首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Overgrowth of white adipose tissue (WAT) in obesity occurs as a result of adipocyte hypertrophy and hyperplasia. Expansion and renewal of adipocytes relies on proliferation and differentiation of white adipocyte progenitors (WAP); however, the requirement of WAP for obesity development has not been proven. Here, we investigate whether depletion of WAP can be used to prevent WAT expansion. We test this approach by using a hunter-killer peptide designed to induce apoptosis selectively in WAP. We show that targeted WAP cytoablation results in a long-term WAT growth suppression despite increased caloric intake in a mouse diet-induced obesity model. Our data indicate that WAP depletion results in a compensatory population of adipose tissue with beige adipocytes. Consistent with reported thermogenic capacity of beige adipose tissue, WAP-depleted mice display increased energy expenditure. We conclude that targeting of white adipocyte progenitors could be developed as a strategy to sustained modulation of WAT metabolic activity.Obesity, a medical condition predisposing to diabetes, cardiovascular diseases, cancer, and complicating other life-threatening diseases, is becoming an increasingly important social problem.1, 2, 3 Development of pharmacological approaches to reduction of body fat has remained a daunting task.4 Approved obesity treatments typically produce only moderate and temporary effects.2,5 White adipocytes are the differentiated cells of white adipose tissue (WAT) that store triglycerides in lipid droplets.6,7 In contrast, adipocytes of brown adipose tissue (BAT) dissipate excess energy through adaptive thermogenesis. Under certain conditions, white adipocytes can become partially replaced with brown-like ‘beige'' (‘brite'') adipocytes that simulate the thermogenic function of BAT adipocytes.7,8 Obesity develops in the context of positive energy balance as a result of hypertrophy and hyperplasia of white adipocytes.9Expansion and renewal of the white adipocyte pool in WAT continues in adulthood.10,11 This process is believed to rely on proliferation and self-renewal of mesenchymal precursor cells12 that we term white adipocyte progenitors (WAPs). WAPs reside within the population of adipose stromal cells (ASCs)13 and are functionally similar to bone marrow mesenchymal stem cells (MSCs).14, 15, 16 ASCs can be isolated from the stromal/vascular fraction (SVF) of WAT based on negativity for hematopoietic (CD45) and endothelial (CD31) markers.17,18 ASCs support vascularization as mural/adventitial cells secreting angiogenic factors5,19 and, unlike bone marrow MSCs, express CD34.19,20 WAPs have been identified within the ASC population based on expression of mesenchymal markers, such as platelet-derived growth factor receptor-β (PDGFRβ, aka CD140b) and pericyte markers.17,18 Recently, a distinct ASC progenitor population capable of differentiating into both white and brown adipocytes has been identified in WAT based on PDGFRα (CD140a) expression and lack of PDGFRβ expression.21,22 The physiological relevance of the two precursor populations residing in WAT has not been explored.We have previously established an approach to isolate peptide ligands binding to receptors selectively expressed on the surface of cell populations of interest.23, 24, 25, 26, 27 Such cell-targeted peptides can be used for targeted delivery of experimental therapeutic agents in vivo. A number of ‘hunter-killer'' peptides28 composed of a cell-homing domain binding to a surface marker and of KLAKLAK2 (sequence KLAKLAKKLAKLAK), a moiety inducing apoptosis upon receptor-mediated internalization, has been described by our group.26,29 Such bimodal peptides have been used for depletion of malignant cells and organ-specific endothelial cells in preclinical animal models.26,30,31 Recently, we isolated a cyclic peptide WAT7 (amino acid sequence CSWKYWFGEC) based on its specific binding to ASCs.20 We identified Δ-decorin (ΔDCN), a proteolytic cleavage fragment of decorin, as the WAT7 receptor specifically expressed on the surface of CD34+PDGFRβ+CD31-CD45- WAPs and absent on MSCs in other organs.20Here, we investigated whether WAPs are required for obesity development in adulthood. By designing a new hunter-killer peptide that directs KLAKLAK2 to WAPs through WAT7/ΔDCN interaction, we depleted WAP in the mouse diet-induced obesity model. We demonstrate that WAP depletion suppresses WAT growth. We show that, in response to WAP deficiency, WAT becomes populated with beige adipocytes. Consistent with the reported thermogenic function of beige adipocytes,32,33 the observed WAT remodeling is associated with increased energy expenditure. We identify a population of PDGFRα-positive, PDGFRβ-negative ASCs reported recently22 as a population surviving WAP depletion and responsible for WAT browning.  相似文献   

2.
3.
4.
5.
