首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Avian pathogenic Escherichia coli (APEC) are the major cause of colibacillosis in poultry production. In this study, a total of 22 E. coli isolated from colibacillosis field cases and 10 avian faecal E. coli (AFEC) were analysed. All strains were characterised phenotypically by susceptibility testing and molecular typing methods such as pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). The presence of 29 virulence genes associated to APEC and human extraintestinal pathogenic E. coli (ExPEC) was also evaluated. For cephalosporin resistant isolates, cephalosporin resistance genes, plasmid location and replicon typing was assessed. Avian isolates belonged to 26 O:H serotypes and 24 sequence types. Out of 22 APEC isolates, 91% contained the virulence genes predictors of APEC; iutA, hlyF, iss, iroN and ompT. Of all strains, 34% were considered ExPEC. PFGE analysis demonstrated a high degree of genetic polymorphism. All strains were multi-resistant, including those isolated from healthy animals. Eleven strains were resistant to cephalosporins; six contained bla CTX-M-14, two bla SHV-12, two bla CMY-2 and one bla SHV-2. Two strains harboured qnrA, and two qnrA together with aac(6’)-Ib-cr. Additionally, the emergent clone O25b:H4-B2-ST131 was isolated from a healthy animal which harboured bla CMY-2 and qnrS genes. Cephalosporin resistant genes were mainly associated to the presence of IncK replicons. This study demonstrates a very diverse population of multi-drug resistant E. coli containing a high number of virulent genes. The E. coli population among broilers is a reservoir of resistance and virulence-associated genes that could be transmitted into the community through the food chain. More epidemiological studies are necessary to identify clonal groups and resistance mechanisms with potential relevance to public health.  相似文献   

2.
Escherichia coli resistant to extended-spectrum cephalosporins have been detected in the Norwegian broiler production, despite the fact that antimicrobial agents are rarely used. The genetic mechanism responsible for cephalosporin resistance is mainly attributed to the presence of the blaCMY-2 gene encoding a plasmid-mediated AmpC-beta-lactamase (pAmpC). The aim of this study was to characterize and compare blaCMY-2 containing Escherichia coli isolated from the intestinal flora of broilers and retail chicken meat (fillets) to identify possible successful clones and/or resistance plasmids widespread in the Norwegian broiler production. Methods used included PCR based phylotyping, conjugation experiments, plasmid replicon typing, pulsed-field gel electrophoresis, multiple locus variable-number tandem-repeats analysis and whole genome sequencing. The nucleotide sequence of an IncK plasmid carrying blaCMY-2 was determined. Intestinal isolates displayed a higher degree of genetic diversity than meat isolates. A cluster of genetically related isolates belonging to ST38, phylogroup D, carrying blaCMY-2 containing IncK plasmids was identified. Furthermore, genes encoding plasmid stability systems (relBE/stbDE and pndAC) were identified on the IncK plasmid. Single nucleotide polymorphism (SNP) analysis of a subset of isolates confirmed a close genetic relationship within the two most prevalent STs. The IncK plasmids within these two STs also shared a high degree of similarity. Cephalosporin-resistant E. coli with the same genetic characteristics have been identified in the broiler production in other European countries, and the IncK plasmid characterized in this study showed close homology to a plasmid isolated from retail chicken meat in the Netherlands. The results indicate that both clonal expansion and horizontal transfer of blaCMY-2 containing plasmids contribute to dissemination of cephalosporin resistant E. coli in the broiler production. The presence of plasmid stability systems may explain why the IncK plasmid containing blaCMY-2 is maintained and disseminated in the Norwegian broiler production in absence of selection pressure from the use of antimicrobial agents.  相似文献   

3.

Objectives

To obtain a broad molecular epidemiological characterization of plasmid-mediated AmpC β-lactamase CMY-2 in Escherichia coli isolates from food animals in China.

Methods

A total of 1083 E. coli isolates from feces, viscera, blood, drinking water, and sub-surface soil were examined for the presence of CMY-2 β-lactamases. CMY-2-producing isolates were characterized as follows: the bla CMY-2 genotype was determined using PCR and sequencing, characterization of the bla CMY-2 genetic environment, plasmid sizing using S1 nuclease pulsed-field gel electrophoresis (PFGE), PCR-based replicon typing, phylogenetic grouping, XbaI-PFGE, and multi-locus sequence typing (MLST).

