首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Invasive species and habitat disturbance threaten biodiversity worldwide by modifying ecosystem performance and displacing native organisms. Similar homogenization impacts manifest locally when urbanization forces native species to relocate or reinvade perpetually altered habitat. This study investigated correlations between ant richness and abundance in response to urbanization and the nearby presence of invasive ant species, odorous house ants (Tapinoma sessile), within its native region. Surveying localized ant composition within natural, semi-natural, and urban habitat supported efforts to determine whether T. sessile appear to be primary (drivers) threats as instigators or secondary (passengers) threats as inheritors of indigenous ant decline. Sampling 180 sites, evenly split between all habitats with and without T. sessile present, yielded 45 total species. Although urbanization and T. sessile presence factors were significantly linked to ant decline, their interaction correlated to the greatest reduction of total ant richness (74%) and abundance (81%). Total richness appeared to decrease from 27 species to 18 when natural habitat is urbanized and from 18 species to 7 with T. sessile present in urban plots. Odorous house ant presence minimally influenced ant communities within natural and semi-natural habitat, highlighting the importance of habitat alteration and T. sessile presence interactions. Results suggest urbanization releases T. sessile from unknown constraints by decreasing ant richness and competition. Within urban environment, T. sessile are pre-adapted to quickly exploit new resources and grow to supercolony strength wherein T. sessile drive adjacent biodiversity loss. Odorous house ants act as passengers and drivers of ecological change throughout different phases of urban ‘invasion’. This progression through surviving habitat alteration, exploiting new resources, thriving, and further reducing interspecific competition supports a “back-seat driver” role and affects pest management strategies. As demonstrated by T. sessile, this article concludes native species can become back-seat drivers of biodiversity loss and potentially thrive as “metro-invasive” species.  相似文献   

2.
屈霄  刘晗  阳敏  辛未  王伟民  陈宇顺 《生态学报》2022,42(24):10029-10040
理解城镇的快速发展对河流鱼类群落结构的影响,是城镇河流科学管理和生物多样性保护的关键基础。本研究于2019年丰水期(8月)和枯水期(11月),选取我国城镇化典型城市-深圳域内两个处于不同城镇化程度的代表性流域,应用多重统计方法比较分析了流域间鱼类群落结构的差异,并探讨了驱动鱼类群落变异的关键环境要素。结果发现,城镇化程度高的观澜河流域其鱼类种类组成、优势类群、生物多样性指数与城镇化程度低的坪山河流域有明显差别。 具体表现为:城镇化程度高的流域土著敏感种类如异鱲、吸鳅等几近消失,优势类群为外来入侵耐受种类,其物种多样性显著低于城镇化程度低的流域(P<0.05)。同时,外来鱼类在城镇河段其数量占比平均达92.5%,广泛分布于深圳城镇河流中。在环境因素方面,城镇化程度高的观澜河流域水体理化指标总氮、总磷、氨氮、化学需氧量、生化需氧量、高锰酸盐指数均显著性高于城镇化程度低的坪山河流域(P<0.05)。基于Bray-Curtis距离的冗余分析显示:城镇用地占比和总氮是影响观澜河和坪山河流域鱼类群落差异的主要因素。城镇化进程中河流生境的改变已影响到土著鱼类的生物多样性。因此,推动以恢复土著鱼类生物多样性的河流生态治理与保护是今后水生态目标管理的重要方向。  相似文献   

