首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 944 毫秒
1.
Iron-rich flocs often occur where anoxic water containing ferrous iron encounters oxygenated environments. Culture-independent molecular analyses have revealed the presence of 16S rRNA gene sequences related to diverse bacteria, including autotrophic iron oxidizers and methanotrophs in iron-rich flocs; however, the metabolic functions of the microbial communities remain poorly characterized, particularly regarding carbon cycling. In the present study, we cultivated iron-oxidizing bacteria (FeOB) and performed clone library analyses of functional genes related to carbon fixation and methane oxidization (cbbM and pmoA, respectively), in addition to bacterial and archaeal 16S rRNA genes, in freshwater iron-rich flocs at groundwater discharge points. The analyses of 16S rRNA, cbbM, and pmoA genes strongly suggested the coexistence of autotrophic iron oxidizers and methanotrophs in the flocs. Furthermore, a novel stalk-forming microaerophilic FeOB, strain OYT1, was isolated and characterized phylogenetically and physiologically. The 16S rRNA and cbbM gene sequences of OYT1 are related to those of other microaerophilic FeOB in the family Gallionellaceae, of the Betaproteobacteria, isolated from freshwater environments at circumneutral pH. The physiological characteristics of OYT1 will help elucidate the ecophysiology of microaerophilic FeOB. Overall, this study demonstrates functional roles of microorganisms in iron flocs, suggesting several possible linkages between Fe and C cycling.  相似文献   

2.
Chemolithoautotrophic iron-oxidizing bacteria play an essential role in the global iron cycle. Thus far, the majority of marine iron-oxidizing bacteria have been identified as Zetaproteobacteria, a novel class within the phylum Proteobacteria. Marine iron-oxidizing microbial communities have been found associated with volcanically active seamounts, crustal spreading centers, and coastal waters. However, little is known about the presence and diversity of iron-oxidizing communities at hydrothermal systems along the slow crustal spreading center of the Mid-Atlantic Ridge. From October to November 2012, samples were collected from rust-colored mats at three well-known hydrothermal vent systems on the Mid-Atlantic Ridge (Rainbow, Trans-Atlantic Geotraverse, and Snake Pit) using the ROV Jason II. The goal of these efforts was to determine if iron-oxidizing Zetaproteobacteria were present at sites proximal to black smoker vent fields. Small, diffuse flow venting areas with high iron(II) concentrations and rust-colored microbial mats were observed at all three sites proximal to black smoker chimneys. A novel, syringe-based precision sampler was used to collect discrete microbial iron mat samples at the three sites. The presence of Zetaproteobacteria was confirmed using a combination of 16S rRNA pyrosequencing and single-cell sorting, while light micros-copy revealed a variety of iron-oxyhydroxide structures, indicating that active iron-oxidizing communities exist along the Mid-Atlantic Ridge. Sequencing analysis suggests that these iron mats contain cosmopolitan representatives of Zetaproteobacteria, but also exhibit diversity that may be uncommon at other iron-rich marine sites studied to date. A meta-analysis of publically available data encompassing a variety of aquatic habitats indicates that Zetaproteobacteria are rare if an iron source is not readily available. This work adds to the growing understanding of Zetaproteobacteria ecology and suggests that this organism is likely locally restricted to iron-rich marine environments but may exhibit wide-scale geographic distribution, further underscoring the importance of Zetaproteobacteria in global iron cycling.  相似文献   