Results

All 31 CMY-2 producers were only detected in feces, and presented with multidrug resistant phenotypes. All CMY-2 strains also co-harbored genes conferring resistance to other antimicrobials, including extended spectrum β-lactamases genes (bla CTX-M-14 or bla CTX-M-55), plasmid-mediated quinolone resistance determinants (qnr, oqxA, and aac-(6′)-Ib-cr), floR and rmtB. The co-transferring of bla CMY-2 with qnrS1 and floR (alone and together) was mainly driven by the Inc A/C type plasmid, with sizes of 160 or 200 kb. Gene cassette arrays inserted in the class 1 or class 2 integron were amplified among 12 CMY-2 producers. CMY-2 producers belonged to avirulent groups B1 (n = 12) and A (n = 11), and virulent group D (n = 8). There was a good correlation between phylogenetic groups and sequence types (ST). Twenty-four STs were identified, of which the ST complexes (STC) 101/B1 (n = 6), STC10/A (n = 5), and STC155/B1 (n = 3) were dominant.

Conclusions

CMY-2 is the dominant AmpC β-lactamase in food animals and is associated with a transferable replicon IncA/C plasmid in the STC101, STC10, and STC155 strains.  相似文献   

4.
Flies may act as potential vectors for the spread of resistant bacteria to different environments. This study was intended to evaluate the presence of Escherichia coli strains resistant to cephalosporins in flies captured in the areas surrounding five broiler farms. Phenotypic and molecular characterization of the resistant population was performed by different methods: MIC determination, pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and phylotyping. The presence of extended-spectrum beta-lactamase (ESBL) genes, their plasmid location, and the mobile genetic elements involved in their mobilization were studied. Additionally, the presence of 35 genes associated with virulence was evaluated. Out of 682 flies captured, 42 yielded ESBL-producing E. coli. Of these isolates, 23 contained blaCTX-M-1, 18 contained blaCTX-M-14, and 1 contained blaCTX-M-9. ESBL genes were associated mainly with the presence of the IncI1 and IncFIB replicons. Additionally, all the strains were multiresistant, and five of them also harbored qnrS. Identical PFGE profiles were found for E. coli isolates obtained from flies at different sampling times, indicating a persistence of the same clones in the farm environment over months. According to their virulence genes, 81% of the isolates were considered avian-pathogenic E. coli (APEC) and 29% were considered extraintestinal pathogenic E. coli (ExPEC). The entrance of flies into broiler houses constitutes a considerable risk for colonization of broilers with multidrug-resistant E. coli. ESBLs in flies reflect the contamination status of the farm environment. Additionally, this study demonstrates the potential contribution of flies to the dissemination of virulence and resistance genes into different ecological niches.  相似文献   

5.

Objective

To investigate the molecular characteristics of extended-spectrum cephalosporin (ESC)-resistant Enterobacteriaceae collected during a cross-sectional study examining the prevalence and risk factors for faecal carriage of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae in humans living in areas with high or low broiler density.

Methods

ESC-resistant Enterobacteriaceae were identified by combination disc-diffusion test. ESBL/AmpC/carbapenemase genes were analysed using PCR and sequencing. For E. coli, phylogenetic groups and MLST were determined. Plasmids were characterized by transformation and PCR-based replicon typing. Subtyping of plasmids was done by plasmid multilocus sequence typing.

Results

175 ESC-resistant Enterobacteriaceae were cultured from 165/1,033 individuals. The isolates were Escherichia coli(n=65), Citrobacter freundii (n=52), Enterobacter cloacae (n=38), Morganella morganii (n=5), Enterobacter aerogenes (n=4), Klebsiella pneumoniae (n=3), Hafnia alvei (n=2), Shigella spp. (n=2), Citrobacter amalonaticus (n=1), Escherichia hermannii (n=1), Kluyvera cryocrescens (n=1), and Pantoea agglomerans (n=1). The following ESBL genes were recovered in 55 isolates originating from 49 of 1,033 (4.7 %) persons: bla CTX-M-1 (n=17), bla CTX-M-15 (n=16), bla CTX-M-14 (n=9), bla CTX-M-2 (n=3), bla CTX-M-3 (n=2), bla CTX-M-24 (n=2), bla CTX-M-27 (n=1), bla CTX-M-32 (n=1), bla SHV-12 (n=2), bla SHV-65 (n=1) and bla TEM-52 (n=1). Plasmidic AmpC (pAmpC) genes were discovered in 6 out of 1,033 (0.6 %) persons. One person carried two different E. coli isolates, one with bla CTX-M-1 and the other with bla CMY-2 and therefore the prevalence of persons carrying Enterobacteriaceae harboring ESBL and/or pAmpC genes was 5.2 %. In eight E. coli isolates the AmpC phenotype was caused by mutations in the AmpC promoter region. No carbapenemase genes were identified. A large variety of E. coli genotypes was found, ST131 and ST10 being most common.

