首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Microbial infection during various stages of human development produces widely different clinical outcomes, yet the links between age-related changes in the immune compartment and functional immunity remain unclear. The ability of the immune system to respond to specific antigens and mediate protection in early life is closely correlated with the level of diversification of lymphocyte antigen receptors. We have previously shown that the neonatal primary CD8+ T cell response to replication competent virus is significantly constricted compared to the adult response. In the present study, we have analyzed the subsequent formation of neonatal memory CD8+ T cells and their response to secondary infectious challenge. In particular, we asked whether the less diverse CD8+ T cell clonotypes that are elicited by neonatal vaccination with replication competent virus are ‘locked-in’ to the adult memory T cell, and thus may compromise the strength of adult immunity. Here we report that neonatal memory CD8+ T cells mediate poor recall responses compared to adults and are comprised of a repertoire of lower avidity T cells. During a later infectious challenge the neonatal memory CD8+ T cells compete poorly with the fully diverse repertoire of naïve adult CD8+ T cells and are outgrown by the adult primary response. This has important implications for the timing of vaccination in early life.  相似文献   

3.
Th cell programming and function is tightly regulated by complex biological networks to prevent excessive inflammatory responses and autoimmune disease. The importance of microRNAs (miRNAs) in this process is highlighted by the preferential Th1 polarization of Dicer-deficient T cells that lack miRNAs. Using genetic knockouts, we demonstrate that loss of endogenous miR-29, derived from the miR-29ab1 genomic cluster, results in unrestrained T-bet expression and IFN-γ production. miR-29b regulates T-bet and IFN-γ via a direct interaction with the 3' untranslated regions, and IFN-γ itself enhances miR-29b expression, establishing a novel regulatory feedback loop. miR-29b is increased in memory CD4(+) T cells from multiple sclerosis (MS) patients, which may reflect chronic Th1 inflammation. However, miR-29b levels decrease significantly upon T cell activation in MS patients, suggesting that this feedback loop is dysregulated in MS patients and may contribute to chronic inflammation. miR-29 thus serves as a novel regulator of Th1 differentiation, adding to the understanding of T cell-intrinsic regulatory mechanisms that maintain a balance between protective immunity and autoimmunity.  相似文献   

4.
The vast majority of Mycobacterium tuberculosis (M. tuberculosis) infected individuals are protected from developing tuberculosis and T cells are centrally involved in this process. MicroRNAs (miRNA) regulate T-cell functions and are biomarker candidates of disease susceptibility and treatment efficacy in M. tuberculosis infection. We determined the expression profile of 29 selected miRNAs in CD4+ T cells from tuberculosis patients and contacts with latent M. tuberculosis infection (LTBI). These analyses showed lower expression of miR-21, miR-26a, miR-29a, and miR-142-3p in CD4+ T cells from tuberculosis patients. Whole blood miRNA candidate analyses verified decreased expression of miR-26a, miR-29a, and miR-142-3p in children with tuberculosis as compared to healthy children with LTBI. Despite marked variances between individual donor samples, trends of increased miRNA candidate expression during treatment and recovery were observed. Functional in vitro analysis identified increased miR-21 and decreased miR-26a expression after re-stimulation of T cells. In vitro polarized Interleukin-17 positive T-cell clones showed activation-dependent miR-29a up-regulation. In order to characterize the role of miR-29a (a described suppressor of Interferon-γ in tuberculosis), we analyzed M. tuberculosis specific Interferon-γ expressing T cells in children with tuberculosis and healthy contacts but detected no correlation between miR-29a and Interferon-γ expression. Suppression of miR-29a in primary human T cells by antagomirs indicated no effect on Interferon-γ expression after in vitro activation. Finally, classification of miRNA targets revealed only a moderate overlap between the candidates. This may reflect differential roles of miR-21, miR-26a, miR-29a, and miR-142-3p in T-cell immunity against M. tuberculosis infection and disease.  相似文献   