3.
Microbial iron oxidation is an integral part of the iron redox cycle in wetlands. Nonetheless, relatively little is known about the composition and ecology of iron-oxidizing communities in the soils and sediments of wetlands. In this study, sediment cores were collected across a freshwater tidal marsh in order to characterize the iron-oxidizing bacteria (FeOB) and to link their distributions to the geochemical properties of the sediments. We applied recently designed 16S rRNA primers targeting Gallionella-related FeOB by using a nested PCR-denaturing gradient gel electrophoresis (DGGE) approach combined with a novel quantitative PCR (qPCR) assay. Gallionella-related FeOB were detected in most of the samples. The diversity and abundance of the putative FeOB were generally higher in the upper 5 to 12 cm of sediment than in deeper sediment and higher in samples collected in April than in those collected in July and October. Oxygen supply by macrofauna appears to be a major force in controlling the spatial and temporal variations in FeOB communities. The higher abundance of Gallionella-related FeOB in April coincided with elevated concentrations of extractable Fe(III) in the sediments. Despite this coincidence, the distributions of FeOB did not exhibit a simple relationship to the redox zonation inferred from the geochemical depth profiles.  相似文献   

4.
Moss-rich terrestrial communities are widely distributed in low- and high-latitude environments, covering vast surface areas in the boreal forests and tundra. The microbial biota in these organic-rich communities may contribute substantially to the carbon budget of terrestrial communities and the carbon cycle on a global scale. Recent research is reported on the carbon content of microbial communities in some temperate and high-latitude moss communities. The total carbon content and potential respiratory carbon dioxide (CO(2)) efflux is reported for bacteria, microflagellates, naked amoebae, and testate amoebae within sampling sites at a northeastern forest and the tundra at Toolik, Alaska. Quantitative models of the predicted total CO(2) efflux from the microbes, based on microscopic observations and enumeration of the microbiota in samples from the research sites, are described and predictions are compared with published field-based data of CO(2) efflux. The significance of the predictions for climate change and global warming are discussed.  相似文献   

5.
Despite over 125 years of study, the factors that dictate species dominance in neutrophilic iron-oxidizing bacterial (FeOB) communities remain unknown. In a freshwater wetland, we documented a clear ecological succession coupled with niche separation between the helical stalk-forming Gallionellales (for example, Gallionella ferruginea) and tubular sheath-forming Leptothrix ochracea. Changes in the iron-seep community were documented using microscopy and cultivation-independent methods. Quantification of Fe-oxyhydroxide morphotypes by light microscopy was coupled with species-specific fluorescent in situ hybridization (FISH) probes using a protocol that minimized background fluorescence caused by the Fe-oxyhydroxides. Together with scanning electron microscopy, these techniques all indicated that Gallionellales dominated during early spring, with L. ochracea becoming more abundant for the remainder of the year. Analysis of tagged pyrosequencing reads of the small subunit ribosomal RNA gene (SSU rRNA) collected during seasonal progression supported a clear Gallionellales to L. ochracea transition, and community structure grouped according to observed dominant FeOB forms. Axis of redundancy analysis of physicochemical parameters collected from iron mats during the season, plotted with FeOB abundance, corroborated several field and microscopy-based observations and uncovered several unanticipated relationships. On the basis of these relationships, we conclude that the ecological niche of the stalk-forming Gallionellales is in waters with low organic carbon and steep redoxclines, and the sheath-forming L. ochracea is abundant in waters that contain high concentrations of complex organic carbon, high Fe and Mn content and gentle redoxclines. Finally, these findings identify a largely unexplored relationship between FeOB and organic carbon.  相似文献   

6.
David Emerson 《Biofouling》2013,29(9):989-1000
Abstract

Lithotrophic iron-oxidizing bacteria depend on reduced iron, Fe(II), as their primary energy source, making them natural candidates for growing in association with steel infrastructure and potentially contributing to microbially influenced corrosion (MIC). This review summarizes recent work on the role of iron-oxidizing bacteria (FeOB) in MIC. By virtue of producing complex 3-dimensional biofilms that result from the accumulation of iron-oxides, FeOB may aid in the colonization of steel surfaces by other microbes involved in MIC. Evidence points to a successional pattern occurring whereby FeOB are early colonizers of mild steel (MS), followed by sulfate-reducing bacteria and other microbes, although studies of aged corrosion products indicate that FeOB do establish a long-term presence. There is evidence that only specific clades of FeOB, with unique adaptations for growing on steel surfaces are part of the MIC community. These are discussed in the context of the larger MIC microbiome.  相似文献   