Conclusions

ESBL/pAmpC genes resembled those from patients in Dutch hospitals, indicating that healthy humans form a reservoir for transmission of these determinants to vulnerable people. The role of poultry in the transmission to humans in the community remains to be elucidated.  相似文献   

6.
Carbapenem-resistant Enterobacteriaceae (CRE) has increasingly spread worldwide in the past decade. The prevalence and characteristics of CRE in Thailand are unknown. In this study, we conducted a 2-year surveillance of CRE among 12,741 clinical isolates of Enterobacteriaceae at the largest university hospital in Thailand with molecular characterization of beta-lactamase (bla) genes, including carbapenemase genes. The CRE prevalence was 1.4%. bla KPC-13 and bla IMP-14a were the only carbapenemase genes detected among these CRE isolates. bla KPC-13 gene was found in a single isolate of Escherichia coli, Enterobacter cloacae and Citrobacter freundii, and bla IMP-14a was found in four isolates of Klebsiella pneumoniae. Carbapenem-resistant K. pneumoniae (CRKP) isolates were resistant to multiple carbapenems at a higher ratio than other CRE species, and thus were further characterized for resistance phenotypes, bla genotypes and molecular epidemiology. Most CRKP isolates harboured multiple bla genes, especially those related to extended-spectrum beta-lactamases. Seven CRKP isolates were resistant to all tested carbapenems, and showed decreased ompK35 and/or ompK36 porin gene expression. Molecular typing of CRKP based on pulsed-field gel electrophoresis (PFGE) demonstrated several unrelated clones. Multilocus sequence typing (MLST) was partially concordant with PFGE results and revealed that ST340, a member of drug-resistant K. pneumoniae clonal complex 258, was the most predominant clone, followed by ST48, ST11 and ST273. The novel ST1645 was identified from this study. ST340 has neither been shown to be predominated among CRKP from other studies, nor been reported in Thailand. Therefore, it emphases a critical concern to monitor and control the spread of CRKP.  相似文献   

7.
Increasing reports of multidrug resistance conferred by conjugative plasmids of Enterobacteriaceae necessitate a better understanding of their evolution. One such group is the narrow-host-range IncI1 plasmid type, known for their ability to carry genes encoding resistance to extended-spectrum beta lactamases. The focus of this study was to perform comparative sequencing of IncI1 plasmids from porcine enterotoxigenic Escherichia coli (ETEC), isolated irrespective of antimicrobial susceptibility phenotype. Five IncI1 plasmids of porcine ETEC origin and one IncI1 plasmid from a Salmonella enterica serovar Kentucky isolate from a healthy broiler chicken were sequenced and compared to existing IncI1 plasmid sequences in an effort to better understand the overall genetic composition of the IncI1 plasmid lineages. Overall, the sequenced porcine ETEC IncI1 plasmids were divergent from other sequenced IncI1 plasmids based upon multiple means of inferred phylogeny. High occurrences of IncI1 and IncA/C plasmid-associated genes and the blaTEM and blaCMY-2 beta lactamase genes were observed among porcine ETEC. However, the presence of blaTEM and blaCMY-2 did not strongly correlate with IncI1 plasmid possession, suggesting that these plasmids in porcine ETEC are not primarily associated with the carriage of such resistance genes. Overall, this work suggests a conservation of the IncI1 plasmid backbone among sequenced plasmids with a single locus for the acquisition of accessory genes, such as those associated with antimicrobial resistance. Furthermore, the high occurrence of IncI1 and IncA/C plasmids among clinical E. coli from commercial swine facilities is indicative of extensive horizontal gene transfer among porcine ETEC.  相似文献   

