首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
1. Body size is highly correlated with physiological traits, fitness, and trophic interactions. These traits are subject to change if there are widespread reductions of body size with warming temperatures, which is suggested as one of the ‘universal’ ecological responses to climate change. However, general patterns of body size response to temperature in insects have not yet emerged. 2. To address this knowledge gap, we paired the wing length (as a proxy for body size) of 5331 museum specimens of 14 species of British Odonata with historical temperature data. Three sets of analyses were performed: (i) a regression analysis to test for a relationship between wing length and mean seasonal temperature within species and subsequent comparisons across species and suborders; (ii) an investigation of whether the body size of species has an effect on sensitivity to warming temperature; and (iii) a linear-mixed effects model to investigate factors that potentially affect temperature–size response. 3. The regression analysis indicated that wing length is negatively correlated with mean seasonal temperatures for Zygoptera, whereas Anisoptera showed no significant correlation with temperature. 4. There is a significant decline in wing length of all Zygoptera (but not Anisoptera) with collection date, suggesting that individuals emerging later in the season are smaller. 5. Life-cycle type was not important for predicting wing length–temperature responses, whereas sex, species, and suborder were indicated as important factors affecting the magnitude of temperature–size responses in Odonata. 6. Overall, wing lengths of Zygoptera are more sensitive to temperature and collection date than Anisoptera.  相似文献   

2.

Aim

Recent evidence has shown changes in body size and shape of individuals, which are suggested to be a result of global warming caused by climate change. Here, we explored the spatiotemporal changes in wing length and body mass of 24 wintering bird species in Northern Europe and how these relate to temperature anomaly.

Location

Finland and Sweden, Europe.

Time Period

50 years, 1970 to 2020.

Major Taxa Studied

Birds, 24 species.

Methods

We used site-specific, long-term winter ringing data containing wing length and body mass measurements from across Sweden and Finland for 24 bird species. We modelled wing length and body mass change over time, in relation to the spatioclimatic gradient and as response to temperature anomalies (of [i] the same winter as the ringing took place, [ii] the previous winter and [iii] the previous spring) by accounting for phylogenetic relatedness between species and their species-specific responses to each predictor of interest.

Results

We show that across all species, body size has decreased since the 1970s, with a negative relationship between wing length and temperature anomalies of previous winters, suggesting carry-over effects likely linked to body size-related survival or dispersal. Body mass was negatively related to the temperature anomaly of the same winter, indicating more immediate effects related to reduced fat reserves during mild winters.

Main Conclusions

Our results highlight a climate-driven decrease in body size across several species and its association with positive anomalies in winter temperature in the high latitudes. However, the responses are not spatially uniform and there is considerable species-specific variation, emphasizing the importance of conducting multispecies studies when investigating responses to climate change. The mechanisms of decreasing wing length and body mass seem to differ and underline the immediate and carry-over effects of temperature warming during the nonbreeding season.  相似文献   

3.
Increasing temperatures associated with climate change are predicted to cause reductions in body size, a key determinant of animal physiology and ecology. Using a four‐decade specimen series of 70 716 individuals of 52 North American migratory bird species, we demonstrate that increasing annual summer temperature over the 40‐year period predicts consistent reductions in body size across these diverse taxa. Concurrently, wing length – an index of body shape that impacts numerous aspects of avian ecology and behaviour – has consistently increased across species. Our findings suggest that warming‐induced body size reduction is a general response to climate change, and reveal a similarly consistent and unexpected shift in body shape. We hypothesise that increasing wing length represents a compensatory adaptation to maintain migration as reductions in body size have increased the metabolic cost of flight. An improved understanding of warming‐induced morphological changes is important for predicting biotic responses to global change.  相似文献   

4.
Fecundity and body size are central fitness-related traits, and their intra-specific responses to environmental variation are receiving increasing attention in the context of climate change. Recent results from Greenland indicate that temporal and spatial variation in body size differences between sexes (sexual size dimorphism) may be widespread among wolf spider species and could be related to climate. Here, we tested whether variation in elevation affected body size of three wolf spider (Araneae: Lycosidae) species in low-Arctic Canada, whether the sexes differed in their response to the cline, and whether changes in local density influenced this relationship. We also tested whether fecundity changed with elevation in two of the species, independent of body size variation. We found a significant sex–elevation interaction for Pardosa lapponica: female size decreased more in response to elevation than that of males. Males and females of Pardosa uintana decreased significantly in size with elevation at a similar rate. Alopecosa aculeata males increased in body size along the gradient while females did not. Pardosa lapponica females, but not P. uintana females, showed significant reduction in fecundity in response to elevation. P. uintana showed significant decreases in body size with increases in its population density. Changes in temperature and potential resource availability along the elevational gradient are probably causing these species- and sex-specific responses. Further summer warming of the region may alleviate current constraints on growth and reproduction of these species although sex-specific responses may affect their population dynamics.  相似文献   