7.
Microbial communities in subsurface soil are specialized for their environment, which is distinct from that of the surface communities. However, little is known about the microbial communities (bacteria and fungi) that exist in the deeper soil horizons. Vertical changes in microbial alpha-diversity (Chao1 and Shannon indices) and community composition were investigated at four soil depths (0–10, 10–20, 20–40, and 40–60 cm) in a natural secondary forest of Betula albosinensis by high-throughput sequencing of the 16S and internal transcribed spacer rDNA regions. The numbers of operational taxonomic units (OTUs), and the Chao1 and Shannon indices decreased in the deeper soil layers. Each soil layer contained both mutual and specific OTUs. In the 40–60 cm soil layer, 175 and 235 specific bacterial and fungal OTUs were identified, respectively. Acidobacteria was the most dominant bacterial group in all four soil layers, but reached its maximum at 40–60 cm (62.88%). In particular, the 40–60 cm soil layer typically showed the highest abundance of the fungal genus Inocybe (47.46%). The Chao1 and Shannon indices were significantly correlated with the soil organic carbon content. Redundancy analysis indicated that the bacterial communities were closely correlated with soil organic carbon content (P = 0.001). Collectively, these results indicate that soil nutrients alter the microbial diversity and relative abundance and affect the microbial composition.  相似文献   

8.
Aerobic neutrophilic Fe‐oxidizing bacteria (FeOB) thrive where oxic and iron‐rich anoxic waters meet. Here, iron microbial mats are commonly developed by stalk‐forming Fe‐oxidizers adapted to these iron‐rich gradient environments, somehow avoiding iron encrustation. Few details are known about FeOB physiology; thus, the bases of these adaptations, notably the mechanisms of interactions with iron, are poorly understood. We examined two stalked FeOB: the marine Zetaproteobacterium Mariprofundus ferrooxydans and a terrestrial Betaproteobacterium Gallionella‐like organism. We used cryo‐transmission electron microscopy and cryo‐electron tomography to provide unprecedented ultrastructural data on intact cell‐mineral systems. Both FeOB localize iron mineral formation at stalk extrusion sites, while avoiding surface and periplasmic mineralization. The M. ferrooxydans cell surface is densely covered in fibrils while the terrestrial FeOB surface is smooth, suggesting a difference in surface chemistry. Only the terrestrial FeOB exhibited a putative chemotaxis apparatus, which may be due to differences in chemotaxis mechanisms. Both FeOB have a single flagellum, which alone is insufficient to account for cell motion during iron oxidation, suggesting that stalk extrusion is a mechanism for motility. Our results delineate the physical framework of iron transformations and characterize possible structural adaptations to the iron‐oxidizing lifestyle. This study shows ultrastructural similarities and differences between two distinct FeOB, setting the stage for further (e.g. genomic) comparisons that will help us understand functional differences and evolutionary history.  相似文献   