3.
Urbanization is a global process contributing to the loss and fragmentation of natural habitats. Many studies have focused on the biological response of terrestrial taxa and habitats to urbanization. However, little is known regarding the consequences of urbanization on freshwater habitats, especially small lentic systems. In this study, we examined aquatic macro‐invertebrate diversity (family and species level) and variation in community composition between 240 urban and 782 nonurban ponds distributed across the United Kingdom. Contrary to predictions, urban ponds supported similar numbers of invertebrate species and families compared to nonurban ponds. Similar gamma diversity was found between the two groups at both family and species taxonomic levels. The biological communities of urban ponds were markedly different to those of nonurban ponds, and the variability in urban pond community composition was greater than that in nonurban ponds, contrary to previous work showing homogenization of communities in urban areas. Positive spatial autocorrelation was recorded for urban and nonurban ponds at 0–50 km (distance between pond study sites) and negative spatial autocorrelation was observed at 100–150 km and was stronger in urban ponds in both cases. Ponds do not follow the same ecological patterns as terrestrial and lotic habitats (reduced taxonomic richness) in urban environments; in contrast, they support high taxonomic richness and contribute significantly to regional faunal diversity. Individual cities are complex structural mosaics which evolve over long periods of time and are managed in diverse ways. This facilitates the development of a wide range of environmental conditions and habitat niches in urban ponds which can promote greater heterogeneity between pond communities at larger scales. Ponds provide an opportunity for managers and environmental regulators to conserve and enhance freshwater biodiversity in urbanized landscapes whilst also facilitating key ecosystem services including storm water storage and water treatment.  相似文献   

4.
The proliferation of non-native species in North American freshwater ecosystems is considered a primary threat to the integrity of native community structure. However, a general understanding of consistent and predictable impacts of non-native species on native freshwater diversity is limited, in part, because of a lack of broad-scale studies including data from numerous localities across multiple drainages. This study uses data from 751 localities collected during the United States Geological Survey (USGS) National Water Quality Assessment (NAWQA) program to examine the influence of non-native fish species on native freshwater fish assemblages across the United States. In general, no significant differences in native fish richness and diversity measures were detected between sites with only native species and sites containing non-native species. However, at sites with non-native species, the number of non-native species present was negatively correlated with native species richness and Shannon diversity and positively correlated with native evenness. Non-native piscivores were negatively correlated with native species richness and Shannon diversity and positively correlated with native evenness. Native piscivores were positively correlated with native richness and diversity and negatively correlated with native evenness at sites with only native species. Our results suggest that from a superficial perspective, native species richness and diversity are not different among sites with and without non-native species. However, when patterns of native species richness and diversity are examined at sites containing non-native species, correlations between non-native and native species richness and diversity imply the expected negative effect of invasive taxa. Additionally, non-native piscivores appear to have a significant negative effect on native taxa and possibly represent a novel selective force on naive native prey.  相似文献   

5.
The increasing conversion of agricultural and natural areas to human‐dominated urban landscapes is predicted to lead to a major decline in biodiversity worldwide. Two conditions that typically differ between urban environments and the surrounding landscape are increased temperature, and high patch isolation and habitat turnover rates. However, the extent and spatial scale at which these altered conditions shape biotic communities through selection and/or filtering on species traits are currently poorly understood. We sampled carabid beetles at 81 sites in Belgium using a hierarchically nested sampling design wherein three local‐scale (200 × 200 m) urbanization levels were repeatedly sampled across three landscape‐scale (3 × 3 km) urbanization levels. First, we showed that communities sampled in the most urbanized locations and landscapes displayed a distinct species composition at both local and landscape scale. Second, we related community means of species‐specific thermal preferences and dispersal capacity (based on European distribution and wing morphology, respectively) to the urbanization gradients. We showed that urban communities consisted on average of species with a preference for higher temperatures and with better dispersal capacities compared to rural communities. These shifts were caused by an increased number of species tolerating higher temperatures, a decreased richness of species with low thermal preference, and an almost complete depletion of species with very low‐dispersal capacity in the most urbanized localities. Effects of urbanization were most clearly detected at the local scale, although more subtle effects could also be found at the scale of entire landscapes. Our results demonstrate that urbanization may fundamentally and consistently alter species composition by exerting a strong filtering effect on species dispersal characteristics and favouring replacement by warm‐dwelling species.  相似文献   

6.
Fish communities were sampled at 14 sites along the lower 120km of the Fraser River, British Columbia by beach seine four times in 1972–1973 and three times in 1993–1994. Of the 37 species collected, peamouth chub, largescale sucker, starry flounder, and northern squawfish were predominant in either density or biomass. Densities and biomass of most species and all fish combined were higher in 1993–1994. Strong rank correlations of species abundance or biomass indicated that the overall fish community structure was very similar in both periods. At smaller spatial scales (reaches of 2–3 sites) and shorter time scales (by season), less than half the comparisons showed any significant correlation indicating changes in community composition. Largescale sucker, one of the largest contributors to biomass in both periods, showed decreased abundance, i.e., lower density, lower biomass, and large differences in the size-frequency distribution, specifically very low representation of small size classes. Other species, especially small-bodied forms, generally increased in numbers. Despite large changes in the lower Fraser River ecosystem in the past 21 years, the overall fish community has shown remarkably little change over that interval.  相似文献   

