首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During prolonged starvation the activity of aldolase in crude rabbit liver extracts decreases to less than one-half the value observed in extracts of livers from fed animals. The specific activity of the enzyme purified by adsorption on phosphocellulose and elution with substrate is also approximately one-half that of the purified native enzyme. Both the level of enzyme activity and the specific activity are restored to normal within 36 h of refeeding. After removal of active aldolase from the liver extracts by adsorption on phosphocellulose an additional immunoreactive protein can be isolated by adsorption on antialdolase-Sepharose and elution with 4 m MgCl2. This protein is devoid of catalytic activity and in livers of fasted rabbits accounts for nearly 40% of the total immunoreactive material. It has also been detected in extracts prepared from livers of fed rabbits, where it accounts for 10–20% of the total protein adsorbed by antialdolase-Sepharose. The low-activity enzyme isolated from livers of fasted rabbits cannot be reactivated by sulfhydryl compounds; it shows similar sensitivity to heat and denaturing agents as the enzyme isolated from livers of fed rabbits. The activity ratios with fructose 1,6-bisphosphate, fructose 1-phosphate, and triose phosphate are similar to those observed for the native liver enzyme.  相似文献   

2.
A specific enzyme electrode with L-Lysine decarboxylase (E.C. 4.1.1.18) from Klebsiella pneumoniae and a CO2-sensor are described. The electrode can be used for assay of L-Lysine in amino acid mixtures as protein hydrolysates or culture filtrates from fermentation processes. The accuracy and reproducibility are those of an amino acid analyzer. The electrode works well for several weeks.  相似文献   

3.
In this paper, an adsorption procedure of urease to Al(OH)3 is described that leads to a water-insoluble catalyst for urea hydrolysis. Moreover, it can be shown by this example, that the quantitative interpretation of adsorption measurements provides an indirect method for obtaining information about the structure of the adsorbed enzyme. The results of the experiments reported here reveal that, within two concentration ranges, the adsorbed quantity of enzyme increases with different slopes. This kind of adsorption is explained by a model, the basis of which is the assumption of a structure for the enzyme molecule deviating from the spherical form. The measured activities of the assays, as a function of adsorbed enzyme, support the hypothesis propounded.  相似文献   

4.
5.
Glucose oxidase (GOx) was immobilized onto graphene oxide (GRO) via three different preparation methods: enzyme adsorption (EA), enzyme adsorption and crosslinking (EAC), and enzyme adsorption, precipitation and crosslinking (EAPC). EAPC formulations, prepared via enzyme precipitation with 60% ammonium sulfate, showed 1,980 and 1,630 times higher activity per weight of GRO than those of EA and EAC formulations, respectively. After 59 days at room temperature, EAPC maintained 88% of initial activity, while EA and EAC retained 42 and 45% of their initial activities, respectively. These results indicate that the steps of precipitation and crosslinking in the EAPC formulation are critical to achieve high enzyme loading and stability of EAPC. EA, EAC and EAPC were used to prepare enzyme electrodes for use as glucose biosensors. Optimized EAPC electrode showed 93- and 25-fold higher sensitivity than EA and EAC, respectively. To further increase the sensitivity of EAPC electrode, multi-walled carbon nanotubes (MWCNTs) were mixed with EAPC for the preparation of enzyme electrode. Surprisingly, the EAPC electrode with additional 99.5 wt% MWCNTs showed 7,800-fold higher sensitivity than the EAPC electrode without MWCNT addition. Immobilization and stabilization of enzymes on GRO via the EAPC approach can be used for the development of highly sensitive biosensors as well as to achieve high enzyme loading and stability.  相似文献   