8.
CTX-M-producing Escherichia coli is the predominant type of extended-spectrum β-lactamase (ESBL)-producing E. coli worldwide. In this study, molecular typing was conducted for 139 CTX-M-producing E. coli isolates, phenotypically positive for ESBLs, isolated from environmental water, swine, healthy humans, and hospitalized patients in Hangzhou, China. The antibiotic resistance profiles of the isolates for the cephalosporins and fluoroquinolones were determined. The isolates showed 100% resistance to cefotaxime and ceftriaxone while maintaining relatively high susceptibility to cefoxitin, cefepime, and ceftazidime. A total of 61.9% (86/139) of the isolates, regardless of origin, showed high resistance to fluoroquinolones. PCRs and DNA sequencing indicated that blaCTX-M-14 was the most prevalent CTX-M-9 group gene and that blaCTX-M-15 and blaCTX-M-55 were the dominant CTX-M-1 group genes. Isolates from all sources with CTX-M types belonging to the CTX-M-1 or CTX-M-9 group were most frequently associated with epidemics. Molecular homology analysis of the isolates, conducted by phylogenetic grouping, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST), demonstrated that the dominant clones belonged to B2-ST131, D-ST648, D-ST38, or A-CC10. These four sequence types (STs) were discovered in E. coli isolates both from humans and from environmental water, suggesting frequent and continuous intercompartment transmission between humans and the aquatic environment. Seven novel sequence types were identified in the current study. In conclusion, this study is the first to report the molecular homology analysis of CTX-M-producing E. coli isolates collected from water, swine, and healthy and hospitalized humans, suggesting that pathogens in the environment might originate both from humans and from animals.  相似文献   

9.
During a large hospital outbreak of OXA-48 producing bacteria, most K. pneumoniae OXA-48 isolates were phenotypically resistant to meropenem or imipenem, whereas most E. coli OXA-48 isolates were phenotypically susceptible to these antibiotics. In the absence of molecular gene-detection E. coli OXA-48 could remain undetected, facilitating cross-transmission and horizontal gene transfer of bla OXA-48. Based on 868 longitudinal molecular microbiological screening results from patients carrying K. pneumoniae OXA-48 (n = 24), E. coli OXA-48 (n = 17), or both (n = 40) and mathematical modelling we determined mean durations of colonisation (278 and 225 days for K. pneumoniae OXA-48 and E. coli OXA-48, respectively), and horizontal gene transfer rates (0.0091/day from K. pneumoniae to E. coli and 0.0015/day vice versa). Based on these findings the maximum effect of horizontal gene transfer of bla OXA-48 originating from E. coli OXA-48 on the basic reproduction number (R 0) is 1.9%, and it is, therefore, unlikely that phenotypically susceptible E. coli OXA-48 will contribute significantly to the spread of bla OXA-48.  相似文献   

10.
There is a global increase in infections caused by Enterobacteriaceae with plasmid-borne β-lactamases that confer resistance to third-generation cephalosporins. The epidemiology of these bacteria is not well understood, and was, therefore, investigated in a selection of 636 clinical Enterobacteriaceae with a minimal inhibitory concentration >1 mg/L for ceftazidime/ceftriaxone from a national survey (75% E. coli, 11% E. cloacae, 11% K. pneumoniae, 2% K. oxytoca, 2% P. mirabilis). Isolates were investigated for extended-spectrum β-lactamases (ESBLs) and ampC genes using microarray, PCR, gene sequencing and molecular straintyping (Diversilab and multi-locus sequence typing (MLST)). ESBL genes were demonstrated in 512 isolates (81%); of which 446 (87%) belonged to the CTX-M family. Among 314 randomly selected and sequenced isolates, bla CTX-M-15 was most prevalent (n = 124, 39%), followed by bla CTX-M-1 (n = 47, 15%), bla CTX-M-14 (n = 15, 5%), bla SHV-12 (n = 24, 8%) and bla TEM-52 (n = 13, 4%). Among 181 isolates with MIC ≥16 mg/L for cefoxitin plasmid encoded AmpCs were detected in 32 and 27 were of the CMY-2 group. Among 102 E. coli isolates with MIC ≥16 mg/L for cefoxitin ampC promoter mutations were identified in 29 (28%). Based on Diversilab genotyping of 608 isolates (similarity cut-off >98%) discriminatory indices of bacteria with ESBL and/or ampC genes were 0.994, 0.985 and 0.994 for E. coli, K. pneumoniae and E. cloacae, respectively. Based on similarity cut-off >95% two large clusters of E. coli were apparent (of 43 and 30 isolates) and 21 of 21 that were typed by belonged to ST131 of which 13 contained bla CTX-M-15. Our findings demonstrate that bla CTX-M-15 is the most prevalent ESBL and we report a larger than previously reported prevalence of ampC genes among Enterobacteriaceae responsible for resistance to third-generation cephalosporins.  相似文献   