During virus infection and autoimmune disease, inflammatory dendritic cells (iDCs) differentiate from blood monocytes and infiltrate infected tissue. Following acute infection with hepatotropic viruses, iDCs are essential for re-stimulating virus-specific CD8+ T cells and therefore contribute to virus control. Here we used the lymphocytic choriomeningitis virus (LCMV) model system to identify novel signals, which influence the recruitment and activation of iDCs in the liver. We observed that intrinsic expression of Toso (Faim3, FcμR) influenced the differentiation and activation of iDCs in vivo and DCs in vitro. Lack of iDCs in Toso-deficient (Toso–/–) mice reduced CD8+ T-cell function in the liver and resulted in virus persistence. Furthermore, Toso–/– DCs failed to induce autoimmune diabetes in the rat insulin promoter-glycoprotein (RIP-GP) autoimmune diabetes model. In conclusion, we found that Toso has an essential role in the differentiation and maturation of iDCs, a process that is required for the control of persistence-prone virus infection.More than 500 million people worldwide suffer from chronic infections with hepatitis B or hepatitis C viruses.1 Although both viruses are poorly cytopathic, persistence of either virus can lead to chronic liver inflammation and potentially cause liversteatosis, liver cirrhosis, end-stage liver failure or hepatocellular carcinoma. Virus-specific CD8+ T cells are a major determinant governing the outcome of viral hepatitis due to their antiviral activity against virus-infected hepatocytes.2, 3, 4, 5 However, during prolonged infection, virus-specific CD8+ T cells are exhausted, resulting in their loss of function and consequently virus persistence.1, 6 Regulators influencing CD8+ T-cell function during chronic virus infection still remain ill defined.Inflammatory dendritic cells (iDCs) can develop from a subset of monocytes recruited to the site of inflammation.7, 8 This monocyte subset is characterized by the expression of CD115+/Ly6Chi/CCR2+.7 iDCs express CD11c, CD11b, and Ly6C.9, 10, 11 IDCs that exhibit tumor necrosis factor (TNF)-α production and inducible nitric oxide synthase (iNOS) were named TNF-α and iNOS producing DCs (Tip-DCs). iDCs contribute to the elimination of pathogens following bacterial infection.12, 13, 14 During infection with influenza virus, iDCs enhance CD8+ T-cell immunopathology, but have limited impact on viral replication.11, 15 According to recent observations, chronic activation of toll-like receptor 9 leads to intrahepatic myeloid-cell aggregates (iMATE).16 These aggregates, which contain iDCs, are essential for T-cell activation and therefore participate in virus control.16 Co-stimulatory signals from either direct cell contact or from cytokines in combination with continued antigen contact in iMATEs lead to proliferation and activation of virus-specific T cells.16 These observations suggest that infiltration of professional antigen-presenting cells into target organs is important for the maintenance of strong antiviral cytotoxic CD8+ T-cell activity. Factors regulating iDC infiltration into the liver remain poorly understood.Toso is a membrane protein whose extracellular domain has homology to the immunoglobulin variable (IgV) domains. The cytoplasmic region has partial homology to the FAST kinase (Fas-activated serine/threonine kinase).17 Toso is expressed on B cells and activated T cells17 and is overexpressed in B-cell lymphomas.18, 19 Expression of Toso can influence survival of macrophages.20 Originally, Toso was described as an inhibitor of FAS signaling.17, 21 More recently, a role of Toso in IgM binding and TNFR signaling was also demonstrated22, 23, 24 and consistently, Toso-deficient animals are protected from lipopolysaccharide (LPS)-induced septic shock.24, 25 Recently, we identified a role of Toso in the activation of granulocytes, monocytes, and DCs.26, 27, 28 During infection with Listeria, the expression of Toso regulated granulocyte function.26, 27 The role of Toso in the function of monocytes and other myeloid cells still remains to be further elucidated.In this study, we investigated the role of Toso during chronic viral infection by using the murine lymphocytic choriomeningitis virus (LCMV). We report that Toso promotes the differentiation and maturation of iDCs at virus-infected sites, which were essential for effector CD8+ T-cell function and in accelerating the control of the virus. We further tested the role of Toso in the rat insulin promoter-glycoprotein (RIP-GP) autoimmune diabetes model and found that Toso was required to trigger diabetes in RIP-GP mice. Taken together, we have identified an essential role of Toso in the differentiation and maturation of iDCs, which is essential for the control of persistence-prone virus infection and triggering of autoimmune disease.  相似文献   

6.
