首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is a lack of clear biomechanical analyses to explain the interaction of the lateral and axial deformity of the spine in idiopathic scoliosis. A finite element model which represented an isolated ligamentous spine with realistic elastic properties and idealized geometry was used to analyse this interaction. Three variations of this model were used to investigate two different hypotheses about the etiology of scoliosis and to define the forces required to produce a scoliosis deformity. The first hypothesis is that coupling within a motion segment produces the interaction between lateral deviation and axial rotation. The second hypothesis is that posterior tethering by soft tissues in the growing spine produces the observed interaction. Modeling of both hypotheses failed to produce the clinically observed pattern of interaction. Therefore, to find which biomechanical forces were required to produce an idealized scoliosis, prescribed displacements were applied to the model. Production of a double curve scoliosis of 10 degrees Cobb angles required lateral forces on the order of 20 N acting 40 mm anterior to the vertebral body centers. There do not appear to be any anatomic structures capable of producing such forces. Therefore, it seems unlikely that scoliosis deformity can be explained in terms of forces acting on the spine, and understanding of its origins may come from examination of other mechanisms such as asymmetric thoracic growth, or asymmetric vertebral development.  相似文献   

2.

Background

Although it is speculated that scoliosis may induce cardiac dysfunction, there is no report about evaluation of cardiac function, especially right cardiac function in patients with scoliosis. Therefore, we evaluated right ventricular function in idiopathic scoliotic patients with mild to severe curves and compared them with healthy children and adolescents matched in age, then explored relationship between scoliosis and right ventricular function.

Methods

Thirty-seven patients diagnosed with idiopathic scoliosis with a mean age of 16y/o (range, 8-25y/o) and an average spine curve of 77.5°Cobb (range, 30-157°) were studied by echocardiography. TAD was obtained using M-mode echocardiography. Similar examination was performed in a control group of 17 healthy individuals in matched-age. According to the different curve degree, all patients were divided into 3 groups (mild, moderate and severe). Comparison was done among the groups and the relationship between TAD and spine curve of Cobb was analyzed.

Results

Patients with severe scoliosis showed depressed TAD. There was good correlation between TAD and spine curve of Cobb.

Conclusions

Patients with severe scoliosis showed a significant lower right ventricular systolic function.  相似文献   

3.
W Nudelman  N D Reis 《Acta anatomica》1990,139(3):220-225
The spatial displacement of vertebrae in idiopathic scoliosis is not explicable by forces created by the muscles which act upon the spine only (intrinsic muscles). The trapezius and latissimus muscles are attached to the spinous processes and the upper limb. In keeping with Newton's third law, these muscles act on the spine as well as upon the upper extremity. The peculiarity of the vertebral anatomy, together with the direction of pull of these muscles, permits an explanation of the biomechanics of the development of 'idiopathic' scoliosis.  相似文献   

4.

Introduction

It has been reported that AIS rely much more on ankle proprioception to control the amplitude of the balance control commands as compared to age-matched healthy adolescents. Our hypothesis was that AIS do not neglect proprioceptive information to control posture probably because of their vestibular deficits. We investigated the proprioceptive contribution to postural control in AIS which expresses spinal deformity during a crucial transitional period of ontogenesis.

Methods

10 adolescents with idiopathic scoliosis (AIS) with moderate spinal deformity (10° < Cobb Angle >35°) and 10 control adolescents (CA) had to maintain vertical stance while very slow oscillations in the frontal plane (below the detection threshold of the semicircular canal system) were applied to the support with the eyes open and closed. Postural orientation and segmental stabilisation were analysed at head, shoulder, trunk and pelvis levels.

Results

Scoliosis did not affect vertical orientation control and segmental stabilization strategies. Vision improves postural control in both CA and AIS, which seem more dependent on visual cues than adults.