7.
Urban areas suffer high pressure of introductions of alien species compared to other habitats due to intensive human activities. As trading globally continues to rise, more species will likely be introduced into urban areas. To determine whether this increase in introduction pressure will lead to increased alien species richness in urban areas, or whether other processes would act to impose an upper limit on species richness, we examined how the shape of the relationship between alien species richness and the number of introduced species over time (i.e. introduction pressure) varies along gradients of urbanization. We collected species composition data from urban bird surveys worldwide and used a global database of alien bird introductions to quantify how many species have been introduced over time at different sites. We found that urbanization gradually modified the shape of the studied relationship from linear to asymptotic. Only communities in extremely urbanized environments were associated with an asymptotic relationship, suggesting that alien bird richness has likely not reached its ecological limit in most urban areas. Our results show that urbanization can reduce the importance of introduction pressure in determining alien species richness. Additionally, the results predict that alien species richness will increase at finer spatial scales, especially if the introduced species can survive in urban areas outside of their native range.  相似文献   

8.
Understanding how urbanization alters functional interactions among pollinators and plants is critically important given increasing anthropogenic land use and declines in pollinator populations. Pollinators often exhibit short‐term specialization and visit plants of the same species during one foraging trip. This facilitates plant receipt of conspecific pollen—pollen on a pollinator that is the same species as the plant on which the pollinator was foraging. Conspecific pollen receipt facilitates plant reproductive success and is thus important to plant and pollinator persistence. We investigated how urbanization affects short‐term specialization of insect pollinators by examining pollen loads on insects’ bodies and identifying the number and species of pollen grains on insects caught in urban habitat fragments and natural areas. We assessed possible drivers of differences between urban and natural areas, including frequency dependence in foraging, species richness and diversity of the plant and pollinator communities, floral abundance, and the presence of invasive plant species. Pollinators were more specialized in urban fragments than in natural areas, despite no differences in the species richness of plant communities across site types. These differences were likely driven by higher specialization of common pollinators, which were more abundant in urban sites. In addition, pollinators preferred to forage on invasive plants at urban sites and native plants at natural sites. Our findings reveal indirect effects of urbanization on pollinator fidelity to individual plant species and have implications for the maintenance of plant species diversity in small habitat fragments. Higher preference of pollinators for invasive plants at urban sites suggests that native species may receive fewer visits by pollinators. Therefore, native plant species diversity may decline in urban sites without continued augmentation of urban flora or removal of invasive species.  相似文献   

9.
The growing human enterprise has sparked greater interest in identifying ecological thresholds in land use conversion beyond which populations or communities demonstrate abrupt nonlinear or substantive change in species composition. Such knowledge remains fundamental to understanding ecosystem resilience to environmental degradation and informing land use planning into the future. Confronting this challenge has been largely limited to inferring thresholds in univariate metrics of species richness and indices of biotic integrity and has largely ignored how land use legacies of the past may shape community responses of today. By leveraging data for 13,069 riverine sites from temperate, subtropical, and boreal climate zones on four continents, we characterize patterns of community change along diverse gradients of urbanization and agricultural land use, and identity threshold values beyond which significant alterations in species composition exists. Our results demonstrate the apparent universality by which freshwater fish communities are sensitive to even low levels of watershed urbanization (range of threshold values: 1%–12%), but consistently higher (and more variable) levels of agricultural development (2%–37%). We demonstrated that fish community compositional thresholds occurred, in general, at lower levels of watershed urbanization and agriculture when compared to threshold responses in species richness. This supports the notion that aggregated taxon‐specific responses may better reflect the complexity of assemblage responses to land use development. We further revealed that the ghost of land use past plays an important role in moderating how current‐day fish communities respond to land use intensification. Subbasins of the United States experiencing greater rates of past land use change demonstrated higher current‐day thresholds. Threshold responses of community composition, such as those identified in our study, illustrate the need for globally coordinated efforts to prioritize country‐specific management and policy initiatives that ensure that freshwater fish diversity is not inevitably lost in the future.  相似文献   