Tumor necrosis factor α (TNFα) triggers necroptotic cell death through an intracellular signaling complex containing receptor-interacting protein kinase (RIPK) 1 and RIPK3, called the necrosome. RIPK1 phosphorylates RIPK3, which phosphorylates the pseudokinase mixed lineage kinase-domain-like (MLKL)—driving its oligomerization and membrane-disrupting necroptotic activity. Here, we show that TNF receptor-associated factor 2 (TRAF2)—previously implicated in apoptosis suppression—also inhibits necroptotic signaling by TNFα. TRAF2 disruption in mouse fibroblasts augmented TNFα–driven necrosome formation and RIPK3-MLKL association, promoting necroptosis. TRAF2 constitutively associated with MLKL, whereas TNFα reversed this via cylindromatosis-dependent TRAF2 deubiquitination. Ectopic interaction of TRAF2 and MLKL required the C-terminal portion but not the N-terminal, RING, or CIM region of TRAF2. Induced TRAF2 knockout (KO) in adult mice caused rapid lethality, in conjunction with increased hepatic necrosome assembly. By contrast, TRAF2 KO on a RIPK3 KO background caused delayed mortality, in concert with elevated intestinal caspase-8 protein and activity. Combined injection of TNFR1-Fc, Fas-Fc and DR5-Fc decoys prevented death upon TRAF2 KO. However, Fas-Fc and DR5-Fc were ineffective, whereas TNFR1-Fc and interferon α receptor (IFNAR1)-Fc were partially protective against lethality upon combined TRAF2 and RIPK3 KO. These results identify TRAF2 as an important biological suppressor of necroptosis in vitro and in vivo.Apoptotic cell death is mediated by caspases and has distinct morphological features, including membrane blebbing, cell shrinkage and nuclear fragmentation.1, 2, 3, 4 In contrast, necroptotic cell death is caspase-independent and is characterized by loss of membrane integrity, cell swelling and implosion.1, 2, 5 Nevertheless, necroptosis is a highly regulated process, requiring activation of RIPK1 and RIPK3, which form the core necrosome complex.1, 2, 5 Necrosome assembly can be induced via specific death receptors or toll-like receptors, among other modules.6, 7, 8, 9 The activated necrosome engages MLKL by RIPK3-mediated phosphorylation.6, 10, 11 MLKL then oligomerizes and binds to membrane phospholipids, forming pores that cause necroptotic cell death.10, 12, 13, 14, 15 Unchecked necroptosis disrupts embryonic development in mice and contributes to several human diseases.7, 8, 16, 17, 18, 19, 20, 21, 22The apoptotic mediators FADD, caspase-8 and cFLIP suppress necroptosis.19, 20, 21, 23, 24 Elimination of any of these genes in mice causes embryonic lethality, subverted by additional deletion of RIPK3 or MLKL.19, 20, 21, 25 Necroptosis is also regulated at the level of RIPK1. Whereas TNFα engagement of TNFR1 leads to K63-linked ubiquitination of RIPK1 by cellular inhibitor of apoptosis proteins (cIAPs) to promote nuclear factor (NF)-κB activation,26 necroptosis requires suppression or reversal of this modification to allow RIPK1 autophosphorylation and consequent RIPK3 activation.2, 23, 27, 28 CYLD promotes necroptotic signaling by deubiquitinating RIPK1, augmenting its interaction with RIPK3.29 Conversely, caspase-8-mediated CYLD cleavage inhibits necroptosis.24TRAF2 recruits cIAPs to the TNFα-TNFR1 signaling complex, facilitating NF-κB activation.30, 31, 32, 33 TRAF2 also supports K48-linked ubiquitination and proteasomal degradation of death-receptor-activated caspase-8, curbing apoptosis.34 TRAF2 KO mice display embryonic lethality; some survive through birth but have severe developmental and immune deficiencies and die prematurely.35, 36 Conditional TRAF2 KO leads to rapid intestinal inflammation and mortality.37 Furthermore, hepatic TRAF2 depletion augments apoptosis activation via Fas/CD95.34 TRAF2 attenuates necroptosis induction in vitro by the death ligands Apo2L/TRAIL and Fas/CD95L.38 However, it remains unclear whether TRAF2 regulates TNFα-induced necroptosis—and if so—how. Our present findings reveal that TRAF2 inhibits TNFα necroptotic signaling. Furthermore, our results establish TRAF2 as a biologically important necroptosis suppressor in vitro and in vivo and provide initial insight into the mechanisms underlying this function.  相似文献   

7.
8.