Conclusions

AIS as CA were unable to control efficiently their postural orientation on the basis of the proprioceptive cues, the only sensory information available in the EC situation, whereas in the same condition healthy young adults present no difficulty to achieve the postural control. This suggests that AIS as CA transitory neglect proprioceptive information to control their posture. These results and previous studies suggest the existence of different afferent pathways for proprioceptive information subserving different parts in sensory integration of postural control. We conclude that the static proprioceptive system is not affected by the idiopathic scoliosis, while the dynamic proprioceptive system would be mainly affected.  相似文献   

5.
In this study, we investigated the sensory integration to postural control in children and adolescents from 5 to 15 years of age. We adopted the working hypothesis that considerable body changes occurring during these periods may lead subjects to under-use the information provided by the proprioceptive pathway and over-use other sensory systems such as vision to control their orientation and stabilize their body. It was proposed to determine which maturational differences may exist between the sensory integration used by children and adolescents in order to test the hypothesis that adolescence may constitute a specific phase in the development of postural control. This hypothesis was tested by applying an original protocol of slow oscillations below the detection threshold of the vestibular canal system, which mainly serves to mediate proprioceptive information, to the platform on which the subjects were standing. We highlighted the process of acquiring an accurate sensory and anatomical reference frame for functional movement. We asked children and adolescents to maintain a vertical stance while slow sinusoidal oscillations in the frontal plane were applied to the support at 0.01 Hz (below the detection threshold of the semicircular canal system) and at 0.06 Hz (above the detection threshold of the semicircular canal system) with their eyes either open or closed. This developmental study provided evidence that there are mild differences in the quality of sensory integration relative to postural control in children and adolescents. The results reported here confirmed the predominance of vision and the gradual mastery of somatosensory integration in postural control during a large period of ontogenesis including childhood and adolescence. The youngest as well as the oldest subjects adopted similar qualitative damping and segmental stabilization strategies that gradually improved with age without reaching an adult''s level. Lastly, sensory reweighting for postural strategies as assessed by very slow support oscillations presents a linear development without any qualitative turning point between childhood and adolescence.  相似文献   

6.
We simultaneously perturbed visual, vestibular and proprioceptive modalities to understand how sensory feedback is re-weighted so that overall feedback remains suited to stabilizing upright stance. Ten healthy young subjects received an 80 Hz vibratory stimulus to their bilateral Achilles tendons (stimulus turns on-off at 0.28 Hz), a ±1 mA binaural monopolar galvanic vestibular stimulus at 0.36 Hz, and a visual stimulus at 0.2 Hz during standing. The visual stimulus was presented at different amplitudes (0.2, 0.8 deg rotation about ankle axis) to measure: the change in gain (weighting) to vision, an intramodal effect; and a change in gain to vibration and galvanic vestibular stimulation, both intermodal effects. The results showed a clear intramodal visual effect, indicating a de-emphasis on vision when the amplitude of visual stimulus increased. At the same time, an intermodal visual-proprioceptive reweighting effect was observed with the addition of vibration, which is thought to change proprioceptive inputs at the ankles, forcing the nervous system to rely more on vision and vestibular modalities. Similar intermodal effects for visual-vestibular reweighting were observed, suggesting that vestibular information is not a “fixed” reference, but is dynamically adjusted in the sensor fusion process. This is the first time, to our knowledge, that the interplay between the three primary modalities for postural control has been clearly delineated, illustrating a central process that fuses these modalities for accurate estimates of self-motion.  相似文献   

7.
The mechanics of substrate adhesion has recently been intensively studied in insects but less is known about the sensorimotor control of substrate engagement. We characterized the responses and motor effects of tarsal campaniform sensilla in stick insects to understand how sensory signals of force could contribute to substrate grip. The tarsi consist of a chain of segments linked by highly flexible articulations. Morphological studies showed that one to four campaniform sensilla are located on the distal end of each segment. Activities of the receptors were recorded neurographically and sensilla were identified by stimulation and ablation of their cuticular caps. Responses were characterized to bending forces and axial loads, muscle contractions and to forces applied to the retractor apodeme (tendon). The tarsal sensilla effectively encoded both the rate and amplitude of loads and muscle forces, but only when movement was resisted. Mechanical stimulation of the receptors produced activation of motor neurons in the retractor unguis and tibial flexor muscles. These findings indicate that campaniform sensilla can provide information about the effectiveness of the leg muscles in generating substrate adherence. They can also produce positive force feedback that could contribute to the development of substrate grip and stabilization of the tarsal chain.  相似文献   

8.