11.
We characterized 12 clinical isolates of Klebsiella oxytoca with the extended-spectrum β-lactamase (ESBL) phenotype (high minimum inhibitory concentration [MIC] values of ceftriaxone) recovered over 9 months at a university hospital in Japan. To determine the clonality of the isolates, we used pulsed-field gel electrophoresis (PFGE), multi-locus sequence typing (MLST), and PCR analyses to detect bla RBI, which encodes the β-lactamase RbiA, OXY-2-4 with overproduce-type promoter. Moreover, we performed the isoelectric focusing (IEF) of β-lactamases, and the determination of the MICs of β-lactams including piperacillin/tazobactam for 12 clinical isolates and E. coli HB101 with pKOB23, which contains bla RBI, by the agar dilution method. Finally, we performed the initial screening and phenotypic confirmatory tests for ESBLs. Each of the 12 clinical isolates had an identical PFGE pulsotype and MLST sequence type (ST9). All 12 clinical isolates harbored identical bla RBI. The IEF revealed that the clinical isolate produced only one β-lactamase. E. coli HB101 (pKOB23) and all 12 isolates demonstrated equally resistance to piperacillin/tazobactam (MICs, >128 μg/ml). The phenotypic confirmatory test after the initial screening test for ESBLs can discriminate β-lactamase RbiA-producing K. oxytoca from β-lactamase CTX-M-producing K. oxytoca. Twelve clinical isolates of K. oxytoca, which were recovered from an outbreak at one university hospital, had identical genotypes and produced β-lactamase RbiA that conferred resistance to piperacillin/tazobactam. In order to detect K. oxytoca isolates that produce RbiA to promote research concerning β-lactamase RbiA-producing K. oxytoca, the phenotypic confirmatory test after the initial screening test for ESBLs would be useful.  相似文献   

12.
This study analyzed 42 Acinetobacter baumannii strains collected between 2009–2012 from different hospitals in Beyrouth and North Lebanon to better understand the epidemiology and carbapenem resistance mechanisms in our collection and to compare the robustness of pulsed field gel electrophoresis (PFGE), multilocus sequence typing (MLST), repetitive sequence-based PCR (rep-PCR) and bla OXA-51 sequence-based typing (SBT). Among 31 carbapenem resistant strains, we have detected three carbapenem resistance genes: 28 carried the bla OXA-23 gene, 1 the bla OXA-24 gene and 2 strains the bla OXA-58 gene. This is the first detection of bla OXA-23 and bla OXA-24 in Lebanon. PFGE identified 11 types and was the most discriminating technique followed by rep-PCR (9 types), bla OXA-51 SBT (8 types) and MLST (7 types). The PFGE type A''/ST2 was the dominant genotype in our collection present in Beyrouth and North Lebanon. The clustering agreement between all techniques was measured by adjust Wallace coefficient. An overall agreement has been demonstrated. High values of adjust Wallace coefficient were found with followed combinations: PFGE to predict MLST types  = 100%, PFGE to predict bla OXA-51 SBT = 100%, bla OXA-51 SBT to predict MLST = 100%, MLST to predict bla OXA-51 SBT = 84.7%, rep-PCR to predict MLST = 81.5%, PFGE to predict rep-PCR = 69% and rep-PCR to predict bla OXA-51 SBT = 67.2%. PFGE and MLST are gold standard methods for outbreaks investigation and population structure studies respectively. Otherwise, these two techniques are technically, time and cost demanding. We recommend the use of bla OXA-51 SBT as first typing method to screen isolates and assign them to their corresponding clonal lineages. Repetitive sequence-based PCR is a rapid tool to access outbreaks but careful interpretation of results must be always performed.  相似文献   

13.
Cloacal swabs from carcasses of Dutch wild birds obtained in 2010 and 2011 were selectively cultured on media with cefotaxime to screen for the presence of extended-spectrum β-lactamase (ESBL)/AmpC-producing Escherichia coli. Subsequently, all cefotaxime-resistant E. coli isolates were tested by broth microdilution and microarray. The presence of ESBL/AmpC and coexisting plasmid-mediated quinolone resistance (PMQR) genes was confirmed by PCR and sequencing. To determine the size of plasmids and the location of ESBL and PMQR genes, S1 pulsed-field gel electrophoresis (PFGE) was performed on transformants, followed by Southern blot hybridization. The study included 414 cloacal swabs originating from 55 different bird species. Cefotaxime-resistant E. coli isolates were identified in 65 birds (15.7%) from 21 different species. In all, 65 cefotaxime-resistant E. coli ESBL/AmpC genes were detected, mainly comprising variants of blaCTX-M and blaCMY-2. Furthermore, PMQR genes [aac(6)-lb-cr, qnrB1, and qnrS1] coincided in seven cefotaxime-resistant E. coli isolates. Overall, replicon typing of the ESBL/AmpC-carrying plasmids demonstrated the predominant presence of IncI1 (n = 31) and variants of IncF (n = 18). Our results indicate a wide dissemination of ESBL and AmpC genes in wild birds from The Netherlands, especially among aquatic-associated species (waterfowl, gulls, and waders). The identified genes and plasmids reflect the genes found predominantly in livestock animals as well as in humans.  相似文献   