Necroptosis is mediated by a signaling complex called necrosome, containing receptor-interacting protein (RIP)1, RIP3, and mixed-lineage kinase domain-like (MLKL). It is known that RIP1 and RIP3 form heterodimeric filamentous scaffold in necrosomes through their RIP homotypic interaction motif (RHIM) domain-mediated oligomerization, but the signaling events based on this scaffold has not been fully addressed. By using inducible dimer systems we found that RIP1–RIP1 interaction is dispensable for necroptosis; RIP1–RIP3 interaction is required for necroptosis signaling, but there is no necroptosis if no additional RIP3 protein is recruited to the RIP1–RIP3 heterodimer, and the interaction with RIP1 promotes the RIP3 to recruit other RIP3; RIP3–RIP3 interaction is required for necroptosis and RIP3–RIP3 dimerization is sufficient to induce necroptosis; and RIP3 dimer-induced necroptosis requires MLKL. We further show that RIP3 oligomer is not more potent than RIP3 dimer in triggering necroptosis, suggesting that RIP3 homo-interaction in the complex, rather than whether RIP3 has formed homo polymer, is important for necroptosis. RIP3 dimerization leads to RIP3 intramolecule autophosphorylation, which is required for the recruitment of MLKL. Interestingly, phosphorylation of one of RIP3 in the dimer is sufficient to induce necroptosis. As RIP1–RIP3 heterodimer itself cannot induce necroptosis, the RIP1–RIP3 heterodimeric amyloid fibril is unlikely to directly propagate necroptosis. We propose that the signaling events after the RIP1–RIP3 amyloid complex assembly are the recruitment of free RIP3 by the RIP3 in the amyloid scaffold followed by autophosphorylation of RIP3 and subsequent recruitment of MLKL by RIP3 to execute necroptosis.Necroptosis is a type of programmed necrosis characterized by necrotic morphological changes, including cellular organelle swelling, cell membrane rupture,1, 2, 3 and dependence of receptor-interacting protein (RIP)14 and RIP3.5, 6, 7 Physiological function of necroptosis has been illustrated in host defense,8, 9, 10, 11 inflammation,12, 13, 14, 15, 16 tissue injury,10, 17, 18 and development.19, 20, 21Necroptosis can be induced by a number of different extracellular stimuli such as tumor necrosis factor (TNF). TNF stimulation leads to formation of TNF receptor 1 (TNFR1) signaling complex (named complex I), and complex II containing RIP1, TRADD, FAS-associated protein with a death domain (FADD), and caspase-8, of which the activation initiates apoptosis. If cells have high level of RIP3, RIP1 recruits RIP3 to form necrosome containing FADD,22, 23, 24 caspase-8, RIP1, and RIP3, and the cells undergo necroptosis.25, 26 Caspase-8 and FADD negatively regulates necroptosis,27, 28, 29, 30 because RIP1, RIP3, and CYLD are potential substrates of caspase-8.31, 32, 33, 34 Necrosome also suppresses apoptosis but the underlying mechanism has not been described yet. Mixed-lineage kinase domain-like (MLKL) is downstream of RIP3,35, 36 and phosphorylation of MLKL is required for necroptosis.37, 38, 39, 40, 41, 42Apoptosis inducing complex (complex II) and necrosome are both supramolecular complexes.43, 44, 45 A recent study showed that RIP1 and RIP3 form amyloidal fibrils through their RIP homotypic interaction motif46 (RHIM)-mediated polymerization, and suggested that amyloidal structure is essential for necroptosis signaling.47 The RIP1–RIP3 heterodimeric amyloid complex is believed to function as a scaffold that brings signaling proteins into proximity to permit their activation. However, RIP1 and RIP3 also can each form fibrils on their own RHIM domains in vitro. It is unclear how the homo- and hetero-interactions are coordinated and organized on the amyloid scaffold to execute their functions in necroptosis. Here, we used inducible dimerization systems to study the roles of RIP1–RIP1, RIP1–RIP3, and RIP3–RIP3 interactions in necroptosis signaling. Our data suggested that it is the RIP1–RIP3 interaction in the RIP1–RIP3 heterodimeric amyloid complex that empowers to recruit other free RIP3; homodimerization of RIP3 triggers its autophosphorylation and only the phosphorylated RIP3 can recruit MLKL to execute necroptosis.  相似文献   

9.
10.