9.
Abundance and structure of the communities of neutrophilic lithotrophic iron-oxidizing bacteria (FeOB) inhabiting four low-mineralized ferruginous springs of the Marcial Waters Resort (South Karelia, Russia) and the brackish chalybeate spring of the Staraya Russa Resort (Novgorod region, Russia), were investigated, as well as the physicochemical conditions of these environments. In fresh iron-containing precipitates collected near the spring outlets and within the spring-discharge areas, as well as along the spring watercourses, the numbers of unicellular FeOB enumerated on nutrient media ranged from 105 to 107 cells per 1 mL of sediments irrespective of the initial Fe(II) concentration (11–126 mg L−1). In the spring waters and along the spring watercourses inhabited by iron-oxidizing bacteria, the concentration of dissolved oxygen did not exceed 0.05–0.1 mg L−1. Unicellular FeOB were predominant in three springs, while in the springs with relatively low Fe(II) concentrations (11–22 mg L−1), various morphological forms of Gallionella and uncultured forms of the iron-oxidizing bacterium Toxothrix trichogenes prevailed. In the model experiments with the water samples collected in the ferruginous springs and bogs under controlled conditions, the fractionation of stable iron isotopes and the rate of iron oxidation were found to depend on the oxygen regime and, to a lesser extent, on the initial Fe(II) concentration. The maximum enrichment of the iron oxides formed during the simulation experiments with the light 54Fe isotope was observed during bacterial oxidation under microaerobic conditions at O2 concentrations of 0.1–0.3 mg L−1 and in the cultures of iron-oxidizing bacteria. During the abiogenic oxidation of Fe(II), the extent of stable isotope fractionation was 1.5–2 times lower. Enrichment of Fe(III) oxides with the light 54Fe isotope (3- to 5-fold) was considerably lower at high rates of both the biogenic and abiogenic processes of iron oxidation under aerobic conditions; however, it was more intense during the bacterial processes. Comparison of the rates of enrichment of Fe(III) oxides with the light isotope during the model experiments with pure and enrichment cultures of iron-oxidizing bacteria from the sediments of ferruginous springs and bogs revealed that the biogenic factor plays a key role in the oxidation processes of the iron cycle, as well as in the differentiation of the composition of stable iron isotopes in the studied ecosystems.  相似文献   

10.
Microaerophilic, neutrophilic, iron-oxidizing bacteria (FeOB) grow via the oxidation of reduced Fe(II) at or near neutral pH, in the presence of oxygen, making them relevant in numerous environments with elevated Fe(II) concentrations. However, the biochemical mechanisms for Fe(II) oxidation by these neutrophilic FeOB are unknown, and genetic markers for this process are unavailable. In the ocean, microaerophilic microorganisms in the genus Mariprofundus of the class Zetaproteobacteria are the only organisms known to chemolithoautotrophically oxidize Fe and concurrently biomineralize it in the form of twisted stalks of iron oxyhydroxides. The aim of this study was to identify highly expressed proteins associated with the electron transport chain of microaerophilic, neutrophilic FeOB. To this end, Mariprofundus ferrooxydans PV-1 was cultivated, and its proteins were extracted, assayed for redox activity, and analyzed via liquid chromatography-tandem mass spectrometry for identification of peptides. The results indicate that a cytochrome c4, cbb3-type cytochrome oxidase subunits, and an outer membrane cytochrome c were among the most highly expressed proteins and suggest an involvement in the process of aerobic, neutrophilic bacterial Fe oxidation. Proteins associated with alternative complex III, phosphate transport, carbon fixation, and biofilm formation were abundant, consistent with the lifestyle of Mariprofundus.  相似文献   

11.
12.
Iron plaque occurs on the roots of most wetland and submersed aquatic plant species and is a large pool of oxidized Fe(III) in some environments. Because plaque formation in wetlands with circumneutral pH has been largely assumed to be an abiotic process, no systematic effort has been made to describe plaque-associated microbial communities or their role in plaque deposition. We hypothesized that Fe(II)-oxidizing bacteria (FeOB) and Fe(III)-reducing bacteria (FeRB) are abundant in the rhizosphere of wetland plants across a wide range of biogeochemical environments. In a survey of 13 wetland and aquatic habitats in the Mid-Atlantic region, FeOB were present in the rhizosphere of 92% of the plant specimens collected (n = 37), representing 25 plant species. In a subsequent study at six of these sites, bacterial abundances were determined in the rhizosphere and bulk soil using the most probable number technique. The soil had significantly more total bacteria than the roots on a dry mass basis (1.4 × 109 cells/g soil vs. 8.6 × 107 cells/g root; p < 0.05). The absolute abundance of aerobic, lithotrophic FeOB was higher in the soil than in the rhizosphere (3.7 × 106/g soil vs. 5.9 × 105/g root; p < 0.05), but there was no statistical difference between these habitats in terms of relative abundance (1% of the total cell number). In the rhizosphere, FeRB accounted for an average of 12% of all bacterial cells while in the soil they accounted for < 1% of the total bacteria. We concluded that FeOB are ubiquitous and abundant in wetland ecosystems, and that FeRB are dominant members of the rhizosphere microbial community. These observations provide a strong rationale for quantifying the contribution of FeOB to rhizosphere Fe(II) oxidation rates, and investigating the combined role of FeOB and FeRB in a rhizosphere iron cycle.  相似文献   