5.
Although our knowledge about Brucella virulence factors and the host response increase rapidly, the mechanisms of immune evasion by the pathogen and causes of chronic disease are still unknown. Here, we aimed to investigate the immunological factors which belong to CD8+ T cells and their roles in the transition of brucellosis from acute to chronic infection. Using miRNA microarray, more than 2000 miRNAs were screened in CD8+ T cells of patients with acute or chronic brucellosis and healthy controls that were sorted from peripheral blood with flow cytometry and validated through qRT-PCR. Findings were evaluated using GeneSpring GX (Agilent) 13.0 software and KEGG pathway analysis. Expression of two miRNAs were determined to display a significant fold change in chronic group when compared with acute or control groups. Both miRNAs (miR-126-5p and miR-4753-3p) were decreased (p <0.05 or fold change > 2). These miRNAs have the potential to be the regulators of CD8+ T cell-related marker genes for chronic brucellosis infections. The differentially expressed miRNAs and their predicted target genes are involved in MAPK signaling pathway, cytokine-cytokine receptor interactions, endocytosis, regulation of actin cytoskeleton, and focal adhesion indicating their potential roles in chronic brucellosis and its progression. It is the first study of miRNA expression analysis of human CD8+ T cells to clarify the mechanism of inveteracy in brucellosis.  相似文献   

6.
MicroRNAs are key regulators of the immune response, but their role in CD8 T cell differentiation in vivo is not known. We show that miR-155 is important in both effector and memory antiviral CD8 T cell responses. Without miR-155, there was a weaker effector response and a skewing toward memory precursor cells. At the memory stage, miR-155-deficient CD8 T cells preferentially differentiated into central memory cells and were capable of mounting a potent secondary response.  相似文献   

7.
Helper T cells from a mutant mouse model, LAT Y136F, hyper-proliferate and cause a severe lymphoproliferative disease that kills the mice by six months of age. LAT Y136F mice carry a tyrosine to phenylalanine mutation in the Linker for Activation of T cells (LAT) gene. This mutation leads to a number of changes in T cells that result in altered cytokine production including increased IL-4 production, increased proliferation, and decreased apoptosis. Hyper-proliferation of the mutant T cells contributes to lymphadenopathy, splenomegaly, and multi-organ T cell infiltration. miRNAs are short non-coding RNAs that regulate expression of cohorts of genes. This study investigates which miRNAs are expressed in LAT Y136F T cells and compares these to miRNAs expressed in wild type T cells that are undergoing proliferation in two other settings. The first setting is homeostatic proliferation, which was modeled by adoptive transfer of wild type T cells into T cell-deficient mice. The second setting is proliferation in response to infection, which was modeled by infection of wild type mice with the nematode H. polygyrus. By comparing miRNA expression in these three proliferative states (LAT Y136F hyper-proliferation, homeostatic proliferation and proliferation in response to H. polygyrus infection) to expression in wild type naïve CD4+ T cells, we found miRNAs that were highly regulated in all three proliferative states (miR-21 and miR-146a) and some that were more specific to individual settings of proliferation such as those more specific for LAT Y136F lymphoproliferative disease (miR-669f, miR-155 and miR-466a/b). Future experiments that modulate levels of the miRNAs identified in this study may reveal the roles of these miRNAs in T cell proliferation and/or lymphoproliferative disease.  相似文献   

8.
microRNAs have recently emerged as master regulators of gene expression during development and cell differentiation. Although profound changes in gene expression also occur during antigen-induced T cell differentiation, the role of miRNAs in the process is not known. We compared the miRNA expression profiles between antigen-specific na?ve, effector and memory CD8+ T cells using 3 different methods--small RNA cloning, miRNA microarray analysis and real-time PCR. Although many miRNAs were expressed in all the T cell subsets, the frequency of 7 miRNAs (miR-16, miR-21, miR-142-3p, miR-142-5p, miR-150, miR-15b and let-7f) alone accounted for approximately 60% of all miRNAs, and their expression was several fold higher than the other expressed miRNAs. Global downregulation of miRNAs (including 6/7 dominantly expressed miRNAs) was observed in effector T cells compared to na?ve cells and the miRNA expression levels tended to come back up in memory T cells. However, a few miRNAs, notably miR-21 were higher in effector and memory T cells compared to na?ve T cells. These results suggest that concomitant with profound changes in gene expression, miRNA profile also changes dynamically during T cell differentiation. Sequence analysis of the cloned mature miRNAs revealed an extensive degree of end polymorphism. While 3'end polymorphisms dominated, heterogeneity at both ends, resembling drosha/dicer processing shift was also seen in miR-142, suggesting a possible novel mechanism to generate new miRNA and/or to diversify miRNA target selection. Overall, our results suggest that dynamic changes in the expression of miRNAs may be important for the regulation of gene expression during antigen-induced T cell differentiation. Our study also suggests possible novel mechanisms for miRNA biogenesis and function.  相似文献   