5.
1. Climate change is expected to produce shifts in species distributions as well as behavioural, life-history, and/or morphological adaptations to find suitable conditions or cope with the altered environment. Most of our knowledge on this issue comes from studies on vertebrates, mainly endotherm species. However, it remains uncertain how small ectotherms, such as insects, respond to increased temperature. 2. This study tested whether climate change over the last 100 years (1904–2013) has affected morphological and functional traits in workers of the social wasp Dolichovespula sylvestris in the Iberian Peninsula. 3. Head width and forewing length, as well as body mass and wing area (assuming no change in shape), decreased over time and with increased mean annual temperature, even when controlling for geographical location and altitude. Interestingly, wing size decreased with a steeper slope compared with body size. If there is no change in wing shape, this would lead to an invariable wing loading (body mass:wing area ratio) over time, with potential consequences on flying ability of more recent (and thus smaller) wasp individuals. 4. These results suggest that recent climate change is leaving morphological signatures in social wasps, increasing the evidence for this phenomenon in insects. The data furthermore suggest that the known efficient thermoregulatory ability of social insect colonies may not successfully buffer the effect of global warming.  相似文献   

6.
We examined influences on wing and body size in 11 species (12 strains) of Drosophila. Six measures of wing length and width were closely correlated with wing area and suggested little variation in wing shape among the species. Among ten species wing loading, an important factor in flight costs and manoeuvrability, increased as body mass increased at a rate consistent with expectations from allometric scaling of wing area and body mass to body length. Intraspecific variation in wing loading showed similar relationships to body mass. Density and temperature during larval development influenced wing loading through general allometric relations of body size and wing area. Temperature during the pupal stage, but not during wing hardening after eclosion, influenced wing area independently of body size. Wing area increased as growth temperature decreased. Individuals reared at cooler temperatures thus compensated for a potential allometric increase in wing loading by differentially enlarging the wing area during pupal development.  相似文献   

7.
Alongside well researched shifts in species' distributions and phenology, reduction in the body size of organisms has been suggested as a third universal response to contemporary climate change. Despite mounting evidence for declining body size, several recent reviews highlight studies reporting increases in body size or no change over time. This variability in response may derive from the geographic scale of contributing studies, masking species‐level responses to broad‐scale environmental change and instead reflecting local influences on single populations. Using museum specimens, we examine temporal patterns of body size of 24 Australian passerine species, sampling multiple populations across the geographic ranges of each species between 1960 and 2007. Generalised additive models indictated that the majority (67%) of species showed important inter‐annual body size variation, and there was striking cross‐species similarity in temporal size patterns. Most displayed near‐linear or linear, unidirectional size trends, suggesting a pervasive and directional change in environmental conditions, consistent with climate change. For species showing linear size responses, the absolute rate of size change ranged between 0.016 and 0.114% of body size (wing length) per year, consistent with studies on other continents. Overall, 38% (9/24) of species showed temporal declines in body size and 21% (5/24) showed increases, consistent with the variability and direction of size responses thus far documented among populations; declining body size is a pervasive response to climate change but it is not universal.  相似文献   

8.
Changes in morphology have been postulated as one of the responses of animals to global warming, with increasing ambient temperatures leading to decreasing body size. However, the results of previous studies are inconsistent. Problems related to the analyses of trends in body size may be related to the short-term nature of data sets, to the selection of surrogates for body size, to the appropriate models for data analyses, and to the interpretation as morphology may change in response to ecological drivers other than climate and irrespective of size. Using generalized additive models, we analysed trends in three morphological traits of 4529 specimens of eleven bird species collected between 1889 and 2010 in southern Germany and adjacent areas. Changes and trends in morphology over time were not consistent when all species and traits were considered. Six of the eleven species displayed a significant association of tarsus length with time but the direction of the association varied. Wing length decreased in the majority of species but there were few significant trends in wing pointedness. Few of the traits were significantly associated with mean ambient temperatures. We argue that although there are significant changes in morphology over time there is no consistent trend for decreasing body size and therefore no support for the hypothesis of decreasing body size because of climate change. Non-consistent trends of change in surrogates for size within species indicate that fluctuations are influenced by factors other than temperature, and that not all surrogates may represent size appropriately. Future analyses should carefully select measures of body size and consider alternative hypotheses for change.  相似文献   