13.
Surfaces of carbon steel (CS) exposed to mixed cultures of iron-oxidizing bacteria (FeOB) and dissimilatory iron-reducing bacteria (FeRB) in seawater media under aerobic conditions were rougher than surfaces of CS exposed to pure cultures of either type of microorganism. The roughened surface, demonstrated by profilometry, is an indication of loss of metal from the surface. In the presence of CS, aerobically grown FeOB produced tight, twisted helical stalks encrusted with iron oxides. When CS was exposed anaerobically in the presence of FeRB, some surface oxides were removed. However, when the same FeOB and FeRB were grown together in an aerobic medium, FeOB stalks were less encrusted with iron oxides and appeared less tightly coiled. These observations suggest that iron oxides on the stalks were reduced and solubilized by the FeRB. Roughened surfaces of CS and denuded stalks were replicated with culture combinations of different species of FeOB and FeRB under three experimental conditions. Measurements of electrochemical polarization resistance established different rates of corrosion of CS in aerobic and anaerobic media, but could not differentiate rate differences between sterile controls and inoculated exposures for a given bulk concentration of dissolved oxygen. Similarly, total iron in the electrolyte could not be used to differentiate treatments. The experiments demonstrate the potential for iron cycling (oxidation and reduction) on corroding CS in aerobic seawater media.  相似文献   

14.
Wastewater treatment plants (WWTPs) are major collection pools of antibiotics of which low concentrations may induce antibiotic resistance in their microbial communities and pose threat to human health. However, information is still limited on the microbial community alteration in WWTPs upon exposure to low-dose antibiotics due to absence of negative control systems without input of resistant bacteria and resistance genes. Here we report the impact of trace erythromycin (ERY) and dehydrated erythromycin (ERY-H2O) on microbial community dynamics in three long-term (1 year) running sequencing batch reactors (SBRs), R1 (ERY-H2O), R2 (ERY), and negative control R3. The PhyloChip microarray analysis showed that ERY-H2O and ERY significantly altered their microbial communities based on bacterial richness (e.g., 825 operational taxonomic units (OTUs) in R1, 699 OTUs in R2, and 920 OTUs in R3) and population abundance (15 and 48 subfamilies with >80 % abundance decrease in R1 and R2, respectively). ERY-H2O and ERY have broad but distinct antimicrobial spectrums. For example, bacteria of all the major phyla (i.e., Proteobacteria, Actinobacteria, Bacteroidetes, and Chloroflexi) present in SBRs were severely inhibited by ERY-H2O and ERY, but bacteria of Acidobacteria, Chlorobi, Firmicutes, Nitrospira and OP10 phyla were only inhibited by ERY. Very limited bacterial groups showed antibiotic resistance to ERY-H2O or ERY through forming biofilms (e.g., Zoogloea) or synthesizing resistant proteins (e.g., Thauera, Candidatus Accumulibacter, Candidatus Competibacter, and Dechloromonas) in the SBRs. Inhibition was observed to be the main effect of ERY-H2O and ERY on microbial communities in the reactors. The results would broaden our knowledge of effects of low-dose antibiotics on microbial communities in WWTPs.  相似文献   