Background

The shape of the torso in patients with idiopathic scoliosis is considered to reflect the shape of the vertebral column, however the direct correlation between parameters describing clinical deformity and those characterizing radiological curvature was reported to be weak. It is not clear if the management proposed for scoliosis (physiotherapy, brace, surgery) affects equally the shape of the axial skeleton and the surface of the body. The aim of the study was to compare clinical deformity of (1) idiopathic scoliosis girls being under brace treatment for radiological curves of 25 to 40 degrees and (2) non treated scoliotic girls matched for age and Cobb angle.

Methods

Cross-sectional study of 24 girls wearing the brace versus 26 girls without brace treatment, matched for age and Cobb angle. Hypothesis: Patients wearing the brace for more than 6 months, when comparing to patients without brace, may present different external morphology of the trunk, in spite of having similar Cobb angle. Material. Inclusion criteria: girls, idiopathic scoliosis, growing age (10–16 years), Cobb angle minimum 25°, maximum 40°. The braced group consisted of girls wearing a TLSO brace (Cheneau) for more than 6 months with minimum of 16 hours per day. The non-braced group consisted of girls first seen for their spinal deformity, previously not treated. The groups presented similar curve pattern. Methods. Scoliometer exam: angle of trunk rotation at three levels of the spine: upper thoracic, main thoracic, lumbar or thoracolumbar. The maximal angle was noted at each level and the sum of three levels was calculated. Posterior trunk symmetry index (POTSI) and Hump Sum were measured using surface topography.

Results

Cobb angle was 34.9° ± 4.8° in braced and 32.7° ± 4.9° in un-braced patients (difference not significant). The age was 14.1 ± 1.6 years in braced patients and 13.1 ± 1.9 years in un-braced group (p = 0.046). The value of angle of trunk rotation in the main curvature was 8.4° ± 2.7°in braced and 11.4° ± 2.7° in un-braced patients (difference extremely significant, p = 0.0003). The value of the sum of angles of trunk rotation at three levels of the trunk was 12.8° ± 4.6° in braced and 16.5° ± 3.8° in un-braced patients (difference very significant, p = 0.0038). The POTSI did not differ significantly between the groups (p = 0.78), the Hump Sum values were not quite different (p = 0.07).

Conclusion

(1) Adolescent girls wearing the brace for idiopathic scoliosis of 25 to 40 degrees of Cobb angle, reveal smaller clinical rotational deformity of their back than non-treated girls having similar radiological deformity. (2) evaluation of the results of treatment for idiopathic scoliosis should consider parameters describing both clinical and radiological deformity.  相似文献   

9.
Most conventional robots rely on controlling the location of the center of pressure to maintain balance, relying mainly on foot pressure sensors for information. By contrast, humans rely on sensory data from multiple sources, including proprioceptive, visual, and vestibular sources. Several models have been developed to explain how humans reconcile information from disparate sources to form a stable sense of balance. These models may be useful for developing robots that are able to maintain dynamic balance more readily using multiple sensory sources. Since these information sources may conflict, reliance by the nervous system on any one channel can lead to ambiguity in the system state. In humans, experiments that create conflicts between different sensory channels by moving the visual field or the support surface indicate that sensory information is adaptively reweighted. Unreliable information is rapidly down-weighted, then gradually up-weighted when it becomes valid again. Human balance can also be studied by building robots that model features of human bodies and testing them under similar experimental conditions. We implement a sensory reweighting model based on an adaptive Kalman filter in a bipedal robot, and subject it to sensory tests similar to those used on human subjects. Unlike other implementations of sensory reweighting in robots, our implementation includes vision, by using optic flow to calculate forward rotation using a camera (visual modality), as well as a three-axis gyro to represent the vestibular system (non-visual modality), and foot pressure sensors (proprioceptive modality). Our model estimates measurement noise in real time, which is then used to recompute the Kalman gain on each iteration, improving the ability of the robot to dynamically balance. We observe that we can duplicate many important features of postural sway in humans, including automatic sensory reweighting, effects, constant phase with respect to amplitude, and a temporal asymmetry in the reweighting gains.  相似文献   