9.
Declining body size is believed to be a universal response to climate warming and has been documented in numerous studies of marine and anadromous fishes. The Salmonidae are a family of coldwater fishes considered to be among the most sensitive species to climate warming; however, whether the shrinking body size response holds true for freshwater salmonids has yet to be examined at a broad spatial scale. We compiled observations of individual fish lengths from long-term surveys across the Northern Hemisphere for 12 species of freshwater salmonids and used linear mixed models to test for spatial and temporal trends in body size (fish length) spanning recent decades. Contrary to expectations, we found a significant increase in length overall but with high variability in trends among populations and species. More than two-thirds of the populations we examined increased in length over time. Secondary regressions revealed larger-bodied populations are experiencing greater increases in length than smaller-bodied populations. Mean water temperature was weakly predictive of changes in body length but overall minimal influences of environmental variables suggest that it is difficult to predict an organism's response to changing temperatures by solely looking at climatic factors. Our results suggest that declining body size is not universal, and the response of fishes to climate change may be largely influenced by local factors. It is important to know that we cannot assume the effects of climate change are predictable and negative at a large spatial scale.  相似文献   

10.
Reduction in body size is a major response to climate change, yet evidence in globally imperiled amphibians is lacking. Shifts in average population body size could indicate either plasticity in the growth response to changing climates through changes in allocation and energetics, or through selection for decreased size where energy is limiting. We compared historic and contemporary size measurements in 15 Plethodon species from 102 populations (9450 individuals) and found that six species exhibited significant reductions in body size over 55 years. Biophysical models, accounting for actual changes in moisture and air temperature over that period, showed a 7.1–7.9% increase in metabolic expenditure at three latitudes but showed no change in annual duration of activity. Reduced size was greatest at southern latitudes in regions experiencing the greatest drying and warming. Our results are consistent with a plastic response of body size to climate change through reductions in body size as mediated through increased metabolism. These rapid reductions in body size over the past few decades have significance for the susceptibility of amphibians to environmental change, and relevance for whether adaptation can keep pace with climate change in the future.  相似文献   

11.
Reaction norms to growth temperature of two size-related traits, wing and thorax length, were compared in tropical (West Indies) and temperate (France) populations of the two sibling species, Drosophila melanogaster and D. simulans. A major body size difference was found in D. melanogaster, with much smaller Caribbean flies, while D. simulans exhibited little size variation between geographical populations. The concave norms of reaction were adjusted to second- or third-degree polynomials, and characteristic points calculated i.e. maximum value (MV) and temperature of maximum value (TMV). TMVs were confirmed to be higher for thorax than for wing length, higher in D. melanogaster than in D. simulans, and higher in females than in males. For both traits Caribbean populations exhibited higher TMVs in the two species, strongly suggesting an adaptive shift of the reaction norms toward higher temperature in warm-adapted populations. The wing/thorax ratio was also analysed, and found to be significantly lower in tropical populations of both species. This ratio, which is related to wing loading and flight capacity, might evolve independently of body weight itself.  相似文献   

12.
In the sibling species Drosophila melanogaster and D. simulans, growth and development at constant temperatures, from 12 to 30 °C, resulted in extensive variations of adult size and flight parameters with significant differences between species. Changes in body weight, thorax length and wing length were nonlinear, with maximum values of each trait at lower temperatures for D. simulans than for its sibling species. By contrast, the wing/thorax ratio and the wing loading varied monotonically with growth temperature. These traits were negatively correlated, the wing/thorax ratio decreasing with growth temperature while the wing loading increased. Wing/thorax ratio, which is easier to measure, thus appears as a convenient predictor of wing loading. During tethered flight at the same ambient temperature, the wingbeat frequency changed linearly as a function of the wing moment of inertia. More interestingly, the beat rate was strongly correlated with the increase of wing loading at growth temperature above 13 °C. The likely adaptive significance of these morphometrical changes for flight efficiency is discussed.  相似文献   

13.
Intraspecific latitudinal clines in the body size of terrestrial vertebrates, where members of the same species are larger at higher latitudes, are widely interpreted as evidence for natural selection and adaptation to local climate. These clines are predicted to shift in response to climate change. We used museum specimens to measure changes in the body size of eight passerine bird species from south-eastern Australia over approximately the last 100 years. Four species showed significant decreases in body size (1.8–3.6% of wing length) and a shift in latitudinal cline over that period, and a meta-analysis demonstrated a consistent trend across all eight species. Southern high-latitude populations now display the body sizes typical of more northern populations pre-1950, equivalent to a 7° shift in latitude. Using ptilochronology, we found no evidence that these morphological changes were a plastic response to changes in nutrition, a likely non-genetic mechanism for the pattern observed. Our results demonstrate a generalized response by eight avian species to some major environmental change over the last 100 years or so, probably global warming.  相似文献   