Dysferlin deficiency compromises the repair of injured muscle, but the underlying cellular mechanism remains elusive. To study this phenomenon, we have developed mouse and human myoblast models for dysferlinopathy. These dysferlinopathic myoblasts undergo normal differentiation but have a deficit in their ability to repair focal injury to their cell membrane. Imaging cells undergoing repair showed that dysferlin-deficit decreased the number of lysosomes present at the cell membrane, resulting in a delay and reduction in injury-triggered lysosomal exocytosis. We find repair of injured cells does not involve formation of intracellular membrane patch through lysosome–lysosome fusion; instead, individual lysosomes fuse with the injured cell membrane, releasing acid sphingomyelinase (ASM). ASM secretion was reduced in injured dysferlinopathic cells, and acute treatment with sphingomyelinase restored the repair ability of dysferlinopathic myoblasts and myofibers. Our results provide the mechanism for dysferlin-mediated repair of skeletal muscle sarcolemma and identify ASM as a potential therapy for dysferlinopathy.Dysferlinopathy is a progressive muscle wasting disease, which is classified as limb-girdle muscular dystrophy type 2B (LGMD2B) or Miyoshi muscular dystrophy 1, based on its muscle involvement.1, 2 Dysferlin deficit leads to altered vesicle formation and trafficking,3, 4 poor repair of injured cell membranes,5, 6 and increased muscle inflammation.7, 8 Dysferlin contains C2 domains that are found in Ca2+-dependent membrane fusion proteins such as synaptotagmins.9 Thus, dysferlin is thought to regulate muscle function by regulating vesicle trafficking and fusion.10, 11, 12, 13 Dysferlin deficiency has also been implicated in conflicting reports regarding the fusion ability of dysferlinopathic myoblasts.4, 14, 15, 16 With such diverse roles for dysferlin, the mechanism through which dysferlin deficiency results in muscle pathology is unresolved. As skeletal muscle-specific re-expression of dysferlin rescues all dysferlinopathic pathologies,17, 18 myofiber repair has been suggested to be the unifying deficit underlying muscle pathology in dysferlinopathy.19 Repair of injured cell membranes requires subcellular compartments, which in mammalian cells include lysosomes,11 enlargeosomes,20 caveolae,21 dysferlin-containing vesicles,5 and mitochondria.22Cells from muscular dystrophy patients that have normal dysferlin expression exhibit normal lysosome and enlargeosome exocytosis.23 However, dysferlinopathic muscle cells exhibit enlarged LAMP2-positive lysosomes, reduced fusion of early endosomes, altered expression of proteins regulating late endosome/lysosome fusion, and reduced injury-triggered cell-surface levels of LAMP1.4, 11, 12 In non-muscle cells, lack of dysferlin reduces lysosomal exocytosis.24 These findings implicate lysosomes in dysferlin-mediated muscle cell membrane repair. In one model for lysosome-mediated cell membrane repair, Ca2+ triggers vesicle–vesicle fusion near the site of injury, forming ‘membrane patch'', which fuses to repair the wounded cell membrane.25, 26, 27, 28 In another model, lysosome exocytosis following cell membrane injury by pore-forming toxins leads to secretion of the lysosomal enzyme acid sphingomyelinase (ASM), which causes endocytosis of pores in the damaged cell membranes.21, 29, 30 Both these models have been suggested to be involved in the repair of injured muscle cells.21, 28To examine the muscle cell pathology in dysferlinopathy, we have developed dysferlinopathic mouse and human models. Use of these models shows that a lack of dysferlin does not alter myogenic differentiation but causes poor repair of even undifferentiated muscle cells. We show that dysferlin is required for tethering lysosomes to the cell membrane. Fewer lysosomes at the cell membrane in dysferlinopathic cells results in slow and reduced lysosome exocytosis following injury. This reduction in exocytosis reduces injury-triggered ASM secretion, which is responsible for the poor repair of dysferlinopathic muscle cells. Extracellular sphingomyelinase (SM) fully rescues the repair deficit in dysferlinopathic cells and mouse myofibers, offering a potential drug-based therapy for dysferlinopathy.  相似文献   

11.
CD47 signaling in endothelial cells has been shown to suppress angiogenesis, but little is known about the link between CD47 and endothelial senescence. Herein, we demonstrate that the thrombospondin-1 (TSP1)-CD47 signaling pathway is a major mechanism for driving endothelial cell senescence. CD47 deficiency in endothelial cells significantly improved their angiogenic function and attenuated their replicative senescence. Lack of CD47 also suppresses activation of cell cycle inhibitors and upregulates the expression of cell cycle promoters, leading to increased cell cycle progression. Furthermore, TSP1 significantly accelerates replicative senescence and associated cell cycle arrest in a CD47-dependent manner. These findings demonstrate that TSP1-CD47 signaling is an important mechanism driving endothelial cell senescence. Thus, TSP1 and CD47 provide attractive molecular targets for treatment of aging-associated cardiovascular dysfunction and diseases involving endothelial dysregulation.Endothelial cell (EC) senescence is accompanied with vascular dysfunction, including arterial stiffening and remodeling,1 impaired angiogenesis,2, 3 reduced endothelial repair capability and increased incidence of cardiovascular disease.4, 5, 6 Cellular senescence can occur in vivo or in vitro in response to various stressors,7, 8, 9, 10 leading to suppression of cell proliferation. EC senescence has been reported to contribute to the pathogenesis of age-associated vascular diseases, such as atherosclerosis.11 Thus, further understanding the mechanisms of EC senescence may help to identify effective targets for antisenescence therapy and treatment aging-associated cardiovascular disorders.Previous studies have shown that the secreted matricellular protein thrombospondin-1 (TSP1) is as potent inhibitor of angiogenesis12 and its antiangiogenic activity is mediated by its receptors, CD3613, 14 and CD47.15, 16 CD47 is a ubiquitously expressed transmembrane protein that serves as a ligand for signal regulatory protein-α and is a signaling receptor of TSP1. The TSP1-CD47 pathway has an important role in several fundamental cellular functions, including proliferation, apoptosis, inflammation and atherosclerotic response.17 Ligation of CD47 by TSP1 has been shown to inhibit nitric oxide (NO)/cGMP signaling in vascular cells, leading to suppression of angiogenic responses.16 Recently, it was reported that lack of CD47 expression in ECs may enable these cells to spontaneously gain characteristics of embryonic stem cells.18 However, the potential role of CD47 in regulation of EC senescence has not been well explored. The present study was initiated to determine the role and mechanisms of TSP1-CD47 signaling pathway in regulating cell cycle progression and replicative senescence of ECs.  相似文献   

12.