10.
We explore the effect of land‐use change from extensively used grasslands to intensified silvi‐ and agricultural monocultures on metacommunity structure of native forests in Uruguay. We integrated methods from metacommunity studies, remote sensing, and landscape ecology to explore how woody species distribution was influenced by land‐use change from local to regional scale. We recorded richness and composition of adult and juvenile woody species from 32 native forests, created land‐use maps from satellite image to calculate spatial metrics at landscape, class, and patch levels. We also analyzed the influence of land use pattern, climate, topography, and geographic distance between sites (d) on metacommunity, and created maps to visualize species richness and (dis)similarity between communities across the country. Woody species communities were distributed in a discrete pattern across Uruguay. Precipitation and temperature seasonality shaped species distribution pattern. Species richness and community dissimilarity increased from West to East. Latitude did not influence these patterns. Number of patches, landscape complexity, and interspersion and juxtaposition indexes determine woody species distribution at landscape level. Increasing areas covered by crops and timber plantation reduced species richness and increased community dissimilarity. The spatial metrics of native forest fragments at patch level did not influence metacommunity structure, species richness, and community dissimilarity. In conclusion, Uruguayan native forests display a high range of dissimilarity. Pressure of neighborhood land uses was the predominant factor for species assemblages. Conserving landscape structures that assure connectivity within and among native forest patches is crucial. On sites with rare target species, the creation of alliances between governmental institution and landowner complemented by incentives for biodiversity conservation provides opportunities to advance in species protection focused on those less tolerant to land‐use change.  相似文献   

11.
We examined changes in the distribution of 9 native and 18 introduced freshwater fishes in the south-eastern Pyrenees watershed, Iberian Peninsula, using data from 1996, 1984–1988 and historical information. This region suffers many modifications to its freshwater ecosystems that are linked to human activity in the Mediterranean regions. Fish communities, stream physical habitat and environmental degradation were assessed at 168 sites from 11 basins in 1996. Seven native species (78%) showed decline from previous data, one of which became extirpated in the first half of the 20th century. On the other hand, introduced species are expanding. As a consequence, intact native communities are increasingly rare, declining from presence in 22% of river courses in 1984–1988 to 15% in 1996. The most typical community type is a mixture of native and introduced species occupying 30% of river courses. Stream degradation seems to be the main cause of this process because fish communities differed between degraded streams and streams suffering less impact. A principal component analysis showed that water pollution and modifications to the habitat were the two anthropogenic factors that accounted for most changes in the fish community integrity. Habitat alteration, primarily through construction of dams and water diversions, has fragmented habitats and isolated native fish communities in headwater streams. Current protection measures do not offer effective conservation of threatened species and communities. A global conservation and restoration programme from an ecosystem-based approach is essential to reverse the trend affecting native freshwater fishes in this Mediterranean region.  相似文献   

12.
Because species invasions are a principal driver of the human-induced biodiversity crisis, the identification of the major determinants of global invasions is a prerequisite for adopting sound conservation policies. Three major hypotheses, which are not necessarily mutually exclusive, have been proposed to explain the establishment of non-native species: the “human activity” hypothesis, which argues that human activities facilitate the establishment of non-native species by disturbing natural landscapes and by increasing propagule pressure; the “biotic resistance” hypothesis, predicting that species-rich communities will readily impede the establishment of non-native species; and the “biotic acceptance” hypothesis, predicting that environmentally suitable habitats for native species are also suitable for non-native species. We tested these hypotheses and report here a global map of fish invasions (i.e., the number of non-native fish species established per river basin) using an original worldwide dataset of freshwater fish occurrences, environmental variables, and human activity indicators for 1,055 river basins covering more than 80% of Earth's surface. First, we identified six major invasion hotspots where non-native species represent more than a quarter of the total number of species. According to the World Conservation Union, these areas are also characterised by the highest proportion of threatened fish species. Second, we show that the human activity indicators account for most of the global variation in non-native species richness, which is highly consistent with the “human activity” hypothesis. In contrast, our results do not provide support for either the “biotic acceptance” or the “biotic resistance” hypothesis. We show that the biogeography of fish invasions matches the geography of human impact at the global scale, which means that natural processes are blurred by human activities in driving fish invasions in the world's river systems. In view of our findings, we fear massive invasions in developing countries with a growing economy as already experienced in developed countries. Anticipating such potential biodiversity threats should therefore be a priority.  相似文献   