14.
A total of 1135 carbapenem-resistant (nonsusceptible) Enterobacteriaceae (CRE) isolates were recovered between November 2010 and July 2012 (517 from 2010-2011 and 618 from 2012) from 4 hospitals in Taiwan. Carbapenemase-producing Enterobacteriaceae (CPE) comprised 5.0% (57 isolates), including 17 KPC-2 (16 Klebsiella pneumoniae and 1 Escherichia coli), 1 NDM-1 (K. oxytoca), 37 IMP-8 (26 Enterobacter cloacae, 4 Citrobacter freundii, 4 Raoultella planticola, 1 K. pneumoniae, 1 E. coli and 1 K. oxytoca), and 2 VIM-1 (1 E. cloacae, 1 E. coli). The KPC-2-positive K. pneumoniae were highly clonal even in isolates from different hospitals, and all were ST11. IMP-8 positive E. cloacae from the same hospitals showed higher similarity in PFGE pattern than those from different hospitals. A total of 518 CRE isolates (45.6%) were positive for bla ESBL, while 704 (62.0%) isolates were bla AmpC-positive, 382 (33.6% overall) of which carried both bla ESBL and bla AmpC. CTX-M (414, 80.0%) was the most common bla ESBL, while DHA (497, 70.6%) and CMY (157, 22.3%) were the most common bla AmpC. Co-carriage of bla ESBL and bla AmpC was detected in 31 (54.4%) and 15 (26.3%) of the 57 CPE, respectively. KPC-2 was the most common carbapenemase detected in K. pneumoniae (2.8%), while IMP-8 was the most common in E. cloacae (9.7%). All KPC-2-positive CRE were resistant to all three tested carbapenems. However, fourteen of the 37 IMP-8-positive CRE were susceptible to both imipenem and meropenem in vitro. Intra- and inter-hospital spread of KPC-2-producing K. pneumoniae and IMP-8-producing E. cloacae likely occurred. Although the prevalence of CPE is still low, careful monitoring is urgently needed. Non-susceptibility to ertapenem might need to be considered as one criterion of definition for CRE in areas where IMP type carbapenemase is prevalent.  相似文献   

15.
In the present study, we have shown that virulence-resistance plasmids from emerging multidrug-resistant isolates of Salmonella enterica serovar Typhimurium were derived from a virulence-associated plasmid, essential for systematic invasiveness of S. Typhimurium in mice (pSLT), through acquisition of a large insert containing a resistance island flanked by IS1294 elements. A bla CMY-2-carrying plasmid from a cefotaxime-resistant isolate comprised a segment of Escherichia coli plasmid pAR060302 and the replication region (IncFIB) of a virulence-resistance plasmid. These results provide insights into the evolution of drug resistance in emerging clones of S. Typhimurium.  相似文献   

16.
Escherichia coli sequence type 131 (E. coli ST131) is a recently emerged and globally disseminated multidrug resistant clone associated with urinary tract and bloodstream infections. Plasmids represent a major vehicle for the carriage of antibiotic resistance genes in E. coli ST131. In this study, we determined the complete sequence and performed a comprehensive annotation of pEC958, an IncF plasmid from the E. coli ST131 reference strain EC958. Plasmid pEC958 is 135.6 kb in size, harbours two replicons (RepFIA and RepFII) and contains 12 antibiotic resistance genes (including the bla CTX-M-15 gene). We also carried out hyper-saturated transposon mutagenesis and multiplexed transposon directed insertion-site sequencing (TraDIS) to investigate the biology of pEC958. TraDIS data showed that while only the RepFII replicon was required for pEC958 replication, the RepFIA replicon contains genes essential for its partitioning. Thus, our data provides direct evidence that the RepFIA and RepFII replicons in pEC958 cooperate to ensure their stable inheritance. The gene encoding the antitoxin component (ccdA) of the post-segregational killing system CcdAB was also protected from mutagenesis, demonstrating this system is active. Sequence comparison with a global collection of ST131 strains suggest that IncF represents the most common type of plasmid in this clone, and underscores the need to understand its evolution and contribution to the spread of antibiotic resistance genes in E. coli ST131.  相似文献   