6.
Protein film voltammetry is a relatively new approach to studying redox enzymes, the concept being that a sample of a redox protein is configured as a film on an electrode and probed by a variety of electrochemical techniques. The enzyme molecules are bound at the electrode surface in such a way that there is fast electron transfer and complete retention of the chemistry of the active site that is observed in more conventional experiments. Modulations of the electrode potential or catalytic turnover result in the movement of electrons to, from, and within the enzyme; this is detected as a current that varies in characteristic ways with time and potential. Henceforth, the potential dimension is introduced into enzyme kinetics. The presence of additional intrinsic redox centers for providing fast intramolecular electron transfer between a buried active site and the protein surface is an important factor. Centers which carry out cooperative two-electron transfer, most obviously flavins, produce a particularly sharp signal that allows them to be observed, even as transient states, when spectroscopic methods are not useful. High catalytic activity produces a large amplification of the current, and useful information can be obtained even if the coverage on the electrode is low. Certain enzymes display optimum activity at a particular potential, and this can be both mechanistically informative and physiologically relevant. This paper outlines the principles of protein film voltammetry by discussing some recent results from this laboratory.  相似文献   

7.
A semi–quantitative theory is developed to explain the nonspecific binding of proteins to substituted affinity chromatography supports due to electrostatic and hydrophobic interactions. The equilibrium constant for the absorption of an enzyme to a solid support, and the rate of desorption of the enzyme are studied as functions of ionic strength. Experimental measurements were taken of the adsorption equilibrium constant and rate of desorption of E. coli β–galactosidase on Sepharose 4B substituted with 3, 3,-diaminodipropylamine in batch systems. It was found that the enzyme adsorption exhibits a hysteresis effect as the ionic strength is increased and then decreased. Furthermore, the adsorption of theenzyme becomes more reversible at the lower ionic strengths, while at the higher ionic strengths it is essentially irreversible. Using the measured equilibrium constants, and knowing the region of ionic strength where the adsorption becomes reversible, we were able to predict the desorption of enzyme in a continuous stirred tank as a function of time when a decreasing linear gradient of ionic strength was introduced into a slurry. It was found that the presence of another protein, hemoglobin, does not affect these results, and therefore can be separated from the enzyme.  相似文献   

8.
Exploring and evaluating the potential applications of two-dimensional graphene is an increasingly hot topic in graphene research. In this paper, by studying the adsorption of NO, N2O, and NO2 on pristine and silicon (Si)-doped graphene with density functional theory methods, we evaluated the possibility of using Si-doped graphene as a candidate to detect or reduce harmful nitrogen oxides. The results indicate that, while adsorption of the three molecules on pristine graphene is very weak, Si-doping enhances the interaction of these molecules with graphene sheet in various ways: (1) two NO molecules can be adsorbed on Si-doped graphene in a paired arrangement, while up to four NO2 molecules attach to the doped graphene with an average adsorption energy of −0.329 eV; (2) the N2O molecule can be reduced easily to the N2 molecule, leaving an O-atom on the Si-doped graphene. Moreover, we find that adsorption of NO and NO2 leads to large changes in the electronic properties of Si-doped graphene. On the basis of these results, Si-doped graphene can be expected to be a good sensor for NO and NO2 detection, as well as a metal-free catalyst for N2O reduction.  相似文献   

9.
We present a high-temperature and high-pressure gas adsorption measurement device based on a high-frequency oscillating microbalance (5 MHz langatate crystal microbalance, LCM) and its use for gas adsorption measurements in zeolite H-ZSM-5. Prior to the adsorption measurements, zeolite H-ZSM-5 crystals were synthesized on the gold electrode in the center of the LCM, without covering the connection points of the gold electrodes to the oscillator, by the steam-assisted crystallization (SAC) method, so that the zeolite crystals remain attached to the oscillating microbalance while keeping good electroconductivity of the LCM during the adsorption measurements. Compared to a conventional quartz crystal microbalance (QCM) which is limited to temperatures below 80 °C, the LCM can realize the adsorption measurements in principle at temperatures as high as 200-300 °C (i.e., at or close to the reaction temperature of the target application of one-stage DME synthesis from the synthesis gas), owing to the absence of crystalline-phase transitions up to its melting point (1,470 °C). The system was applied to investigate the adsorption of CO2, H2O, methanol and dimethyl ether (DME), each in the gas phase, on zeolite H-ZSM-5 in the temperature and pressure range of 50-150 °C and 0-18 bar, respectively. The results showed that the adsorption isotherms of these gases in H-ZSM-5 can be well fitted by Langmuir-type adsorption isotherms. Furthermore, the determined adsorption parameters, i.e., adsorption capacities, adsorption enthalpies, and adsorption entropies, compare well to literature data. In this work, the results for CO2 are shown as an example.  相似文献   

