首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Total incorporation of exogenously administered [2-14C]acetate into essential oil of palmarosa (Cymbopogon martinii) was found to be relatively higher than that of either [U-14C]sucrose or [U-14C]glucose during inflorescence development. Among the major essential oil constituents, biogenesis of geranyl acetate was much higher than that of geraniol. Alkaline hydrolysis of [14C]labeled geranyl acetate revealed that the majority of the label incorporated into geranyl acetate was present in the geraniol moiety, indicating that only newly synthesized geraniol gets acetylated to form geranyl acetate. Geranyl acetate cleaving esterase (GAE) activity followed a similar pattern during both in vivo and in vitro inflorescence development, with maximum activity at immature inflorescence stages, suggesting the involvement of GAE in geraniol production during inflorescence development. Five esterase isozymes (Est-A to E) were detected in the enzymic fraction of palmarosa inflorescence and all showed GAE activity, with Est-B being significantly increased during inflorescence development. The role of GAE in geraniol production and improving the palmarosa oil quality is discussed.  相似文献   

2.
1. Total ATPase levels were determined in homogenate fractions of baker's yeast, Saccharomyces cerevisiae K and Rhodotorula glutinis. The maximum ATPase activities in 8000 X g supernatant of the three yeast strains were 6.0, 1.9, and 2.2 mmol Pih-1 (gDS)-1, respectively; the activities in the sediment were somewhat higher. Exponential cells of S. cerevisiae K and R. glutinis exhibited higher ATPase levels than did the stationary cells. 2. The total ATPase activity in both yeast species showed a maximum at ph 6.8 a minimum at pH 7.2, and another broader masimum around pH 8.0. 3. No significant NaK-ATPase activity was detected in baker's yeast, in either the exponential or the stationary cells of R. glutinis, and in exponential S. cerevisiae K cells in the pH range of 6.0-9.3. 4. Stationary cells of S. cerevisiae K exhibited, at pH 7.0-8.5, A Na,K-ATPase activity attaining 9% of total ATPase level. 5.3 X 10(-3) M phenylmethyl sulphonyl fluoride had no effect on the total ATPase level in S. cerevisiae and inhibited the activity in R. glutinis by 25%; it did not bring forth any Na,K-ATPase activity apart from that found in its absence. 6. 1.5 M urea lowered the ATPase activity in R. glutinis by 68% but had no effect on S. cerevisiae cells. 10(-5) M dicyclohexylcarbodiimide suppressed the ATPase activity in S. cerevisiae and R. glutinis by 74 and 79%, respectively. Neither agent revealed and additional Na,K-ATPase activity. 7. The comparison of Na,K-ATPase activities with data on K+ fluxes across the yeast plasma membrane suggested that even with the lower flux values the Na,K-ATPase, even if present, would account for a mere 40% of transported ions. The results imply that the active ion transport in yeasts is energized by mechanisms other than the Na,K-ATPase.  相似文献   

3.
Dubey VS  Luthra R 《Phytochemistry》2001,57(5):675-680
Only immature palmarosa (Cymbopogon martinii, Roxb. wats. var. motia) inflorescence with unopened spikelets accumulated essential oil substantially. Geraniol and geranyl acetate together constituted about 90% of the palmarosa oil. The proportion of geranyl acetate in the oil decreased significantly with a corresponding increase of geraniol, during inflorescence development. An esterase enzyme activity, involved in the transformation of geranyl acetate to geraniol, was detected from the immature inflorescence using a gas chromatographic procedure. The enzyme, termed as geranyl acetate cleaving esterase (GAE), was found to be active in the alkaline pH range with the optimum at pH 8.5. The catalysis of geranyl acetate was linear up to 6 h, and after 24 h of incubation, 75% of the geranyl acetate incubated was hydrolyzed. The GAE enzymic preparation, when stored at 4 degrees C for a week, was quite stable with only 40% loss of activity. The physiological role of GAE in the production of geraniol during palmarosa inflorescence development has been discussed.  相似文献   

4.
5.
Palmarosa inflorescence with partially opened spikelets is biogenetically active to incorporate [U-14C]sucrose into essential oil. The percent distribution of14C-radioactivity incorporated into geranyl acetate was relatively higher as compared to that in geraniol, the major essential oil constituent of palmarosa. At the partially opened spikelet stage, more of the geraniol synthesized was acetylated to form geranyl acetate, suggesting that majority of the newly synthesized geraniol undergoes acetylation, thus producing more geranyl acetate.In vitro development of palmarosa inflorescence, fed with [U-14C]sucrose, resulted in a substantial reduction in percent label from geranyl acetate with a corresponding increase in free geraniol, thereby suggesting the role of an esterase in the production of geraniol from geranyl acetate. At time course measurement of14CO2 incorporation into geraniol and geranyl acetate substantiated this observation. Soluble acid invertase was the major enzyme involved in the sucrose breakdown throughout the inflorescence development. The activities of cell wall bound acid invertase, alkaline invertase and sucrose synthase were relatively lower as compared to the soluble acid invertase. Sucrose to reducing sugars ratio decreased till fully opened spikelets stage, concomitant with increased acid invertase activity and higher metabolic activity. The phenomenon of essential oil biosynthesis has been discussed in relation to changes in these physiological parameters.  相似文献   

