultsThe smallest tumour had the largest percentage deviation with an average activity underestimation of 34.6 ± 1.2%. Activity values for the largest tumour were overestimated by 3.1 ± 3.0%. PVE compensation improved quantification accuracy for all tumour sizes yielding accuracies of <12.4%. Scatter contribution to the tumours from the liver had minimal effect on quantification accuracy at tumour-liver distances >3 cm. With PVE compensation, increased tumour-background ratio resulted in a percentage increase of up to 26.3%.ConclusionWhen applying relevant corrections for scatter, attenuation and PVE without background activity, quantification accuracy of <13% was obtained. We demonstrated the successful implementation of a practical technique to obtain quantitative information from 123I planar images.  相似文献   

15.
摘要 目的:结合人工智能方法设计针对肝脏超声影像的辅助诊断系统,辅助医生对大样本肝脏超声影像数据的标准化和高效化诊断,实现基于肝脏超声图像的非酒精性脂肪性肝病的精准诊断。方法:通过开发肝脏超声影像的识别与分类、脂肪肝分级分析和肝脏脂肪含量定量分析三个模块,建立一套非酒精性脂肪性肝病的超声影像人工智能辅助诊断系统,该系统能够自动区分输入到系统中不同采样视野的超声影像类型,并对肝脏超声图像进行数字化分析,给出待测超声图像是否呈现脂肪肝以及其肝脏脂肪含量的百分比值。结果:本研究中的超声图像识别分类模块可高通量区分出肝肾比图像和衰减率图像的两类超声影像,其分类的准确率达100%。脂肪肝分级分析模块在测试集数据的准确率达到84%,展现出可胜任辅助医生诊断的能力。基于人工肝脏脂肪含量定量方法开发的肝脏脂肪含量定量分析模块的准确率达到67.74%。结论:本研究已开发出一套基于肝脏超声影像的智能辅助诊断系统,可以辅助医生快速、简单、无创地筛选出潜在患有脂肪肝的患者,虽然现阶段实现肝脏脂肪定量分析仍有难度,但已展现出较大的临床应用潜力。  相似文献   

16.
Tomographic image reconstruction is a computationally demanding task, even more so when advanced models are used to describe a more complete and accurate picture of the image formation process. Such advanced modeling and reconstruction algorithms can lead to better images, often with less dose, but at the price of long calculation times that are hardly compatible with clinical workflows. Fortunately, reconstruction tasks can often be executed advantageously on Graphics Processing Units (GPUs), which are exploited as massively parallel computational engines. This review paper focuses on recent developments made in GPU-based medical image reconstruction, from a CT, PET, SPECT, MRI and US perspective. Strategies and approaches to get the most out of GPUs in image reconstruction are presented as well as innovative applications arising from an increased computing capacity. The future of GPU-based image reconstruction is also envisioned, based on current trends in high-performance computing.  相似文献   

17.
Three-dimensional (3D) registration (i.e., alignment) between two microscopic images is very helpful to study tissues that do not adhere to substrates, such as mouse embryos and organoids, which are often 3D rotated during imaging. However, there is no 3D registration tool easily accessible for experimental biologists. Here we developed an ImageJ-based tool which allows for 3D registration accompanied with both quantitative evaluation of the accuracy and reconstruction of 3D rotated images. In this tool, several landmarks are manually provided in two images to be aligned, and 3D rotation is computed so that the distances between the paired landmarks from the two images are minimized. By simultaneously providing multiple points (e.g., all nuclei in the regions of interest) other than the landmarks in the two images, the correspondence of each point between the two images, i.e., to which nucleus in one image a certain nucleus in another image corresponds, is quantitatively explored. Furthermore, 3D rotation is applied to one of the two images, resulting in reconstruction of 3D rotated images. We demonstrated that this tool successfully achieved 3D registration and reconstruction of images in mouse pre- and post-implantation embryos, where one image was obtained during live imaging and another image was obtained from fixed embryos after live imaging. This approach provides a versatile tool applicable for various tissues and species.  相似文献   

18.
In this work, we have evaluated the potential of image fusion and attenuation correction (AC) of SPECT-CT imaging for the assessment of gastro-entero-pancreatic endocrine tumors by somatostatin receptor scintigraphy (SRS).MethodAfter optimisation of acquisition and reconstruction parameters, we have evaluated, in a prospective study, SRS performed over a period of one year. We have compared visual interpretations of planar and tomographic images versus SPECT/CT images to determine if anatomical localisation and diagnostic contributions are improved. In a semi-quantitative analysis of pathological foci, we have measured maximal intensity values (Tmax), tumour to background ratios (T/B) and tumour contrasts (Ct) with and without AC.ResultsIn 25 SRS, visual analysis has shown anatomical localisation improvements in 60% of cases (CI95%, 39–79) and diagnostic improvements in 64% of cases (CI95%, 43–82). Doubtful foci proportion changed from 44 to 11%. In the semi-quantitative analysis of 41 pathological foci, Wilcoxon matched-pairs tests showed significantly higher Tmax, T/B and Ct values after AC.ConclusionSPECT/CT imaging improves diagnostic quality of SRS thanks to a better foci localisation and a better lesional contrast in the image.  相似文献   

19.
Structure factor amplitudes and phases can be computed directly from electron cryomicroscopy images. Inherent aberrations of the electromagnetic lenses and other instrumental factors affect the structure factors, however, resulting in decreased accuracy in the determined three-dimensional reconstruction. In contrast, solution x-ray scattering provides absolute and accurate measurement of spherically averaged structure factor amplitudes of particles in solution but does not provide information on the phases. In the present study, we explore the merits of using solution x-ray scattering data to estimate the imaging parameters necessary to make corrections to the structure factor amplitudes derived from electron cryomicroscopic images of icosahedral virus particles. Using 400-kV spot-scan images of the bacteriophage P22 procapsid, we have calculated an amplitude contrast of 8.0 +/- 5.2%. The amplitude decay parameter has been estimated to be 523 +/- 188 A2 with image noise compensation and 44 +/- 66 A2 without it. These results can also be used to estimate the minimum number of virus particles needed for reconstruction at different resolutions.  相似文献   

20.
Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed the PET frames with CT-based attenuation correction, and finally re-aligned all the PET frames to the same position. We evaluated the MC method''s performance on the Hoffman phantom and dynamic FDDNP and FDG PET/CT images of patients with neurodegenerative disease or with poor compliance. Dynamic FDDNP PET/CT images (65 min) were obtained from 12 patients and dynamic FDG PET/CT images (60 min) were obtained from 6 patients. Logan analysis with cerebellum as the reference region was used to generate regional distribution volume ratio (DVR) for FDDNP scan before and after MC. For FDG studies, the image derived input function was used to generate parametric image of FDG uptake constant (Ki) before and after MC. Phantom study showed high accuracy of registration between PET and CT and improved PET images after MC. In patient study, head movement was observed in all subjects, especially in late PET frames with an average displacement of 6.92 mm. The z-direction translation (average maximum = 5.32 mm) and x-axis rotation (average maximum = 5.19 degrees) occurred most frequently. Image artifacts were significantly diminished after MC. There were significant differences (P<0.05) in the FDDNP DVR and FDG Ki values in the parietal and temporal regions after MC. In conclusion, MC applied to dynamic brain FDDNP and FDG PET/CT scans could improve the qualitative and quantitative aspects of images of both tracers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号