10.
The aim of the present work is to design an electrode for biosensors by covalent immobilization of the redox enzyme. In the covalently modified electrode, the biocatalyst is located close to the electrode surface and this is expected to enhance the electron transfer rate from the enzyme to the electrode. Several methods of covalent immobilization of enzymes onto a glassy carbon surface are described. We have chosen horse radish peroxidase enzyme in our study but any other suitable enzyme can be immobilized depending on the intended use. A three step procedure that includes (i) heat treatment of matrix at l00-l10°C to remove volatiles and absorbates, (ii) chemjcal pretreatment to introduce functional groups like -OH, -NO2, -Br etc. followed by (iii) glutaraldehyde coupling of the enzyme (for the nitrated matix after subsequent reduction) or modification of the matrix by carboxymethylation and enzyme coupling using carbodiimide (for hydroxylated matrix) was followed. The amount of enzyme immobilized onto the carbon surface was estimated by spectrophotometric enzymatic activity assay, commonly used for the soluble enzyme. We found that simple nitration did not introduce any significant amount of functional groups and the matrix with hydrogen peroxide pretreatment showed the highest enzyme loading of 0.05 U/mg of carbon matrix. The HRP enzyme electrode was tested in a rotating disk experiment for its response with the substrate.  相似文献   

11.
Sporopollenin is a natural polymer obtained from Lycopodium clavatum, which is highly stable with constant chemical structure and has high resistant capacity to chemical attack. In this study, immobilization of lipase from Candida rugosa (CRL) on sporopollenin by adsorption method is reported for the first time. Besides this, the enzyme adsorption capacity, activity and thermal stability of immobilized enzyme have also been investigated. It has been observed that under the optimum conditions (Spo-E(0.3)), the specific activity of the immobilized lipase on the sporopollenin by adsorption was 16.3 U/mg protein, which is 0.46 times less than that of the free lipase (35.6 U/mg protein). The pH and temperature of immobilized enzyme were optimized, which were 6.0 and 40 °C respectively. Kinetic parameters Vmax and Km were also determined for the immobilized lipase. It was observed that there is an increase of the Km value (7.54 mM) and a decrease of the Vmax value (145.0 U/mg-protein) comparing with that of the free lipase.  相似文献   

12.
Glucose oxidase was immobilized on the surface of a graphite electrode by irreversible adsorption. An electrocatalytic steady-state current for the oxidation of D-glucose was observed using this electrode in the presence of p-benzoquinone as an electron transfer mediator. The electrocatalytic current at 0.5 V vs. SCE was analyzed as a function of the concentrations of D-glucose and p-benzoquinone, and the maximum current, Ismax, and the Michaelis constants (K1 and K2 for D-glucose and p-benzoquinone, respectively) of the electrocatalysis were determined. The dependence of the current on the electrode potential, pH, and temperature was also investigated. The results indicate that the kinetics of the immobilized enzyme are essentially the same as those of the enzyme in the solubilized state. The effect of various electron transfer mediators on the electrocatalytic current was also examined and evaluated in terms of Ismax, K1, and K2 values.  相似文献   