13.
14.
M Shen  L Wang  B Wang  T Wang  G Yang  L Shen  T Wang  X Guo  Y Liu  Y Xia  L Jia  X Wang 《Cell death & disease》2014,5(11):e1528
Endoplasmic reticulum (ER) stress occurring in stringent conditions is critically involved in cardiomyocytes apoptosis and cardiac contractile dysfunction (CCD). However, the molecular machinery that mediates cardiac ER stress and subsequent cell death remains to be fully deciphered, which will hopefully provide novel therapeutic targets for these disorders. Here, we establish tunicamycin-induced model of cardiomyocyte ER stress, which effectively mimicks pathological stimuli to trigger CCD. Tunicamycin activates volume-sensitive outward rectifying Cl currents. Blockade of the volume-sensitive outwardly rectifying (VSOR) Cl channel by 4,4''-diisothiocya-natostilbene-2,2''-disulfonic acid (DIDS), a non-selective Cl channel blocker, and 4-(2-butyl-6,7-dichlor-2-cyclopentyl-indan-1-on-5-yl) oxybutyric acid (DCPIB), a selective VSOR Cl channel blocker, improves cardiac contractility, which correlates with suppressed ER stress through inhibiting the canonical GRP78/eIF2α/ATF4 and XBP1 pathways, and promotes survival of cardiomyocytes by inverting tunicamycin-induced decrease of Wnt through the CHOP pathway. VSOR activation of tunicamycin-treated cardiomyocytes is attributed to increased intracellular levels of reactive oxygen species (ROS). Our study demonstrates a pivotal role of ROS/VSOR in mediating ER stress and functional impairment of cardiomyocytes via the CHOP-Wnt pathway, and suggests the therapeutic values of VSOR Cl channel blockers against ER stress-associated cardiac anomalies.The endoplasmic reticulum (ER) is characterized as an organelle that participates in the folding of membrane and secretory proteins.1,2 Efficient functioning of the endoplasmic reticulum is important for cell function and survival. Perturbations of ER homeostasis by energy deprivation and glucose,3 viral infections4 and accumulation of misfolded and/or unfolded proteins2 interfere with ER function, leading to a state of ER stress.5, 6, 7 A cohort of chemicals, for example, tunicamycin and thapsigargin, also trigger ER stress.8, 9, 10 Thapsigargin disrupts the calcium storage of ER by blocking calcium reuptake into the ER lumen, thus by depleting calcium from the organelle.11 In particular, tunicamycin is a highly specific ER stress inducer by inhibiting N-linked glycosylation of protein, representing a well-documented method to artificially elicit unfolded protein response.8 In response to ER stress, ER chaperones such as glucose-regulated protein 78 kDa (GRP78) and glucose-regulated protein 94 kDa (GRP94) are upregulated to facilitate the recovery of unfolded or misfolded proteins.12 ER stress may act as a defense mechanism against external insults; however, prolonged and/or severe ER stress may ultimately trigger apoptosis.8 The C/EBP homologous protein (CHOP) has been defined as a pivotal mediator of cell death signaling in ER stress.13, 14 Accumulating evidence has demonstrated that ER stress-induced cell death is an essential step in the pathogenesis of a wide variety of cardiovascular diseases such as ischemia reperfusion heart diseases,15 atherosclerosis,5, 16, 17, 18 myocardial infarction,19 hypertension20, 21 and heart failure.8, 22, 23 Inhibiting ER stress has great therapeutic values for cardiac anomalies. However, the precise mechanism involved in ER stress-induced cardiovascular diseases has not been well identified, which impedes the translation of our understanding of ER stress-induced cardiovascular anomalies into effective therapeutic strategies. Apoptosis induction requires persistent cell shrinkage, named apoptotic volume decrease (AVD).24, 25, 26, 27 It is an early prerequisite for the activation of caspases.24 In various types of cells including cardiomyocytes, AVD process is accomplished by the activation of volume-sensitive outwardly rectifying (VSOR) Cl channel and is concomitant with the egress of water from the cells undergoing mitochondrion-initiated or death receptor-induced apoptosis.25, 28, 29, 30 Although inhibition of VSOR Cl channel by DIDS (4,4''-diisothiocyanatostilbene-2,2''-disulphonic acid) and DCPIB (4-(2-butyl-6,7- dichlor-2-cyclopentyl-indan-1-on-5-yl) oxybutyric acid) blocked AVD and rescued cardiomyocytes from mitochondrial and death receptor pathway-induced apoptosis,31, 32 it remains largely unknown concerning the role of VSOR Cl channel and how it is regulated in ER stress-induced apoptotic cardiomyocyte death.Emerging evidence indicates that Wnt signal pathways are found to be anti-apoptotic in the cardiovascular diseases,33, 34, 35 regulating crucial aspects of cardiovascular biology. However, up