13.
Several studies have demonstrated a latitudinal gradient in the proportion of omnivorous fish species (that is, consumers of both vegetal and animal material) in marine ecosystems. To establish if this global macroecological pattern also exists in fresh and brackish waters, we compared the relative richness of omnivorous fish in freshwater, estuarine, and marine ecosystems at contrasting latitudes. Furthermore, we sought to determine the main environmental correlates of change in fish omnivory. We conducted a meta-analysis of published data focusing on change in the relative richness of omnivorous fishes in native fish communities along a broad global latitudinal gradient, ranging from 41°S to 81.5 N° including all continents except for Antarctica. Data from streams, rivers, lakes, reservoirs, estuaries, and open marine waters (ca. 90 papers covering 269 systems) were analyzed. Additionally, the relationship between the observed richness in omnivory and key factors influencing trophic structure were explored. For all ecosystems, we found a consistent increasing trend in the relative richness of omnivores with decreasing latitude. Furthermore, omnivore richness was higher in freshwaters than in marine ecosystems. Our results suggest that the observed latitudinal gradient in fish omnivory is a global ecological pattern occurring in both freshwater and marine ecosystems. We hypothesize that this macroecological pattern in fish trophic structure is, in part, explained by the higher total fish diversity at lower latitudes and by the effect of temperature on individual food intake rates; both factors ultimately increasing animal food limitation as the systems get warmer.  相似文献   

14.
Aim To assess spatial relationships between avian community similarity and level of urbanization. We tested the following hypotheses for taxonomic similarity: Hypothesis A – the decline in taxonomic similarity with distance is stronger for the least urbanized locations compared to the most urbanized locations; Hypothesis B – the converse of Hypothesis A; and Hypothesis C – the decline in taxonomic similarity with distance is stronger for the most and least urbanized locations compared to locations with intermediate levels of urbanization. We also determined if increasing urbanization led to increased functional similarity within bird communities. Location South‐eastern Australia. Methods Bird species occurrence and density were sampled across 18 towns and 72 neighbourhoods occupying a spatial gradient of up to 882 km. We calculated pairwise values in taxonomic similarity among each town and neighbourhood using the Sørenson coefficient and a similarity measure that accounts for differences in species richness among locations. These values were plotted against pairwise distances among towns and neighbourhoods using linear regression to measure similarity–distance relationships. Neighbourhoods were categorized into four levels of urban development based on dwelling density, urban intensity, vegetation cover, or the density of native, nectar‐rich plants. Variation in bird species density across neighbourhoods and frequency of occurrence across broad habitat types (habitat specialization) was used to assess functional similarity of bird communities in each neighbourhood. Results Among the 18 towns, the decline in taxonomic similarity with distance was weak and significantly less than among regional bird communities that occurred within a 1° grid square around each town. Among the 72 neighbourhoods, similarity–distance relationships differed substantially depending on the level of urban development. Generally, the strongest decline in similarity with distance was for neighbourhoods with the highest and lowest dwelling density, urban intensity and vegetation cover, supporting Hypothesis C. The functional similarity of bird communities increased significantly with dwelling density, and decreased significantly with an increasing density of nectar plants. Main conclusions At the town level, urbanization appears to homogenize regional bird communities. Among neighbourhoods, similarity–distance relationships are substantially influenced by the level of urban development, and increasing urbanization leads to greater functional similarity within bird communities.  相似文献   