17.
Third-generation cephalosporin resistance of Salmonella and commensal Escherichia coli isolates from cattle in the United States is predominantly conferred by the cephamycinase CMY-2, which inactivates β-lactam antimicrobial drugs used to treat a wide variety of infections, including pediatric salmonellosis. The emergence and dissemination of blaCMY-2--bearing plasmids followed and may in part be the result of selection pressure imposed by the widespread utilization of ceftiofur, a third-generation veterinary cephalosporin. This study assessed the potential effects of ceftiofur on blaCMY-2 transfer and dissemination by (i) an in vivo experimental study in which calves were inoculated with competent blaCMY-2-bearing plasmid donors and susceptible recipients and then subjected to ceftiofur selection and (ii) an observational study to determine whether ceftiofur use in dairy herds is associated with the occurrence and frequency of cephalosporin resistance in Salmonella and commensal E. coli. The first study revealed blaCMY-2 plasmid transfer in both ceftiofur-treated and untreated calves but detected no enhancement of plasmid transfer associated with ceftiofur treatment. The second study detected no association (P = 0.22) between ceftiofur use and either the occurrence of ceftiofur-resistant salmonellosis or the frequency of cephalosporin resistance in commensal E. coli. However, herds with a history of salmonellosis (including both ceftiofur-resistant and ceftiofur-susceptible Salmonella isolates) used more ceftiofur than herds with no history of salmonellosis (P = 0.03) These findings fail to support a major role for ceftiofur use in the maintenance and dissemination of blaCMY-2-bearing plasmid mediated cephalosporin resistance in commensal E. coli and in pathogenic Salmonella in these dairy cattle populations.The major mechanism of third-generation cephalosporin resistance among U.S. human and veterinary clinical isolates of Salmonella enterica subsp. enterica is the beta-lactamase CMY-2 (12, 17, 43, 44, 46). blaCMY-2, which likely originated from the chromosomal AmpC locus of Citrobacter freundii, is disseminated among a group of similar plasmids harbored by diverse Enterobacteriaceae species (1, 2, 20, 26, 30, 31, 42, 45). In Salmonella, blaCMY-2-bearing plasmids have been observed in more than 30 serovars, notably including serovar Newport, which has gained specific attention from public health officials as a rapidly emerging threat (2, 6, 31).Commensal Escherichia coli frequently harbors blaCMY-2-bearing plasmids (15, 33, 44), and these plasmids may be transferable to pathogens, since blaCMY-2 plasmids isolated from E. coli and S. enterica share extensive sequence similarity in addition to the blaCMY-2 open reading frame (5, 12, 42, 44). This transfer may occur in the gastrointestinal tracts of cattle, where these bacterial species periodically coexist and where transconjugants may be subjected to specific antimicrobial selection pressure. In fact, in vivo transfer of blaCMY-2 in the gastrointestinal tract has been reported between a Klebsiella pneumoniae blaCMY-2 plasmid donor and a Salmonella enterica serovar Typhimurium isolate in cattle and goats (29).Ceftiofur is the only third-generation cephalosporin antimicrobial drug that is used in cattle production systems and is labeled for the treatment of pneumonia, postpartum metritis, necrotizing pododermatitis, and mastitis. Two ceftiofur preparations, ceftiofur sodium (Naxcel) and ceftiofur hydrochloride (Excenel) (Pfizer Animal Health, New York, NY), are unique in the veterinary pharmacopeia because they require no withholding and discard of milk collected from treated cows, making them frequent therapeutic choices in lactating animals (19, 35). Ceftiofur was licensed in 1988 (41) and its resistance in Salmonella spp. isolated from U.S. cattle, presumably conferred by blaCMY-2, was first documented in 1998 (6).The effects of ceftiofur use on selection of blaCMY-2-bearing commensal E. coli has been examined for cattle both epidemiologically and experimentally. Tragesser et al. studied 18 Ohio dairy herds and determined that the 11 herds that used ceftiofur in any capacity (labeled indications and/or extralabel use) were 25 times more likely to have E. coli with reduced susceptibility to ceftriaxone (an expected blaCMY-2 phenotype) than the seven herds that reported no ceftiofur use (40). Interestingly, however, within eight herds that had detailed treatment records, no association was detected between the prevalence of E. coli with reduced susceptibility to ceftriaxone and use of ceftiofur on an individual-animal basis (40). In an experimental study by Jiang et al., ceftiofur administered to dairy calves was correlated with a 14% increase in ceftriaxone-resistant fecal E. coli compared to untreated controls (21). Together, these studies show a correlation between selection pressure within the gastrointestinal tracts at the individual-animal level and show that ceftiofur use may promote the dissemination of resistance in commensal E. coli at the whole-herd level.Whether or not ceftiofur treatment directly affects in vivo horizontal transfer of blaCMY-2-bearing elements among E. coli and Salmonella has yet to be addressed. The diversity of blaCMY-2 plasmid-bearing bacterial hosts is consistent with wide dissemination of this genetic element. One hypothesis that could explain this wide dissemination is that ceftiofur may itself promote the in vivo horizontal transfer of blaCMY-2-bearing plasmids. Specifically, due to the relatively slow bactericidal activity of aminothiazolyl cephalosporins such as ceftiofur, it has been suggested that exposure to these compounds promotes filament formation in gram-negative bacteria prior to cell death that may increase the surface area and increase receptiveness of the cells for resistance plasmids (11).Because blaCMY-2 may be disseminated by horizontal transfer of R plasmids and/or clonal expansion of individual strains, we examined the effect of ceftiofur use on these processes with two approaches; the first approach specifically considered the issue of horizontal transfer in an experimental in vivo calf model, while the second approach, a field study, assessed the overall relationship between ceftiofur use and blaCMY-2 prevalence in the primary agricultural animal niche where it is used.  相似文献   