15.
Wells used for drinking water often have a large biomass and a high bacterial diversity. Current technologies are not always able to reduce the bacterial population, and the threat of pathogen proliferation in drinking water sources is omnipresent. The environmental conditions that shape the microbial communities in drinking water sources have to be elucidated, so that pathogen proliferation can be foreseen. In this work, the bacterial community in nine water wells of a groundwater aquifer in Northern Mexico were characterized and correlated to environmental characteristics that might control them. Although a large variation was observed between the water samples, temperature and iron concentration were the characteristics that affected the bacterial community structure and composition in groundwater wells. Small increases in the concentration of iron in water modified the bacterial communities and promoted the growth of the iron-oxidizing bacteria Acidovorax. The abundance of the genera Flavobacterium and Duganella was correlated positively with temperature and the Acidobacteria Gp4 and Gp1, and the genus Acidovorax with iron concentrations in the well water. Large percentages of Flavobacterium and Pseudomonas bacteria were found, and this is of special concern as bacteria belonging to both genera are often biofilm developers, where pathogens survival increases.  相似文献   

16.
The solitary ascidian Styela plicata is an introduced species in harbors of temperate and tropical oceans around the world. The invasive potential of this species has been studied through reproductive biology and population genetics but no study has yet examined the microbial diversity associated with this ascidian and its potential role in host ecology and invasiveness. Here, we used 16S rRNA gene tag pyrosequencing and transmission electron microscopy to characterize the abundance, diversity and host-specificity of bacteria associated with 3 Mediterranean individuals of S. plicata. Microscopy revealed low bacterial abundance in the inner tunic and their absence from gonad tissues, while pyrosequencing revealed a high diversity of S. plicata-associated bacteria (284 OTUs from 16 microbial phyla) in the inner tunic. The core symbiont community was small and consisted of 16 OTUs present in all S. plicata hosts. This core community included a recently described ascidian symbiont (Hasllibacter halocynthiae) and several known sponge and coral symbionts, including a strictly anaerobic Chloroflexi lineage. Most recovered bacterial OTUs (79.6 %) were present in single S. plicata individuals and statistical analyses of genetic diversity and community structure confirmed high variability of bacterial communities among host individuals. These results suggest that diverse and variable bacterial communities inhabit the tunic of S. plicata, including environmental and host-associated bacterial lineages that appear to be re-established each host generation. We hypothesize that bacterial communities in S. plicata are dynamic and have the potential to aid host acclimation to new habitats by establishing relationships with beneficial, locally sourced bacteria.  相似文献   

17.
An aboriginal community of thermophilic acidophilic chemolithotrophic microorganisms (ACM) was isolated from a sample of pyrite gold-bearing flotation concentrate at 45–47°C and pH 1.8–2.0. Compared to an experimental thermoacidophilic microbial consortium formed in the course of cultivation in parallel bioreactors, it had lower rates of iron leaching and oxidation, while its rate of sulfur oxidation was higher. A new thermophilic acidophilic microbial community was obtained by mutual enrichment with the microorganisms from the experimental and aboriginal communities during the oxidation of sulfide ore flotation concentrate at 47°C. The dominant bacteria of this new ACM community were Acidithiobacillus caldus (the most active sulfur oxidize) and Sulfobacillus thermotolerans (active oxidizer of both iron and sulfur), while iron-oxidizing archaea of the family Ferroplasmaceae and heterotrophic bacteria Alicyclobacillus tolerans were the minor components. The new ACM community showed promise for leaching/oxidation of sulfides from flotation concentrate at high pulp density (S : L = 1 : 4).  相似文献   