15.
Fish species richness decreases with salinity in tropical coastal lagoons   总被引:2,自引:0,他引:2  
Aim To analyse the relationship between fish species richness and salinity, and to provide a simple linear model for fish diversity trends across salinity gradients in a tropical coastal lagoon that can be compared with other similar ecosystems and other communities. To reinforce our conclusions, the salinity–fish richness relationship was investigated at different spatial scales (sampling station, set of stations and whole lagoon) and for two different periods, separated by 18 years. Location The Terminos coastal lagoon, a shallow tropical lagoon (mean maximum depths ranging between 3.5 and 4.5 m), is located in the southern Gulf of Mexico (18.5–18.8° N, 91.3–91.9° W). The lagoon is 70 km long and 30 km wide, with a surface area of 1700 km2. Methods Fish sampling, individual identification to the species level, and environmental variable measurements were carried out monthly at 17 sampling points. Multiple regression analysis with a backward selection procedure was used to relate fish species richness to environmental variables. Other statistical techniques, including cluster analysis and ancova , were applied to experimental data surveys. Results Among the different environmental variables, salinity was significantly and consistently related to fish species richness, whatever the period and the scale of observation. We found mainly significant negative correlations (P < 0.05) between fish species richness and salinity when sampling stations were analysed individually, and particularly for the river runoff zones with high variation in salinity throughout the year. For the entire lagoon, robust negative linear models were observed when fish species richness was organized into salinity ranges, with salinity explaining c. 8% of the variation in mean fish species richness (in a multiple regression analysis; 63–93% when considered in isolation). Main conclusions In the Terminos lagoon the relationship between fish species richness and salinity is mainly negative on any spatial scale. This result may be due partially to the penetration of freshwater fishes into estuarine areas following freshwater discharges, and partially to the dominance of estuarine taxa more able to tolerate low than high salinity values. Finally, we suggest that the ‘realized’ ecotone, where species from different origins really mix, is situated between 5 and 10‰, corresponding to the highest fish richness.  相似文献   

16.
Disease‐mediated threats posed by exotic species to native counterparts are not limited to introduced parasites alone, since exotic hosts frequently acquire native parasites with possible consequences for infection patterns in native hosts. Several biological and geographical factors are thought to explain both the richness of parasites in native hosts, and the invasion success of free‐living exotic species. However, the determinants of native parasite acquisition by exotic hosts remain unknown. Here, we investigated native parasite communities of exotic freshwater fish to determine which traits influence acquisition of native parasites by exotic hosts. Model selection suggested that five factors (total body length, time since introduction, phylogenetic relatedness to the native fish fauna, trophic level and native fish species richness) may be linked to native parasite acquisition by exotic fish, but 95% confidence intervals of coefficient estimates indicated these explained little of the variance in parasite richness. Based on R2‐values, weak positive relationships may exist only between the number of parasites acquired and either host size or time since introduction. Whilst our results suggest that factors influencing parasite richness in native host communities may be less important for exotic species, it seems that analyses of general ecological factors currently fail to adequately incorporate the physiological and immunological complexity of whether a given animal species will become a host for a new parasite.  相似文献   

17.

Background

Large-scale inter-basin water transfer (IBWT) projects are commonly proposed as solutions to water distribution and supply problems. These problems are likely to intensify under future population growth and climate change scenarios. Scarce data on the distribution of freshwater fishes frequently limits the ability to assess the potential implications of an IBWT project on freshwater fish communities. Because connectivity in habitat networks is expected to be critical to species'' biogeography, consideration of changes in the relative isolation of riverine networks may provide a strategy for controlling impacts of IBWTs on freshwater fish communities.

Methods/Principal Findings

Using empirical data on the current patterns of freshwater fish biodiversity for rivers of peninsular India, we show here how the spatial changes alone under an archetypal IBWT project will (1) reduce freshwater fish biodiversity system-wide, (2) alter patterns of local species richness, (3) expand distributions of widespread species throughout peninsular rivers, and (4) decrease community richness by increasing inter-basin similarity (a mechanism for the observed decrease in biodiversity). Given the complexity of the IBWT, many paths to partial or full completion of the project are possible. We evaluate two strategies for step-wise implementation of the 11 canals, based on economic or ecological considerations. We find that for each step in the project, the impacts on freshwater fish communities are sensitive to which canal is added to the network.