13.
This study deals with the specific interaction between the lectin peanut agglutinin (PNA) from Arachis hypogaea and the ganglioside GM1 which was incorporated in a solid supported lipid bilayer immobilized on a gold electrode placed on top of an AT-cut quartz crystal. Bilayer formation was reached by self-assembly processes. The first monolayer consists of octanethiol attached to the gold surface via chemisorption and the second monolayer was immobilized by vesicle fusion on the preformed hydrophobic surface. We managed to keep unspecific binding to a minimum by using a phospholipid matrix consisting of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Lectin binding to ganglioside GM1 containing membranes was determined by a decrease of the resonant frequency of the quartz crystal. The minimum amount of receptor within the membrane which is necessary to obtain a complete protein monolayer was found to be less than 2 mol%. The adsorption isotherm of PNA to GM1 was recorded and analyzed to be of Langmuir type, exhibiting a binding constant of PNA to the ganglioside of 8.3 ⋅ 105 M–1. The good agreement of the calculated Langmuir adsorption isotherm with the obtained experimental data implies that protein multilayers are not formed and that interactions between the adsorbents can be neglected. Furthermore, the association constants of two different saccharides, β-Galp-(1 → 3)-GalNAc exhibiting a strong binding to PNA in solution, and β-D-galactose with a much lower affinity were estimated by determining the equilibrium concentration of PNA attached to the surface. Moreover we were able to remove the attached lectin monolayer by digestion of the protein with pronase causing an increase in the resonant frequency which almost reversed the frequency shift to lower frequencies during adsorption. An even more complex system was built up by the use of digoxigenin-labeled PNA which also binds to the solid supported membrane containing the receptor GM1. The immobilized lectin was recognized by anti-digoxigenin-Fab-fragments, which is measurable by a further decrease of the resonant frequency. For all binding processes we found larger frequency shifts for a complete protein monolayer than predicted by Sauerbrey's equation, clearly showing that in addition to mass loading viscoelastic changes occur at the lipid-protein interface. Received: 22 July 1996 / Accepted: 12 September 1996  相似文献   

14.
A new type of substrate for enzyme detection has been developed. The substrate is non-chromogenic and is used in an assay method based on electrode adsorption. The rate of change in the electric capacitance of the electrode is monitored and taken as a measure of the substrate adsorption. Substrate adsorption is in turn proportional to substrate bulk concentration and thus subject to changes by enzymes. The new substrate introduces a new concept in enzyme detection: as it is non-chromogenic it may contain appropriate amino acids on both sides of the bond subject to enzymatic cleavage.  相似文献   

15.
The adsorption of human serum albumin (HSA) onto nanocrystalline TiO(2) electrodes was studied by electrochemical impedance spectroscopy (EIS) in function of pH and electrode potential. The characterization and physico-chemical properties of the TiO(2) electrode were investigated by scanning electron microscopy (SEM), UV-photoelectron spectroscopy (UPS), cyclic voltammetry and capacitance measurements. The impedance response of the particulate TiO(2) electrode/protein interface was fitted using an equivalent circuit model to describe the adsorption process. The adsorbed protein layer, which is formed as soon as the protein is injected into the solution and becomes in contact with the electrode, was investigated as a function of electrode potential and solution pH. The measurements were performed under pseudo-steady-state and steady-state conditions, which gave information about the different states of the system. With the pseudo-steady state measurements, it was possible to determine two rate constants of the protein adsorption process, which correspond to two different states of the protein. The shortest one was associated with the first contact between the protein and the substrate and the second relaxation time, with the protein suffering an structural rearrangement due to the interaction with the TiO(2) electrode. It was detected that at sufficiently long times (approx. 1 h, where the system was under steady state conditions), a quasi-reversible protein adsorption mechanism was established. The measurements performed as a function of frequency under steady-state conditions, an equivalent circuit with a Warburg element gave the better fitting to data taken at -0.585 V closer to the oxide flat band potential and it was associated with protein diffusion. Experimental results obtained at only one frequency as a function of potential could be fitted to a model that takes into account non-specific and probable specific protein adsorption, which renders to be potential- and pH-dependent. Low capacity values were obtained in the whole potential range, which were measured in the presence and in the absence of the protein layer. The capacity dependence on potential and pH were associated with the generation of surface states on TiO(2). A surface state concentration of 4.1x10(18) cm(-2) was obtained by relating the parallel capacitance with oxide surface states arising from the protein-oxide interaction.  相似文献   