14.
In contrast to crop plants and terrestrial herbaceous plants, aquatic plants have raised only modest interest among scientists working on climate change. However, climate change studies on emergent macrophytes can be justified with their crucial role in the ecosystem functioning of aquatic habitats. Here we present the results of a three-year study on the growth response of Equisetum fluviatile, a prominent littoral species of boreal lakes, to elevated CO2 (doubled to 600–700 ppm) and temperature (increased 2.5–3 °C). Our findings reveal that temperature effects on this species were far more distinct than the effects of CO2, and no interactions of temperature and CO2 were observed. Temperature increase had a positive effect on the emergence of shoots and shoot length growth as well as on the maximum length of shoots. Maximum biomass was also positively affected by temperature. The enhancing effects of temperature were carried over to the next growing season. CO2 enrichment also affected the maximum length of shoots, but the effect was negative. In addition, some response to CO2 in fertility was observed, but again the effect of temperature was more obvious. Exposure to CO2 enrichment seemed to have some positive effects on the belowground biomass of E. fluviatile, although this response was not very clear. Thus, we speculate that in the future climate this species will grow faster and the littoral stands will produce more shoot biomass.  相似文献   

15.
In many taxa, environmental changes that alter resource availability and energetics, such as climate change and land use change, are associated with changes in body size. We use wing length as a proxy for overall structural body size to examine a paradoxical trend of declining wing length within a Yellowhammer Emberiza citrinella population sampled over 21 years, in which it has been previously shown that longer wings are associated with higher survival rates. Higher temperatures during the previous winter (prior to the moult determining current wing length) explained 23% of wing length decrease within our population, but changes may also be correlated with non‐climatic environmental variation such as changes in farming mechanisms linked to food availability. We found no evidence for within‐individual wing length shrinkage with age, but our data suggested a progressive decline in the sizes of immature birds recruiting to the population. This trend was weaker, although not significantly so, among adults, suggesting that the decline in the sizes of recruits was offset by higher subsequent survival of larger birds post‐recruitment. These data suggest that ecological processes can contribute more than selection to observed phenotypic trends and highlight the importance of long‐term studies for providing longitudinal insights into population processes.  相似文献   

16.
Reaction norms across three temperatures of development were measured for thorax length, wing length and wing length/thorax length ratio for ten isofemale lines from each of two populations of Drosophila aldrichi and D. buzzatii. Means for thorax and wing length in both species were larger at 24 °C than at either 18 °C or 31 °C, with the reduction in size at 18 °C most likely due to a nutritional constraint. Although females were larger than males, the sexes were not different for wing length/thorax length ratio. The plasticity of the traits differed between species and between populations of each species, with genetic variation in plasticity similar for the two species from one locality, but much higher for D. aldrichi from the other. Estimates of heritabilities for D. aldrichi generally were higher at 18 °C and 24 °C than at 31 °C, but for D. buzzatii they were highest at 31 °C, although heritabilities were not significantly different between species at any temperature. Additive genetic variances for D. aldrichi showed trends similar to that for heritability, being highest at 18 °C and decreasing as temperature increased. For D. buzzatii, however, additive genetic variances were lowest at 24 °C. These results are suggestive that genetic variation for body size characters is increased in more stressful environments. Thorax and wing lengths showed significant genetic correlations that were not different between the species, but the genetic correlations between each of these traits and their ratio were significantly different. For D. aldrichi, genetic variation in the wing length/thorax length ratio was due primarily to variation in thorax length, while for D. buzzatii, it was due primarily to variation in wing length. The wing length/thorax length ratio, which is the inverse of wing loading, decreased linearly as temperature increased, and it is suggested that this ratio may be of greater adaptive significance than either of its components.  相似文献   