10.

Background

Age at menarche is considered a reliable prognostic factor for idiopathic scoliosis and varies in different geographic latitudes. Adolescent idiopathic scoliosis prevalence has also been reported to be different in various latitudes and demonstrates higher values in northern countries. A study on epidemiological reports from the literature was conducted to investigate a possible association between prevalence of adolescent idiopathic scoliosis and age at menarche among normal girls in various geographic latitudes. An attempt is also made to implicate a possible role of melatonin in the above association.

Material-methods

20 peer-reviewed published papers reporting adolescent idiopathic scoliosis prevalence and 33 peer-reviewed papers reporting age at menarche in normal girls from most geographic areas of the northern hemisphere were retrieved from the literature. The geographic latitude of each centre where a particular study was originated was documented. The statistical analysis included regression of the adolescent idiopathic scoliosis prevalence and age at menarche by latitude.

Results

The regression of prevalence of adolescent idiopathic scoliosis and age at menarche by latitude is statistically significant (p < 0.001) and are following a parallel declining course of their regression curves, especially in latitudes northern than 25 degrees.

Conclusion

Late age at menarche is parallel with higher prevalence of adolescent idiopathic scoliosis. Pubarche appears later in girls that live in northern latitudes and thus prolongs the period of spine vulnerability while other pre-existing or aetiological factors are contributing to the development of adolescent idiopathic scoliosis. A possible role of geography in the pathogenesis of idiopathic scoliosis is discussed, as it appears that latitude which differentiates the sunlight influences melatonin secretion and modifies age at menarche, which is associated to the prevalence of idiopathic scoliosis.  相似文献   

11.
Vestibular mechanisms involved in idiopathic scoliosis   总被引:2,自引:0,他引:2  
Patients affected by idiopathic scoliosis (IS) show not only a spinal deformity, but also postural and oculomotor deficits suggesting that such syndrome can be related to a vestibular disfunction. It appears, however, that, in children, a slight unbalance in the activity of vestibular complex of both sides escapes the neuronal mechanisms responsible for vestibular compensation and leads to the spinal curvature which characterises IS. Such process could be reinforced by a disrupted integration of vestibular and visual signals at cortical level, leading to an altered perception of the vertical and to abnormal motor commands. In addition to the classical ascending and descending pathways arising from the vestibular nuclei, which utilize glutamate or GABA as neurotransmitters, labyrinthine afferents may also affect spinal, cerebellar and cerebrocortical structures, through the noradrenergic and serotoninergic systems, which originate from the locus coeruleus and the raphe nuclei, respectively. Due to the role of these neuromodulators in brain plasticity, a disruption in the activity of monoaminergic neurons could favour the development of postural and oculomotor deficits. An impaired release of monoamine at cerebrocortical level could also explain the cognitive deficits which may occur in IS patients.  相似文献   