9.
MicroRNAs (miRNAs) have emerged as important players in the regulation of T-cell functionality. However, comprehensive insight into the extent of age-related miRNA changes in T cells is lacking. We established miRNA expression patterns of CD45RO- naïve and CD45RO+ memory T-cell subsets isolated from peripheral blood cells from young and elderly individuals. Unsupervised clustering of the miRNA expression data revealed an age-related clustering in the CD45RO- T cells, while CD45RO+ T cells clustered based on expression of CD4 and CD8. Seventeen miRNAs showed an at least 2-fold up- or downregulation in CD45RO- T cells obtained from young as compared to old donors. Validation on the same and independent samples revealed a statistically significant age-related upregulation of miR-21, miR-223 and miR-15a. In a T-cell subset analysis focusing on known age-related phenotypic changes, we showed significantly higher miR-21 and miR-223 levels in CD8+CD45RO-CCR7- TEMRA compared to CD45RO-CCR7+ TNAIVE-cells. Moreover, miR-21 but not miR-223 levels were significantly increased in CD45RO-CD31- post-thymic TNAIVE cells as compared to thymic CD45RO-CD31+ TNAIVE cells. Upon activation of CD45RO- TNAIVE cells we observed a significant induction of miR-21 especially in CD4+ T cells, while miR-223 levels significantly decreased only in CD4+ T cells. Besides composition and activation-induced changes, we showed a borderline significant increase in miR-21 levels upon an increasing number of population doublings in CD4+ T-cell clones. Together, our results show that ageing related changes in miRNA expression are dominant in the CD45RO- T-cell compartment. The differential expression patterns can be explained by age related changes in T-cell composition, i.e. accumulation of CD8+ TEMRA and CD4+ post-thymic expanded CD31- T cells and by cellular ageing, as demonstrated in a longitudinal clonal culture model.  相似文献   

10.

Background

CD8+ T cells have been shown to play a crucial role in Trypanosoma cruzi infection. Memory CD8+ T cells can be categorised based on their distinct differentiation stages and functional activities as follows: stem cell memory (TSCM), central memory (TCM), transitional memory (TTM), effector memory (TEM) and terminal effector (TTE) cells. Currently, the immune mechanisms that control T. cruzi in the chronic phase of the infection are unknown.

Methodology/Principal Findings

To characterise the CD8+ T cell subsets that could be participating in the control of T. cruzi infection, in this study, we compared total and T. cruzi-specific circulating CD8+ T cells with distinctive phenotypic and functional features in chronic chagasic patients (CCPs) with different degrees of cardiac dysfunction. We observed a decreased frequency of total TSCM along with an increased frequency of TTE in CCPs with severe disease. Antigen-specific TSCM cells were not detectable in CCPs with severe forms of the disease. A functional profile of CD8+ T cell subsets among CCPs revealed a high frequency of monofunctional CD8+ T cells in the most severe patients with IFN-γ+- or TNF-α+-producing cells.

Conclusions/Significance

These findings suggest that CD8+ TSCM cells may be associated with the immune response to T. cruzi and outcome of Chagas disease, given that these cells may be involved in repopulating the T cell pool that controls infection.  相似文献   

11.
12.