18.
In this paper, we report the presence of sedimentary microbial ecosystems in wetlands of the Salar de Atacama. These laminated systems, which bind, trap and precipitate mineral include: microbial mats at Laguna Tebenquiche and Laguna La Brava, gypsum domes at Tebenquiche and carbonate microbialites at La Brava. Microbial diversity and key biogeochemical characteristics of both lakes (La Brava and Tebenquiche) and their various microbial ecosystems (non-lithifying mats, flat and domal microbialites) were determined. The composition and abundance of minerals ranged from trapped and bound halite in organic-rich non-lithifying mats to aragonite-dominated lithified flat microbialites and gypsum in lithified domal structures. Pyrosequencing of the V4 region of the 16s rDNA gene showed that Proteobacteria comprised a major phylum in all of the microbial ecosystems studied, with a marked lower abundance in the non-lithifying mats. A higher proportion of Bacteroidetes was present in Tebenquiche sediments compared to La Brava samples. The concentration of pigments, particularly that of Chlorophyll a, was higher in the Tebenquiche than in La Brava. Pigments typically associated with anoxygenic phototrophic bacteria were present in lower amounts. Organic-rich, non-lithifying microbial mats frequently formed snake-like, bulbous structures due to gas accumulation underneath the mat. We hypothesize that the lithified microbialites might have developed from these snake-like microbial mats following mineral precipitation in the surface layer, producing domes with endoevaporitic communities in Tebenquiche and carbonate platforms in La Brava. Whereas the potential role of microbes in carbonate platforms is well established, the contribution of endoevaporitic microbes to formation of gypsum domes needs further investigation.  相似文献   

19.
The abundance, diversity and composition of bacterial and archaeal communities in the microbial mats at deep-sea hydrothermal fields were investigated, using culture-independent 16S rRNA and functional gene analyses combined with mineralogical analysis. Microbial mats were collected at two hydrothermal areas on the ridge of the back-arc spreading centre in the Southern Mariana Trough. Scanning electron microscope and energy dispersive X-ray spectroscopic (SEM-EDS) analyses revealed that the mats were mainly composed of amorphous silica and contained numerous filamentous structures of iron hydroxides. Direct cell counting with SYBR Green I staining showed that the prokaryotic cell densities were more than 108 cells g−1. Quantitative polymerase chain reaction (Q-PCR) analysis revealed that Bacteria are more abundant than Archaea in the microbial communities. Furthermore, zetaproteobacterial cells accounted for 6% and 22% of the prokaryotic cells in each mat estimated by Q-PCR with newly designed primers and TaqMan probe. Phylotypes related to iron-oxidizers, methanotrophs/methylotrophs, ammonia-oxidizers and sulfate-reducers were found in the 16S rRNA gene clone libraries constructed from each mat sample. A variety of unique archaeal 16S rRNA gene phylotypes, several pmoA , dsrAB and archaeal amoA gene phylotypes were also recovered from the microbial mats. Our results provide insights into the diversity and abundance of microbial communities within microbial mats in deep-sea hydrothermal fields.  相似文献   

20.
Bacterial gut symbiont communities are critical for the health of many insect species. However, little is known about how microbial communities vary among host species or how they respond to anthropogenic disturbances. Bacterial communities that differ in richness or composition may vary in their ability to provide nutrients or defenses. We used deep sequencing to investigate gut microbiota of three species in the genus Bombus (bumble bees). Bombus are among the most economically and ecologically important non-managed pollinators. Some species have experienced dramatic declines, probably due to pathogens and land-use change. We examined variation within and across bee species and between semi-natural and conventional agricultural habitats. We categorized as ‘core bacteria'' any operational taxonomic units (OTUs) with closest hits to sequences previously found exclusively or primarily in the guts of honey bees and bumble bees (genera Apis and Bombus). Microbial community composition differed among bee species. Richness, defined as number of bacterial OTUs, was highest for B. bimaculatus and B. impatiens. For B. bimaculatus, this was due to high richness of non-core bacteria. We found little effect of habitat on microbial communities. Richness of non-core bacteria was negatively associated with bacterial abundance in individual bees, possibly due to deeper sampling of non-core bacteria in bees with low populations of core bacteria. Infection by the gut parasite Crithidia was negatively associated with abundance of the core bacterium Gilliamella and positively associated with richness of non-core bacteria. Our results indicate that Bombus species have distinctive gut communities, and community-level variation is associated with pathogen infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号