18.
19.
《Genomics》2021,113(6):3523-3532
Serratia marcescens is a global spread nosocomial pathogen. This rod-shaped bacterium displays a broad host range and worldwide geographical distribution. Here we analyze an international collection of this multidrug-resistant, opportunistic pathogen from 35 countries to infer its population structure. We show that S. marcescens comprises 12 lineages; Sm1, Sm4, and Sm10 harbor 78.3% of the known environmental strains. Sm5, Sm6, and Sm7 comprise only human-associated strains which harbor smallest pangenomes, genomic fluidity and lowest levels of core recombination, indicating niche specialization. Sm7 and Sm9 lineages exhibit the most concerning resistome; blaKPC-2 plasmid is widespread in Sm7, whereas Sm9, also an anthropogenic-exclusive lineage, presents highest plasmid/lineage size ratio and plasmid-diversity encoding metallo-beta-lactamases comprising blaNDM-1. The heterogeneity of resistance patterns of S. marcescens lineages elucidated herein highlights the relevance of surveillance programs, using whole-genome sequencing, to provide insights into the molecular epidemiology of carbapenemase producing strains of this species.  相似文献   

20.

Background

Spread of the bla NDM-1 gene that encodes the New Delhi metallo-β-lactamase (NDM-1) in Enterobacteriaceae is a major global health problem. Plasmids carrying bla NDM-1 from two different multi-drug resistant Klebsiella pneumonia isolates collected in Singapore were completely sequenced and compared to known plasmids carrying bla NDM-1.

Methodology/Principal Findings

The two plasmids, pTR3 and pTR4, were transferred to Escherichia coli recipient strain J53 and completely sequenced by a shotgun approach using 3-kb paired-end libraries on 454. Although the K. pneumoniae strains were unrelated by molecular typing using PFGE and MLST, complete sequencing revealed that pTR3 and pTR4 are identical. The plasmid sequence is similar to the E. coli NDM-1-encoding plasmid p271A, which was isolated in Australia from a patient returning from Bangladesh. The immediate regions of the bla NDM-1 gene in pTR3/4 are identical to that of p271A, but the backbone of our plasmid is much more similar to another IncN2 plasmid reported recently, pJIE137, which contained an additional 5.2-kb CUP (conserved upstream repeat) regulon region in comparison to p271A. A 257-bp element bounded by imperfect 39-bp inverted repeats (IR) and an incomplete version of this element flanking the 3.6-kb NDM-1-encoding region were identified in these plasmids and are likely to be the vestiges of an unknown IS.

Conclusions

Although the hosts are not epidemiologically linked, we found that the plasmids bearing the bla NDM-1 gene are identical. Comparative analyses of the conserved NDM-1-encoding region among different plasmids from K. pneumoniae and E. coli suggested that the transposable elements and the two unknown IR-associated elements flanking the NDM-1-encoding region might have aided the spreading of this worrisome resistance determinant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号