to now, its activity in ER stress-induced apoptosis and in the process of AVD in cardiomyocytes remains elusive.In the present study, we probed the role of VSOR Cl channel in ER stress-induced apoptosis of cardiomyocytes, which intimately correlates with cardiac contractile dysfunction (CCD). We hypothesized that VSOR Cl channel controls the process of AVD occurring concomitantly with ER stress-induced apoptosis of cardiomyocytes. To test this hypothesis, we investigated VSOR Cl currents in cardiomyocytes treated with the ER stress inducer tunicamycin. The pathophysiological role of VSOR Cl channel and the potential signaling mechanisms in the development of ER stress-induced apoptosis in CCD were also dissected.  相似文献   

15.
The CD300 receptor family members are a group of molecules that modulate a variety of immune cell processes. We show that mouse CD300b (CLM7/LMIR5), expressed on myeloid cells, recognizes outer membrane-exposed phosphatidylserine (PS) and does not, as previously reported, directly recognize TIM1 or TIM4. CD300b accumulates in phagocytic cups along with F-actin at apoptotic cell contacts, thereby facilitating their engulfment. The CD300b-mediated activation signal is conveyed through CD300b association with the adaptor molecule DAP12, and requires a functional DAP12 ITAM motif. Binding of apoptotic cells promotes the activation of the PI3K-Akt kinase pathway in macrophages, while silencing of CD300b expression diminishes PI3K-Akt kinase activation and impairs efferocytosis. Collectively, our data show that CD300b recognizes PS as a ligand, and regulates the phagocytosis of apoptotic cells via the DAP12 signaling pathway.In both developing and mature multicellular organisms, large numbers of apoptotic cells are continually generated and must be cleared by neighboring cells or ‘professional'' phagocytes.1, 2, 3, 4 If not properly cleared, they become necrotic, pro-inflammatory and immunogenic, potentially leading to the development of autoimmune diseases, such as systemic lupus erythematous (SLE).5, 6, 7, 8 Therefore, phagocytes possess sensing systems to facilitate the clearance of apoptotic cells.1, 2, 3 Once guided to their location by diffusible ‘find me'' signals, phagocytes recognize apoptotic cells through their display of characteristic cell surface molecules (‘eat me'' signals).4, 7 The most common signal promoting phagocytosis is the recognition of phosphatidylserine (PS), which when exposed on the outer leaflet of the plasma membrane signals phagocytes to engulf apoptotic cells.2 Multiple receptors for PS exist on phagocytic cells, although not necessarily simultaneously; these include stabilins,9, 10 T cell Ig mucin (TIM) 1 and TIM4,11, 12 BAI1,13 MFGE8, which bridges PS to integrin αvβ3,14 and Protein S and Gas6, which bridge PS to TAM receptors.15 Recently, we and others demonstrated that the CD300 family members, human and mouse CD300a,16, 17 and mouse CD300f,18, 19 also bind PS, and their expression regulates apoptotic cell phagocytosis.The CD300 family contains both activating and inhibitory receptor members.20 CD300b has a short intracellular tail and gains activation potential by association with DNAX activating protein of 12 kDa (DAP12) or DAP10 adaptor molecules.21 CD300b is predominantly expressed on myeloid cells, including neutrophils, macrophages and mast cells. Antibody cross-linking of human and mouse CD300b has been shown to induce the release of inflammatory cytokines from mast cells.21 The ligand for CD300b remains a matter of debate. A recent study found that a soluble form of CD300b, released in response to Toll-like receptor ligation, recognizes unknown ligands on the surface of macrophages, resulting in the release of inflammatory cytokines.22 Others have identified the PS-binding receptors TIM1 and TIM4 as endogenous ligands for CD300b, but not PS itself.23Here, we show that CD300b binds to PS, and recognizes PS on TIM1 or TIM4 expressing cells rather than TIM1 or TIM4 alone. We found that CD300b promotes PS-dependent apoptotic cell phagocytosis upon ectopic expression in cell lines, without the need for additional PS receptors. In addition, CD300b-mediated phagocytosis requires the association of the adaptor protein DAP12 for effective signaling. Inhibition of CD300b function by either anti-CD300b antibody treatment or siRNA transfection significantly decreases macrophage-dependent phagocytosis of apoptotic cells. Furthermore, CD300b silencing in macrophages severely impairs the apoptotic cell-induced phosphorylation of PI3K, Akt and Syk, but not Erk. Thus, our data show that CD300b is an activating receptor that has an important role in macrophage-mediated clearance of apoptotic cells.  相似文献   

16.