12.
Zhuang Q  Li J  Wu Z  Zhang J  Sun W  Li T  Yan Y  Jiang Y  Zhao RC  Qiu G 《PloS one》2011,6(4):e18834
Adolescent idiopathic scoliosis (AIS) is a complex three-dimensional deformity of the spine. The cause and pathogenesis of scoliosis and the accompanying generalized osteopenia remain unclear despite decades of extensive research. In this study, we utilized two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry (MS) to analyze the differential proteome of bone marrow mesenchymal stem cells (BM-MSCs) from AIS patients. In total, 41 significantly altered protein spots were detected, of which 34 spots were identified by MALDI-TOF/TOF analysis and found to represent 25 distinct gene products. Among these proteins, five related to bone growth and development, including pyruvate kinase M2, annexin A2, heat shock 27 kDa protein, γ-actin, and β-actin, were found to be dysregulated and therefore selected for further validation by Western blot analysis. At the protein level, our results supported the previous hypothesis that decreased osteogenic differentiation ability of MSCs is one of the mechanisms leading to osteopenia in AIS. In summary, we analyzed the differential BM-MSCs proteome of AIS patients for the first time, which may help to elucidate the underlying molecular mechanisms of bone loss in AIS and also increase understanding of the etiology and pathogenesis of AIS.  相似文献   

13.
ABSTRACT : Adolescent idiopathic scoliosis is a lifetime, probably systemic condition of unknown cause, resulting in a spinal curve or curves of ten degrees or more in about 2.5% of most populations. However, in only about 0.25% does the curve progress to the point that treatment is warranted.Untreated, adolescent idiopathic scoliosis does not increase mortality rate, even though on rare occasions it can progress to the >100 degrees range and cause premature death. The rate of shortness of breath is not increased, although patients with 50 degrees curves at maturity or 80 degrees curves during adulthood are at increased risk of developing shortness of breath. Compared to non-scoliotic controls, most patients with untreated adolescent idiopathic scoliosis function at or near normal levels. They do have increased pain prevalence and may or may not have increased pain severity. Self-image is often decreased. Mental health is usually not affected. Social function, including marriage and childbearing may be affected, but only at the threshold of relatively larger curves.Non-operative treatment consists of bracing for curves of 25 degrees to 35 degrees or 40 degrees in patients with one to two years or more of growth remaining. Curve progression of >/= 6 degrees is 20 to 40% more likely with observation than with bracing. Operative treatment consists of instrumentation and arthrodesis to realign and stabilize the most affected portion of the spine. Lasting curve improvement of approximately 40% is usually achieved.In the most completely studied series to date, at 20 to 28 years follow-up both braced and operated patients had similar, significant, and clinically meaningful reduced function and increased pain compared to non-scoliotic controls. However, their function and pain scores were much closer to normal than patient groups with other, more serious conditions.Risks associated with treatment include temporary decrease in self-image in braced patients. Operated patients face the usual risks of major surgery, a 6 to 29% chance of requiring re-operation, and the remote possibility of developing a pain management problem.Knowledge of adolescent idiopathic scoliosis natural history and long-term treatment effects is and will always remain somewhat incomplete. However, enough is know to provide patients and parents the information needed to make informed decisions about management options.  相似文献   

14.

Background Context

Research employing gait measurements indicate asymmetries in ground reaction forces and suggest relationships between these asymmetries, neurological dysfunction and spinal deformity. Although, studies have documented the use of centre of pressure (CoP) and net joint moments in gait assessment and have assessed centre of mass (CoM)-CoP distance relationships in clinical conditions, there is a paucity of information relating to the moments about CoM. It is commonly considered that CoM is situated around S2 vertebra in normal upright posture and hence this study uses S2 vertebral prominence as reference point relative to CoM.

Purpose

To assess and establish asymmetry in the CoP pattern and moments about S2 vertebral prominence during level walking and its relationship to spinal deformity in adolescents with scoliosis.

Patient sample

Nine Adolescent Idiopathic Scoliosis subjects (8 females and 1 male with varying curve magnitudes and laterality) scheduled for surgery within 2–3 days after data collection, took part in this study.

Outcome measures

Kinetic and Kinematic Gait assessment was performed with an aim to estimate the CoP displacement and the moments generated by the ground reaction force about the S2 vertebral prominence during left and right stance during normal walking.