Conclusions/Significance

Importantly, ecological impacts can be reduced by associating the sequence in which canals are added to characteristics of the links, except for the case when all 11 canals are implemented simultaneously (at which point the sequence of canal addition is inconsequential). By identifying the fundamental relationship between the geometry of riverine networks and freshwater fish biodiversity, our results will aid in assessing impacts of IBWT projects and balancing ecosystem and societal demands for freshwater, even in cases where biodiversity data are limited.  相似文献   

18.
Aim To better understand how environmental factors affect fish species richness across the state of Oregon. Location Oregon, U.S.A. Methods A database showing collection locations of 4911 fish specimens in the Oregon State University museum was modified by the Oregon Natural Heritage Program to include probable occurrences, and mapped within a grid of 375 hexagons that cover the state. The individual species maps of freshwater fish in Oregon were reviewed and revised by thirty regional fish biologists and then synthesized into a single map of native species richness. We used regression tree analysis (RTA) and multiple linear regression (MLR) to assess patterns of fish species richness with twenty environmental, three anthropogenic, and two historical variables. Results RTA explained 66% of the variation in native species richness, associating richness with annual air temperature range, minimum January temperature, introduced species richness, and stream density. MLR explained 68% of native species richness variation and associated richness with maximum July temperature, air temperature range, standard deviation of monthly temperature, stream density, introduced species richness, and basin connectivity. Main conclusions We conclude that for these data and at this scale, native fish species richness in Oregon is associated with annual climatic extremes, spatial variability of climate, stream density, basin connectivity, and introduced fishes.  相似文献   

19.
Previous studies suggest that urbanization alters the abundance and species richness of native insects on remnant habitat patches. However, the effects of urbanization on biological communities caused by habitat loss and fragmentation have not been separated from effects caused by altered habitat quality within remnant habitats or by the nature of the urban matrix. To test for an effect of urbanization acting via altered habitat quality or matrix characteristics, we controlled for the effects of habitat loss and fragmentation by comparing remnant habitat patches in urban and agricultural regions experiencing similar levels of habitat loss and fragmentation. We studied the species richness and abundance of the community of leaf-mining Lepidoptera on Quercus agrifolia in the San Francisco Bay Area. We measured the extent of five land-use types within a 500 m radius of each study patch. We built generalized linear models to determine if the extent of any of the landscape variables was associated with the species richness and abundance of the leaf-miner community. The extent of urbanization was not associated with species richness or total abundance. However, the abundance of three species of leaf-mining moths was associated with the extent of urbanization, but not in a consistent pattern. The abundances of Stigmella variella and Bucculatrix albertiella were higher and the abundance of Dryseriocrania auricyanea was lower at highly urbanized sites. The absence of a consistent association between urban land-use and both species richness and abundance indicates that the effects of urbanization on the community of leaf-mining moths of Q. agrifolia do not differ from the effects of replacing and fragmenting habitats with similar amounts of agricultural land-uses.  相似文献   

20.
Late summer myxozoan infra- and component communities parasitizing 73 Notropis hudsonius at 5 sites on the St. Lawrence River upstream and downstream from the island of Montreal are described from study of histological sections of individual fish. Community membership included Myxobolus sp. A (intracellular in striated muscle fibers), Myxobolus sp. B (intracellular in striated muscle fibers), Myxobolus sp. C (brain), and Thelohanellus notatus (Mavor, 1916) Kudo, 1929 (loose connective tissue), all of which are histozoic myxobolids displaying strict tissue specificity for trophozoite development. Mean infracommunity richness in fish at the separate localities was estimated to be 0.4 +/- 0.5 to 1.3 +/- 0.7, with a maximum richness of 3 in any 1 fish. Component community richness in host samples was 2 to 4. It is argued that these are relatively high levels of diversity for freshwater fish parasites but that the values are probably conservative because of the study of only portions of individual fish. The percentage of fish infected with myxozoans of any species and infracommunity richness was significantly greater below the island of Montreal compared with above it. It is suspected that increased oligochaete populations at these sites, resulting from sewage-caused organic enrichment of sediments, may have accounted for the observed increased prevalence of infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号