首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
MicroRNA (miRNA) binds to the 3′-UTR of its target mRNAs to repress protein synthesis. Extensive research was done to understand the mechanism of miRNA-mediated repression in animal cells. Considering the progress in understanding the mechanism, information about the subcellular sites of miRNA-mediated repression is surprisingly limited. In this study, using an inducible expression system for an miRNA target message, we have delineated how a target mRNA passes through polysome association and Ago2 interaction steps on rough endoplasmic reticulum (ER) before the miRNA-mediated repression sets in. From this study, de novo formed target mRNA localization to the ER-bound polysomes manifested as the earliest event, which is followed by Ago2 micro-ribonucleoprotein binding, and translation repression of target message. Compartmentalization of this process to rough ER membrane ensures enrichment of miRNA-targeted messages and micro-ribonucleoprotein components on ER upon reaching a steady state.  相似文献   

4.
在蛋白质合成过程中,除核糖体、氨酰 tRNA和mRNA外,还有多种翻译因子参与其中。真核翻译起始因子5A(eukaryotic translation initiation factor 5A, eIF5A)是维持细胞活性必不可少的翻译因子,在进化上高度保守。eIF5A是真核细胞中唯一含有羟腐胺赖氨酸(hypusine)的蛋白质,该翻译后修饰对eIF5A的活性至关重要。1978年,人们首次鉴定出eIF5A,认为它在翻译起始阶段促进第1个肽键的形成。直到2013年才证实它主要在翻译延伸阶段调控含多聚脯氨酸基序蛋白质的翻译。在经过四十多年研究后,人们对eIF5A的功能有了新的认识。近期基于核糖体图谱数据的分析表明,eIF5A能够缓解翻译延伸过程中核糖体在多种基序处的停滞,并不局限于多聚脯氨酸基序,并且它还能够通过促进肽链的释放增强翻译终止。此外,eIF5A还可以通过调控某些蛋白质的翻译,间接影响细胞内的各种生命活动。本文综述了eIF5A的多种翻译后修饰、在蛋白质合成和细胞自噬过程中的调控作用以及与人类疾病的关系,并与细菌及古细菌中的同源蛋白质进行了比较,探讨了该因子在进化中的保守性,以期为相关领域的研究提供一定的理论基础。  相似文献   

5.
6.
7.
8.
9.
Reperfusion after global brain ischemia results initially in a widespread suppression of protein synthesis in neurons that is due to inhibition of translation initiation as a result of the phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 (eIF2). To address the role of the eIF2alpha kinase RNA-dependent protein kinase-like endoplasmic reticulum kinase (PERK) in the reperfused brain, transgenic mice with a targeted disruption of the Perk gene were subjected to 20 min of forebrain ischemia followed by 10 min of reperfusion. In wild-type mice, phosphorylated eIF2alpha was detected in the non-ischemic brain and its levels were elevated threefold after 10 min of reperfusion. Conversely, there was no phosphorylated eIF2alpha detected in the non-ischemic transgenic mice and there was no sizeable rise in phosphorylated eIF2alpha levels in the forebrain after ischemia and reperfusion. Moreover, there was a substantial rescue of protein translation in the reperfused transgenic mice. Neither group showed any change in total eIF2alpha, phosphorylated eukaryotic elongation factor 2 or total eukaryotic elongation factor 2 levels. These data demonstrate that PERK is responsible for the large increase in phosphorylated eIF2alpha and the suppression of translation early in reperfusion after transient global brain ischemia.  相似文献   

10.
11.
The endoplasmic reticulum (ER)-resident protein kinase PERK is a major component of the unfolded protein response (UPR), which promotes the adaptation of cells to various forms of stress. PERK phosphorylates the α subunit of the translation initiation factor eIF2 at serine 51, a modification that plays a key role in the regulation of mRNA translation in stressed cells. Several studies have demonstrated that the PERK-eIF2α phosphorylation pathway maintains insulin biosynthesis and glucose homeostasis, facilitates tumor formation and decreases the efficacy of tumor treatment with chemotherapeutic drugs. Recently, a selective catalytic PERK inhibitor termed GSK2656157 has been developed with anti-tumor properties in mice. Herein, we provide evidence that inhibition of PERK activity by GSK2656157 does not always correlate with inhibition of eIF2α phosphorylation. Also, GSK2656157 does not always mimic the biological effects of the genetic inactivation of PERK. Furthermore, cells treated with GSK2656157 increase eIF2α phosphorylation as a means to compensate for the loss of PERK. Using human tumor cells impaired in eIF2α phosphorylation, we demonstrate that GSK2656157 induces ER stress-mediated death suggesting that the drug acts independent of the inhibition of eIF2α phosphorylation. We conclude that GSK2656157 might be a useful compound to dissect pathways that compensate for the loss of PERK and/or identify PERK pathways that are independent of eIF2α phosphorylation.  相似文献   