Methods

The study employed a strain gauge force platform to estimate the medio-lateral and anterior-posterior displacement of COP and a six camera motion analysis system to track the reflective markers to assess the kinematics. The data were recorded simultaneously.

Results

Results indicate wide variations in the medio lateral direction CoP, which could be related to the laterality of both the main and compensation curves. This variation is not evident in the anterior-posterior direction. Similar results were recorded for moments about S2 vertebral prominence. Subjects with higher left compensation curve had greater displacement to the left.

Conclusion

Although further longitudinal studies are needed, results indicate that the variables identified in this study are applicable to initial screening and surgical evaluation of scoliosis.  相似文献   

15.
To determine how the vestibular sense controls balance, we used instantaneous head angular velocity to drive a galvanic vestibular stimulus so that afference would signal that head movement was faster or slower than actual. In effect, this changed vestibular afferent gain. This increased sway 4-fold when subjects (N = 8) stood without vision. However, after a 240 s conditioning period with stable balance achieved through reliable visual or somatosensory cues, sway returned to normal. An equivalent galvanic stimulus unrelated to sway (not driven by head motion) was equally destabilising but in this situation the conditioning period of stable balance did not reduce sway. Reflex muscle responses evoked by an independent, higher bandwidth vestibular stimulus were initially reduced in amplitude by the galvanic stimulus but returned to normal levels after the conditioning period, contrary to predictions that they would decrease after adaptation to increased sensory gain and increase after adaptation to decreased sensory gain. We conclude that an erroneous vestibular signal of head motion during standing has profound effects on balance control. If it is unrelated to current head motion, the CNS has no immediate mechanism of ignoring the vestibular signal to reduce its influence on destabilising balance. This result is inconsistent with sensory reweighting based on disturbances. The increase in sway with increased sensory gain is also inconsistent with a simple feedback model of vestibular reflex action. Thus, we propose that recalibration of a forward sensory model best explains the reinterpretation of an altered reafferent signal of head motion during stable balance.  相似文献   

16.
When navigating through the environment, our brain needs to infer how far we move and in which direction we are heading. In this estimation process, the brain may rely on multiple sensory modalities, including the visual and vestibular systems. Previous research has mainly focused on heading estimation, showing that sensory cues are combined by weighting them in proportion to their reliability, consistent with statistically optimal integration. But while heading estimation could improve with the ongoing motion, due to the constant flow of information, the estimate of how far we move requires the integration of sensory information across the whole displacement. In this study, we investigate whether the brain optimally combines visual and vestibular information during a displacement estimation task, even if their reliability varies from trial to trial. Participants were seated on a linear sled, immersed in a stereoscopic virtual reality environment. They were subjected to a passive linear motion involving visual and vestibular cues with different levels of visual coherence to change relative cue reliability and with cue discrepancies to test relative cue weighting. Participants performed a two-interval two-alternative forced-choice task, indicating which of two sequentially perceived displacements was larger. Our results show that humans adapt their weighting of visual and vestibular information from trial to trial in proportion to their reliability. These results provide evidence that humans optimally integrate visual and vestibular information in order to estimate their body displacement.  相似文献   

17.
Adolescent idiopathic scoliosis (AIS) is a three-dimensional spinal deformity occurring between ages of 10–18 years. We aimed to present a reasoned synthesis of the published evidence for and against asymmetrical paraspinal muscle activation in AIS. PubMed and Embase databases were searched using terms: adolescent idiopathic scoliosis AND electromyogra* (EMG). Identified studies (n = 94) were screened for eligibility. We identified 16 studies, from which 136 EMG outcome measures contributed to the review.For EMG onset, one of two studies provided evidence of earlier muscle activation on the convex compared to concave side of the spine, particularly in those with progressive AIS. For EMG amplitude, 43 outcome measures provided evidence of convex > concave activation, 85 outcomes supported no difference between sides, and 8 outcomes supported concave > convex activation. Greater activity on the convex than concave side was more commonly demonstrated at the scoliosis curve apex level, in people with single right thoracic [progressive] curves, during postural tasks.Further research is needed to determine the relationships between muscle activity asymmetry and spinal curve parameters in a variety of motor tasks. Recommendations are provided to improve methodological quality for future studies of spinal neuromuscular function in AIS, as well as more comprehensive and transparent reporting of methods and results.  相似文献   