16.
Recombinant protein purification with affinity tags is a widely employed technique. One of the most common tags used for protein purification is the histidine tag (Histag). In this work, we use a tandem starch-binding domain (SBDtag) as a tag for protein purification. Four proteins from different sources were fused to the SBDtag, and the resulting fusion proteins were purified by affinity chromatography using the Histag or the SBDtag. The results showed that the SBDtag is superior to the Histag for protein purification. The efficient adsorption of the fusion proteins to raw corn starch was also demonstrated, and two fusions were selected to test purification directly using raw starch from rice, corn, potato, and barley. The two fusion proteins were successfully recovered from crude bacterial extract using raw starch, thus demonstrating that the SBDtag can be used as an efficient affinity tag for recombinant protein purification on an inexpensive matrix.  相似文献   

17.
18.
A structurally simple molecular 1,10‐phenanthroline‐Cu complex on a mesostructured graphene matrix that can be active and selective toward CO2 reduction over H2 evolution in an aqueous solution is reported. The active sites consist of Cu(I) center in a distorted trigonal bipyramidal geometry, which enables the adsorption of CO2 with η1‐COO‐like configuration to commence the catalysis, with a turnover frequency of ≈45 s?1 at ?1 V versus reversible hydrogen electrode. Using in situ infrared spectroelectrochemical investigation, it is demonstrated that the Cu complex can be reversibly heterogenized near the graphene surface via potential control. An increase of electron density in the complex is observed as a result of the interaction from the electric field, which further tunes the electron distribution in the neighboring CO2. It is also found that the mesostructure of graphene matrix favored CO2 reduction on the Cu center over hydrogen evolution by limiting mass transport from the bulk solution to the electrode surface.  相似文献   

19.
(S)-styrene oxide, a useful chiral intermediate, has been synthesized using an electroenzymatic method with direct electrochemical FADH2 regeneration. Low electroenzymatic efficiency arising from the fast FADH2 reoxidation could be overcome by employing a zinc oxide/carbon black composite electrode. The attractive interaction between zinc oxide and styrene monooxygenase kept the local enzyme concentration high near the electrode surface, thereby increasing the accessibility of FADH2 from the electrode surface to the enzyme. By adjusting the reaction conditions such as oxygen solubility, a high electroenzymatic efficiency of 65% was obtained. As a result, the reaction rate was increased while the amount of the side-products from the cofactor reoxidation process was decreased. The metal oxide/carbon black composite electrode can be efficiently used for electroenzymatic syntheses using diffusible-flavin dependent monooxygenases.  相似文献   

20.
We developed a system for amperometric detection of Escherichia coli (E. coli) based on the integration of microelectromechanical systems (MEMS), self-assembled monolayers (SAMS), DNA hybridization, and enzyme amplification. Using MEMS technology, a detector array was fabricated which has multiple electrodes deposited on a Si wafer and was fully reusable. Using SAMs, a monolayer of the protein streptavidin was immobilized on the working electrode (Au) surface to capture rRNA from E. coli. Three different approaches can be used to immobilize streptavidin onto Au, direct adsorption of the protein on bare Au, binding the protein to a biotinylated thiol SAM on Au, and binding the protein to a biotinylated disulfide monolayer on Au. The biotinylated thiol approach yielded the best results. High specificity for E. coli was achieved using ssDNA–rRNA hybridization and high sensitivity was achieved using enzymatic amplification with peroxidase as the enzyme. The analysis protocol can be conducted with solution volumes on the order of a few microliters and completed in 40 min. The detection system was capable of detecting 1000 E. coli cells without polymerase chain reaction with high specificity for E. coli vs. the bacteria Bordetella bronchiseptica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号