12.
13.
胰腺癌是一种致死率相当高的消化系统肿瘤,其起病隐蔽导致早期诊断困难。近期研究发现,内质网应激 (endoplasmic reticulum stress,ERS) 状态下的未折叠蛋白反应 (unfolded protein response,UPR) 通路的调节作用,对于胰腺癌发生发展至关重要。UPR通路伴侣蛋白 GRP78 抑制了胰腺导管腺癌 (pancreatic adenocarcinoma,PDAC)细胞的凋亡,并增强了其化学抗性和耐药性。而 UPR 途径及其调节因子对于血管内皮生长因子 (vascular endothelial growth factor,VEGF) 的调节作用,有助于胰腺癌抵抗缺血缺氧环境。尝试靶向 UPR 途径关键调节因子的药物来控制胰腺癌的研究,可以为胰腺癌的治疗开辟新的途径。本文通过对近年来 UPR 在胰腺癌发生发展中的作用及意义进行综述,希望为通过调控 UPR 通路作为针对治疗胰腺癌的关键过程的一种新型抗癌方法研究提供参考。  相似文献   

14.
Hypusine modification of the eukaryotic initiation factor 5A (eIF-5A) is emerging as a crucial regulator in cancer, infections, and inflammation. Although its contribution in translational regulation of proline repeat-rich proteins has been sufficiently demonstrated, its biological role in higher eukaryotes remains poorly understood. To establish the hypusine modification system as a novel platform for therapeutic strategies, we aimed to investigate its functional relevance in mammals by generating and using a range of new knock-out mouse models for the hypusine-modifying enzymes deoxyhypusine synthase and deoxyhypusine hydroxylase as well as for the cancer-related isoform eIF-5A2. We discovered that homozygous depletion of deoxyhypusine synthase and/or deoxyhypusine hydroxylase causes lethality in adult mice with different penetrance compared with haploinsufficiency. Network-based bioinformatic analysis of proline repeat-rich proteins, which are putative eIF-5A targets, revealed that these proteins are organized in highly connected protein-protein interaction networks. Hypusine-dependent translational control of essential proteins (hubs) and protein complexes inside these networks might explain the lethal phenotype observed after deletion of hypusine-modifying enzymes. Remarkably, our results also demonstrate that the cancer-associated isoform eIF-5A2 is dispensable for normal development and viability. Together, our results provide the first genetic evidence that the hypusine modification in eIF-5A is crucial for homeostasis in mammals. Moreover, these findings highlight functional diversity of the hypusine system compared with lower eukaryotes and indicate eIF-5A2 as a valuable and safe target for therapeutic intervention in cancer.  相似文献   

15.
Epidemiological studies implicate dietary soy isoflavones as breast cancer preventives, especially due to their anti-estrogenic properties. However, soy isoflavones may also have a role in promoting breast cancer, which has yet to be clarified. We previously reported that equol, a metabolite of the soy isoflavone daidzein, may advance breast cancer potential via up-regulation of the eukaryotic initiation factor 4GI (eIF4GI). In estrogen receptor negative (ER−) metastatic breast cancer cells, equol induced elevated levels of eIF4G, which were associated with increased cell viability and the selective translation of mRNAs that use non-canonical means of initiation, including internal ribosome entry site (IRES), ribosome shunting, and eIF4G enhancers. These mRNAs typically code for oncogenic, survival, and cell stress molecules. Among those mRNAs translationally increased by equol was the oncogene and eIF4G enhancer, c-Myc. Here we report that siRNA-mediated knockdown of c-Myc abrogates the increase in cancer cell viability and mammosphere formation by equol, and results in a significant down-regulation of eIF4GI (the major eIF4G isoform), as well as reduces levels of some, but not all, proteins encoded by mRNAs that are translationally stimulated by equol treatment. Knockdown of eIF4GI also markedly reduces an equol-mediated increase in IRES-dependent mRNA translation and the expression of specific oncogenic proteins. However, eIF4GI knockdown did not reciprocally affect c-Myc levels or cell viability. This study therefore implicates c-Myc as a potential regulator of the cancer-promoting effects of equol via up-regulation of eIF4GI and selective initiation of translation on mRNAs that utilize non-canonical initiation, including certain oncogenes.  相似文献   