Background

In humans and mice naturally occurring CD4+CD25+ regulatory T cells (nTregs) are a thymus-derived subset of T cells, crucial for the maintenance of peripheral tolerance by controlling not only potentially autoreactive T cells but virtually all cells of the adaptive and innate immune system. Recent work using Dicer-deficient mice irrevocably demonstrated the importance of miRNAs for nTreg cell-mediated tolerance.

Principal Findings

DNA-Microarray analyses of human as well as murine conventional CD4+ Th cells and nTregs revealed a strong up-regulation of mature miR-155 (microRNA-155) upon activation in both populations. Studying miR-155 expression in FoxP3-deficient scurfy mice and performing FoxP3 ChIP-Seq experiments using activated human T lymphocytes, we show that the expression and maturation of miR-155 seem to be not necessarily regulated by FoxP3. In order to address the functional relevance of elevated miR-155 levels, we transfected miR-155 inhibitors or mature miR-155 RNAs into freshly-isolated human and mouse primary CD4+ Th cells and nTregs and investigated the resulting phenotype in nTreg suppression assays. Whereas miR-155 inhibition in conventional CD4+ Th cells strengthened nTreg cell-mediated suppression, overexpression of mature miR-155 rendered these cells unresponsive to nTreg cell-mediated suppression.

Conclusion

Investigation of FoxP3 downstream targets, certainly of bound and regulated miRNAs revealed the associated function between the master regulator FoxP3 and miRNAs as regulators itself. miR-155 is shown to be crucially involved in nTreg cell mediated tolerance by regulating the susceptibility of conventional human as well as murine CD4+ Th cells to nTreg cell-mediated suppression.  相似文献   

13.
CD103+ and CD11b+ populations of CD11c+MHCIIhi murine dendritic cells (DCs) have been shown to carry antigens from the lung through the afferent lymphatics to mediastinal lymph nodes (MLN). We compared the responses of these two DC populations in neonatal and adult mice following intranasal infection with respiratory syncytial virus. The response in neonates was dominated by functionally-limited CD103+ DCs, while CD11b+ DCs were diminished in both number and function compared to adults. Infecting mice at intervals through the first three weeks of life revealed an evolution in DC phenotype and function during early life. Using TCR transgenic T cells with two different specificities to measure the ability of CD103+ DC to induce epitope-specific CD8+ T cell responses, we found that neonatal CD103+ DCs stimulate proliferation in a pattern distinct from adult CD103+ DCs. Blocking CD28-mediated costimulatory signals during adult infection demonstrated that signals from this costimulatory pathway influence the hierarchy of the CD8+ T cell response to RSV, suggesting that limited costimulation provided by neonatal CD103+ DCs is one mechanism whereby neonates generate a distinct CD8+ T cell response from that of adults.  相似文献   

14.
The canonical Wnt signaling pathway is a master cell regulator involved in CD8+ T cell proliferation and differentiation. In human CD8+ T cells, this pathway induces differentiation into memory cells or a “stem cell memory like” population, which is preferentially present in cord blood. To better understand the role of canonical Wnt signals in neonatal or adult blood, we compared the proteins associated with β-catenin, in nonstimulated and Wnt3a-stimulated human neonatal and adult naive CD8+ T cells. Differentially recruited proteins established different complexes in adult and neonatal cells. In the former, β-catenin-associated proteins were linked to cell signaling and immunological functions, whereas those of neonates were linked to proliferation and metabolism. Wnt3a stimulation led to the recruitment and overexpression of Wnt11 in adult cells and Wnt5a in neonatal cells, suggesting a differential connexion with planar polarity and Wnt/Ca2+ noncanonical pathways, respectively. The chromatin immunoprecipitation polymerase chain reaction β-catenin was recruited to a higher level on the promoters of cell renewal genes in neonatal cells and of differentiation genes in those of adults. We found a preferential association of β-catenin with CBP in neonatal cells and with p300 in the adult samples, which could be involved in a higher self-renewal capacity of the neonatal cells and memory commitment in those of adults. Altogether, our results show that different proteins associated with β-catenin during Wnt3a activation mediate a differential response of neonatal and adult human CD8+ T cells.  相似文献   