18.
Adolescent idiopathic scoliosis (AIS) is the most common form of scoliosis and usually affects young girls. Studies mostly describe the differences between scoliotic and non-scoliotic girls and focus primarily on a single set of parameters derived from spinal and pelvis morphology, posture or standing imbalance. No study addressed all these three biomechanical aspects simultaneously in pre-braced AIS girls of different scoliosis severity but with similar curve type and their interaction with scoliosis progression. The first objective of this study was to test if there are differences in these parameters between pre-braced AIS girls with a right thoracic scoliosis of moderate (less than 27°) and severe (more than 27°) deformity. The second objective was to identify which of these parameters are related to the Cobb angle progression either individually or in combination of thereof. Forty-five scoliotic girls, randomly selected by an orthopedic surgeon from the hospital scoliosis clinic, participated in this study. Parameters related to pelvis morphology, pelvis orientation, trunk posture and quiet standing balance were measured. Generally moderate pre-brace idiopathic scoliosis patients displayed lower values than the severe group characterized by a Cobb angle greater than 27°. Only pelvis morphology and trunk posture were statistically different between the groups while pelvis orientation and standing imbalance were similar in both groups. Statistically significant Pearson coefficients of correlation between individual parameters and Cobb angle ranged between 0.32 and 0.53. Collectively trunk posture, pelvis morphology and standing balance parameters are correlated with Cobb angle at 0.82. The results suggest that spinal deformity progression is not only a question of trunk morphology distortion by itself but is also related to pelvis asymmetrical bone growth and standing neuromuscular imbalance.  相似文献   

19.
Central processing of inertial sensory information about head attitude and motion in space is crucial for motor control. Vestibular signals are coded relative to a non-inertial system, the head, that is virtually continuously in motion. Evidence for transformation of vestibular signals from head-fixed sensory coordinates to gravity-centered coordinates have been provided by studies of the vestibulo-ocular reflex. The underlying central processing depends on otolith afferent information that needs to be resolved in terms of head translation related inertial forces and head attitude dependent pull of gravity. Theoretical solutions have been suggested, but experimental evidence is still scarce. It appears, along these lines, that gaze control systems are intimately linked to motor control of head attitude and posture.  相似文献   

20.
A biomechanical analog of curve progression and orthotic stabilization in idiopathic scoliosis has been developed using the classical theory of curved beam-columns. The interaction of the spinal musculature and other supporting structures is incorporated in the model using an equivalent flexural rigidity. The stability of a given scoliotic curve relative to a normal spine is described in terms of the so-called critical load ratio (Pc/Pe). This dimensionless quantity appears in the exact solution of the governing differential equation and boundary conditions. It is defined as the ratio of the load bearing capacity of a scoliotic spine (Pc) to that of a normal spine where the load bearing capacity of a normal spine is defined as Euler's buckling load (Pe). The computation of Pc/Pe is based upon a maximum allowable moment criterion. This model is used to study the effect of the degree of initial curvature and curve pattern in the frontal plane on the stability of untreated idiopathic scoliosis. Although restricted to two-dimensions, the model appears to demonstrate the synergistic effects of end support, transverse loading, and curve correction on improvement in relative stability of an orthotically supported scoliotic curve. The results of this study are in qualitative agreement with clinical findings that are based on long-term studies of natural history of idiopathic scoliosis and of patients undergoing orthotic management for scoliosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号