16.
目的 锻炼是延缓衰老的有效策略,本工作的目的在于探索锻炼是如何在细胞器水平影响内质网的氧化还原状态,以及内质网氧化还原状态是否影响个体衰老。方法 利用定位于内质网响应过氧化氢的Hyperion探针检测线虫衰老过程中及经过游泳运动后体壁肌肉内质网的氧化还原状态。通过在线虫内质网中特异过表达哺乳动物过氧化氢酶的同源基因ctl-1构建内质网特异的还原应激模型,研究了内质网还原应激对个体衰老的影响。线虫的健康状态以线虫寿命、身体摆动次数及对压力的响应能力为判断指标进行表征。结果 用HyperionER探针检测发现,衰老线虫的内质网中过氧化氢水平相比与年轻线虫显著降低,表明内质网在衰老过程中发生了还原应激。线虫经过短时90 min游泳运动及长时期4 d (3次+3次+2次+2次,90 min/次)的游泳运动都可以增加内质网的氧化力。相比于对照,内质网还原应激的线虫寿命缩短,身体摆动次数降低,应对压力的响应能力下降,表明内质网还原应激加速线虫衰老。进一步研究发现,长时期的锻炼可以提高内质网的氧化力,缓解衰老相关的内质网还原应激,经过锻炼的第8天的线虫运动活力显著高于未锻炼的第...  相似文献   

17.
The endoplasmic reticulum (ER) is a functionally and morphologically complex cellular organelle largely responsible for a variety of crucial functions, including protein folding, maturation and degradation. Furthermore, the ER plays an essential role in lipid biosynthesis, dynamic Ca2+ storage, and detoxification. Malfunctions in ER‐related processes are responsible for the genesis and progression of many diseases, such as heart failure, cancer, neurodegeneration and metabolic disorders. To fulfill many of its vital functions, the ER relies on a sufficient energy supply in the form of adenosine‐5′‐triphosphate (ATP), the main cellular energy source. Despite landmark discoveries and clarification of the functional principles of ER‐resident proteins and key ER‐related processes, the mechanism underlying ER ATP transport remains somewhat enigmatic. Here we summarize ER‐related ATP‐consuming processes and outline our knowledge about the nature and function of the ER energy supply.  相似文献   

18.
Eukaryotic translation initiation factor eIF2B, the guanine nucleotide exchange factor (GEF) for eIF2, catalyzes conversion of eIF2·GDP to eIF2·GTP. The eIF2B is composed of five subunits, α, β, γ, δ and ε, within which the ε subunit is responsible for catalyzing the guanine exchange reaction. Here we present the crystal structure of the C-terminal domain of human eIF2Bε (eIF2Bε-CTD) at 2.0-Å resolution. The structure resembles a HEAT motif and three charge-rich areas on its surface can be identified. When compared to yeast eIF2Bε-CTD, one area involves highly conserved AA boxes while the other two are only partially conserved. In addition, the previously reported mutations in human eIF2Bε-CTD, which are related to the loss of the GEF activity and human VWM disease, have been discussed. Based on the structure, most of such mutations tend to destabilize the HEAT motif.  相似文献   

19.
Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury.  相似文献   

20.
Hydrogen sulfide (H2S) is an endogenously produced gaseous molecule with important roles in cellular signaling. In mammals, exogenous H2S improves survival of ischemia/reperfusion. We have previously shown that exposure to H2S increases the lifespan and thermotolerance in Caenorhabditis elegans, and improves protein homeostasis in low oxygen. The mitochondrial SQRD-1 (sulfide quinone oxidoreductase) protein is a highly conserved enzyme involved in H2S metabolism. SQRD-1 is generally considered important to detoxify H2S. Here, we show that SQRD-1 is also required to maintain protein translation in H2S. In sqrd-1 mutant animals, exposure to H2S leads to phosphorylation of eIF2α and inhibition of protein synthesis. In contrast, global protein translation is not altered in wild-type animals exposed to lethally high H2S or in hif-1(ia04) mutants that die when exposed to low H2S. We demonstrate that both gcn-2 and pek-1 kinases are involved in the H2S-induced phosphorylation of eIF2α. Both ER and mitochondrial stress responses are activated in sqrd-1 mutant animals exposed to H2S, but not in wild-type animals. We speculate that SQRD-1 activity in H2S may coordinate proteostasis responses in multiple cellular compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号