15.
The goal of infant immunization against viral infection is to develop protective long term memory responses. Priming neonatal mice with a low dose of Cas-Br-E murine leukemia virus (Cas) results in adult-like, type 1 protective responses. However, other studies suggest that Ag priming of neonates leads to an increase in type 2 secondary responses even when primary responses were type 1. We assessed whether type 1 CD8+ T cell-mediated responses developed in murine neonates are maintained after secondary challenge with Cas in adulthood. Despite the induction of significant anti-viral CD8+-mediated cytotoxic T lymphocyte and IFN-gamma responses, initial neonatal priming led to a lower frequency of virus-specific T cells compared with adult priming. Adult frequencies were reached in mice primed as neonates only after secondary challenge in adulthood. A nonspecific and transient CD4+-mediated IL-4 response was present in all groups after secondary challenge with Cas or medium, indicating that this rise in type 2 cytokine production was not unique to mice that had been primed as neonates. Rather, type 1 anti-viral memory CD8+ T cell responses developed in neonatal mice are stable, protective, and enhanced after secondary challenge.  相似文献   

16.
Three major subsets of Ag-experienced CD8+ T cells have been identified according to their expression of CD62L and CD127. These markers are associated with central memory T cells (CD62L+ CD127+), effector memory T cells (CD162L- CD127+), and effector T cells (CD62L- CD127-). In this study we characterized the development of these three populations during acute and chronic viral infections and after immunization with virus-like particles and determined their lineage relation and functional and protective properties. We found that the balance between the three subsets was critically regulated by the availability of Ag and time. After initial down-regulation of CD127, the responding CD8+ T cell population down-regulated CD62L and re-expressed CD127. Dependent on Ag availability, the cells then further differentiated into CD62L- CD127- effector cells or, in the absence of Ag, re-expressed CD62L to become central memory T cells. Although all three populations efficiently produced effector cytokines such as IFN-gamma, CD62L- CD127- effector cells exhibited the highest ex vivo lytic potential. In contrast, CD62L+ CD127+ central memory T cells most efficiently produced IL-2 and proliferated extensively in vitro and in vivo upon antigenic restimulation. Strikingly, only effector and effector memory, but not central memory, T cells were able to protect against peripheral infection with vaccinia virus, whereas central memory T cells were most potent at protecting against systemic infection with lymphocytic choriomeningitis virus, indicating that the antiviral protective capacities of specific CD8+ T cell subsets are closely related to the nature of the challenging pathogen.  相似文献   

17.
18.
Recent thymic emigrants (RTE) are an important subpopulation of naive CD8+ T cells because of their ability to reconstitute a diverse immune system after periods of T cell depletion. In neonatal mice, the majority of peripheral T lymphocytes are RTE, cells that have recently left the thymus to populate the periphery. Postulating that these cells could have unique trafficking mechanisms, we compared adhesion molecule and chemokine receptor expression of neonatal RTE with mature adult lymphocytes. Neonatal CD8+ splenocytes uniformly express alpha(E) integrin and exhibit a high responsiveness to CC chemokine ligand (CCL25) (as compared with adult CD8+ splenocytes). Mature CD8+ thymocytes have a similar alpha(E) integrin(+) CCL25 responsive phenotype, as do adult CD8+ RTE identified by intrathymic FITC injection. With increasing age, the frequency of CD8+ alpha(E) integrin(+) splenocytes decreases, roughly correlating with thymic involution. Moreover, halting thymic output by thymectomy accelerates the age-dependent decline in peripheral CD8+ alpha(E) integrin(+) RTE phenotype cells. Low expression of CD44 distinguishes these CD8+ RTE from a population of memory phenotype alpha(E) integrin(+) CD8+ cells that are CD44(high). We conclude that CD8+ RTE have unique adhesive and chemotactic properties that distinguish them from naive CD8+ T cells. These properties may enable specialized microenvironmental and cell-cell interactions contributing to the fate of RTE in the periphery during the early post-thymic period. This phenotype will also facilitate the identification and isolation of RTE for further studies.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号