17.
18.
Numb asymmetrically segregates at mitosis to control cell fate choices during development. Numb inheritance specifies progenitor over differentiated cell fates, and, paradoxically, also promotes neuronal differentiation, thus indicating that the role of Numb may change during development. Here we report that Numb nuclear localization is restricted to early thymocyte precursors, whereas timed appearance of pre-T-cell receptor (pre-TCR) and activation of protein kinase Cθ promote phosphorylation-dependent Numb nuclear exclusion. Notably, nuclear localization of Numb in early thymocyte precursors favors p53 nuclear stabilization, whereas pre-TCR-dependent Numb nuclear exclusion promotes the p53 downmodulation essential for further differentiation. Accordingly, the persistence of Numb in the nucleus impairs the differentiation and promotes precursor cell death. This study reveals a novel regulatory mechanism for Numb function based on its nucleus–cytosol shuttling, coupling the different roles of Numb with different stages of T-cell development.Cell fate decision of dividing progenitor-derived cells is a crucial event in development and diseases. Cell fate is often regulated by asymmetric cell division, which is a process by which progenitors asymmetrically segregate certain cell fate determinants during division, to generate two functionally different cells.1,2 The adaptor protein Numb was initially identified in Drosophila as a critical cell fate determinant,3 where loss of Numb and its homolog Numb-like results in the loss of neural progenitors, indicating that the presence of Numb is essential for maintaining the progenitors during the initial progenitor versus neural fate decision.4,5 However, re-expression of Numb is also required for further neural differentiation,6,7 indicating that the role of Numb in the same tissue may change over time.Numb function in the immune system has been partially explored.8,9 Numb is involved in asymmetric division in hematopoietic stem cells,10 thymocytes11 and mature T lymphocytes.12,13 T cells develop from intrathymic CD4CD8 double-negative (DN) precursors that, after progression through DN1 (CD44+CD25), DN2 (CD44+CD25+), DN3 (CD44CD25+) and DN4 (CD44CD25), have to decide between proliferation, to increase the total number of precursors, or differentiation into CD4+CD8+ double-positive (DP) cells. This decision is made during DN3 stage and appears to be dependent on asymmetric segregation of Numb.11As Numb is a well-characterized inhibitor of Notch-1 receptor signaling pathway,14 the ability of Numb to regulate cell fate decisions during development has been associated with this Numb function.15 However, the role of Numb during development could not be restricted to the control of Notch-1 signaling, as Numb has been implicated in the regulation of a variety of biochemical pathways, including the tumor suppressor p53.16 Increasing evidence suggests that p53 regulates cell differentiation in addition to cell proliferation, apoptosis and senescence.17,18Notably, T-cell development is regulated by both Notch-1 and p53. Notch-1 signals appear to be critical for the very early steps of T-cell development (i.e. T-cell commitment).19 The involvement of p53 has been instead reported in the transition from the DN to the DP stage. However, while the overexpression of p53 during DN3 stage promotes a block in the differentiation and proliferation, resulting in a small thymus size,20,21 loss of p53 apparently does not affect thymocyte development, even though the vast majority of spontaneous malignancies in p53−/− mice are lymphomas.22 Thus, the double function of Numb could be dependent on two different pathways, which may be differentially triggered during selected differentiation stages.Recent data describe the presence of Numb in the nuclear compartment,23 besides its known cytoplasmic localization, raising the possibility that different Numb functions could be regulated by its differential subcellular localization. However, whether Numb may have different subcellular localizations in precursors or more differentiated T cell, how Numb import is regulated or how the nuclear localization affects its function during T-cell development remain unexplored. Here we show that Numb is an important regulator of p53 pathway during T-cell development, and we describe a novel molecular mechanism involved in the differential regulation of Numb–p53 axis based on the regulation of Numb nuclear import, emerging an interesting scenario where Numb can act as a regulator of two fundamental pathways during T-cell development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号