17.
Parallel latitudinal clines to the long-standing ones in the original Palearctic populations have independently evolved at different rates for chromosomal polymorphism and body size in South and North American populations of Drosophila subobscura since colonization around 25 years ago. This strongly suggests that (micro) evolutionary changes are largely predictable, but the underlying mechanisms are unknown. The putative role of temperature per se was investigated by using three sets of populations at each of three temperatures (13 degrees , 18 degrees , and 22 degrees C) spanning much of the tolerable range for this species. We found a lower chromosomal diversity at the warmest temperature; a quick and consistent shift in gene arrangement frequencies in response to temperature; an evolutionary decrease in wing size, mediated by both cell area and cell number, at 18 degrees C; no relationship between wing size and those inversions involved in latitudinal clines; and a shortening of the basal length of longitudinal vein IV relative to its total length with increasing standard dose. The trends for chromosomal polymorphism and body size were generally inconsistent from simple climatic-based explanations of worldwide latitudinal patterns. The findings are discussed in the light of available information on D. subobscura and results from earlier thermal selection experiments with various Drosophila species.  相似文献   

18.
Habitat change in Rhodnius spp may represent an environmental challenge for the development of the species, particularly when feeding frequency and population density vary in nature. To estimate the effect of these variables in stability on development, the degree of directional asymmetry (DA) and fluctuating asymmetry (FA) in the wing size and shape of R. prolixus and R. robustus–like were measured under laboratory controlled conditions. DA and FA in wing size and shape were significant in both species, but their variation patterns showed both inter-specific and sexual dimorphic differences in FA of wing size and shape induced by nutrition stress. These results suggest different abilities of the genotypes and sexes of two sylvatic and domestic genotypes of Rhodnius to buffer these stress conditions. However, both species showed non-significant differences in the levels of FA between treatments that simulated sylvan vs domestic conditions, indicating that the developmental noise did not explain the variation in wing size and shape found in previous studies. Thus, this result confirm that the variation in wing size and shape in response to treatments constitute a plastic response of these genotypes to population density and feeding frequency.  相似文献   

19.
The pace of climate change in the Arctic is dramatic, with temperatures rising at a rate double the global average. The timing of flowering and fruiting (phenology) is often temperature dependent and tends to advance as the climate warms. Herbarium specimens, photographs, and field observations can provide historical phenology records and have been used, on a localised scale, to predict species’ phenological sensitivity to climate change. Conducting similar localised studies in the Canadian Arctic, however, poses a challenge where the collection of herbarium specimens, photographs, and field observations have been temporally and spatially sporadic. We used flowering and seed dispersal times of 23 Arctic species from herbarium specimens, photographs, and field observations collected from across the 2.1 million km2 area of Nunavut, Canada, to determine (1) which monthly temperatures influence flowering and seed dispersal times; (2) species’ phenological sensitivity to temperature; and (3) whether flowering or seed dispersal times have advanced over the past 120 years. We tested this at different spatial scales and compared the sensitivity in different regions of Nunavut. Broadly speaking, this research serves as a proof of concept to assess whether phenology–climate change studies using historic data can be conducted at large spatial scales. Flowering times and seed dispersal time were most strongly correlated with June and July temperatures, respectively. Seed dispersal times have advanced at double the rate of flowering times over the past 120 years, reflecting greater late‐summer temperature rises in Nunavut. There is great diversity in the flowering time sensitivity to temperature of Arctic plant species, suggesting climate change implications for Arctic ecological communities, including altered community composition, competition, and pollinator interactions. Intraspecific temperature sensitivity and warming trends varied markedly across Nunavut and could result in greater changes in some parts of Nunavut than in others.  相似文献   

20.
  1. Traits that are significant to the thermal ecology of temperate or montane species are expected to prominently co-vary with the thermal environment experienced by an organism. The Himalayan Pieris canidia butterfly exhibits considerable variation in wing melanisation. We investigated: (i) whether variation in wing melanisation and (ii) activity period of this montane butterfly was influenced by the seasonally and elevationally changing thermal landscape.
  2. We discovered that wing melanisation varied across elevation, seasons, sex, and wing surfaces, with the variation strongly structured in space and time: colder seasons and higher elevations produced more melanic individuals. Notably, melanisation did not vary uniformly across all wing surfaces: (i) melanisation of the ventral hindwing co-varied much more prominently with elevation, but (ii) melanisation on all other surfaces varied with seasonal changes in the thermal environment.
  3. Observed wing surface-specific patterns indicated thermoregulatory function for this variation in melanisation. Such wing surface-specific responses to seasonal and elevational variation in temperature have rarely been reported in montane insects.
  4. Moreover, daily and seasonal thermal cycles were found to strongly influence activity periods of this species, suggesting the potential limits to wing melanisation plasticity.
  5. Overall, these results showed that the seasonal and elevational gradients in temperature influence the thermal phenotype as well as activity periods of this Himalayan butterfly. It will be critical to study the phenotypic evolution of such montane insects in response to the ongoing climate change, which is already showing significant signs in this iconic mountain range.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号