6.
Papouskova K  Sychrova H 《FEBS letters》2006,580(8):1971-1976
The family of Nha antiporters mediating the efflux of alkali metal cations in exchange for protons across the plasma membrane is conserved in all yeast species. Yarrowia lipolytica is a dimorphic yeast, phylogenetically very distant from the model yeast Saccharomyces cerevisiae. A search in its sequenced genome revealed two genes (designated as YlNHA1 and YlNHA2) with homology to the S. cerevisiae NHA1 gene, which encodes a plasma membrane alkali metal cation/H+ antiporter. Upon heterologous expression of both YlNHA genes in S. cerevisiae, we showed that Y. lipolytica antiporters differ not only in length and sequence, but also in their affinity for individual substrates. While the YlNha1 protein mainly increased cell tolerance to potassium, YlNha2p displayed a remarkable transport capacity for sodium. Thus, Y. lipolytica is the first example of a yeast species with two plasma membrane alkali metal cation/H+ antiporters differing in their putative functions in cell physiology; cell detoxification vs. the maintenance of stable intracellular pH, potassium content and cell volume.  相似文献   

7.
Leakage of K+ ions from Staphylococcus aureus in response to tea tree oil   总被引:1,自引:0,他引:1  
The leakage of K(+) ions from Staphylococcus aureus in response to tea tree oil (TTO) was investigated with an ion-selective electrode. The amount of leaked K(+) ions and the rate of leakage of K(+) ions induced by TTO were dependent on the concentration of TTO. Measurements of initial rates required less time than measurements of total amounts and provided an index of the interaction between TTO and the cell membrane. Thus, the initial rate of leakage might be a more useful measure of the antibacterial activity of TTO than the total amount.  相似文献   

8.
The present work aims to address the gas-phase biotransformation of geraniol into citronellol using growing cells of Saccharomyces cerevisiae (baker's yeast) in a continuous-closed-gas-loop bioreactor (CCGLB). This study revealed that the gaseous geraniol had a severe effect on the production of biomass during the growing cell biotransformation resulting in the decrease in the specific growth rate from 0.07 to 0.05 h?1. The rate of reaction of the growing cell biotransformation was strongly affected by agitation and substrate flow rates. The highest citronellol concentration of 1.18 g/L and initial rate of reaction of 7.06 × 10?? g/min g(cell) were obtained at 500 rpm and 8 L/min, respectively.  相似文献   

9.
Transport of succinate into Saccharomyces cerevisiae cells was determined using the endogenous coupled mitochondrial succinate oxidase system. The dependence of succinate oxidation rate on the substrate concentration was a curve with saturation. At neutral pH the K(m) value of the mitochondrial "succinate oxidase" was fivefold less than that of the cellular "succinate oxidase". O-Palmitoyl-L-malate, not penetrating across the plasma membrane, completely inhibited cell respiration in the presence of succinate but not glucose or pyruvate. The linear inhibition in Dixon plots indicates that the rate of succinate oxidation is limited by its transport across the plasmalemma. O-Palmitoyl-L-malate and L-malate were competitive inhibitors (the K(i) values were 6.6 +/- 1.3 microM and 17.5 +/- 1.1 mM, respectively). The rate of succinate transport was also competitively inhibited by the malonate derivative 2-undecyl malonate (K(i) = 7.8 +/- 1.2 microM) but not phosphate. Succinate transport across the plasma membrane of S. cerevisiae is not coupled with proton transport, but sodium ions are necessary. The plasma membrane of S. cerevisiae is established to have a carrier catalyzing the transport of dicarboxylates (succinate and possibly L-malate and malonate).  相似文献   

10.
In the present study, we have investigated if reactive oxygen species are involved in the oxygen-dependent regulation of potassium-chloride cotransport activity in trout erythrocyte membrane. An increase in the oxygen level caused an increase in chloride-sensitive potassium transport (K(+)-Cl(-) cotransport). 5 mM hydrogen peroxide caused an increase in K(+)-Cl(-) cotransport at 5% oxygen. The increase in flux could be inhibited by adding extracellular catalase in the incubation. Pretreatment of the cells with mercaptopropionyl glycine (MPG), a scavenger of reactive oxygen species showing preference for hydroxyl radicals, abolished the activation of the K(+)-Cl(-) cotransporter by increased oxygen levels. The inhibition by MPG was reversible, and MPG could not inhibit the activation of transporter by the sulfhydryl reagent, N-ethylmaleimide, indicating that the effect of MPG was due to the scavenging of reactive oxygen species and not to the reaction of MPG with the cotransporter. Copper ions, which catalyze the production of hydroxyl radicals in the Fenton reaction, activated K(+)-Cl(-) cotransport significantly at hypoxic conditions (1% O(2)). These data suggest that hydroxyl radicals, formed from O(2) in close vicinity to the cell membrane, play an important role in the oxygen-dependent activation of the K(+)-Cl(-) cotransporter.  相似文献   

11.
The nature of oxidative damage to Saccharomyces cerevisiae caused by levels of HOCl that inhibit cell replication was explored with the intent of identifying the loci of lethal lesions. Functions of cytosolic enzymes and organelles that are highly sensitive to inactivation by HOCl, including aldolase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and the mitochondrion, were only marginally affected by exposure of the yeast to levels of HOCl that completely inhibited colony formation. Loss of function in membrane-localized proteins, including the hexose transporters and PMA1 H(+)-ATPase, which is the primary proton pump located within the S. cerevisiae plasma membrane, was also marginal and K(+) leak rates to the extracellular medium increased only slowly with exposure to increasing amounts of HOCl, indicating that the plasma membrane retained its intrinsic impermeability to ions and metabolites. Adenylate phosphorylation levels in fermenting yeast declined in parallel with viability; however, yeast grown on respiratory substrates maintained near-normal phosphorylation levels at HOCl doses several-fold greater than that required for killing. This overall pattern of cellular response to HOCl differs markedly from that previously reported for bacteria, which appear to be killed by inhibition of plasma membrane proteins involved in energy transduction. The absence of significant loss of function in critical oxidant-sensitive cellular components and retention of ATP-synthesizing capabilities in respiring yeast cells exposed to lethal levels of HOCl suggests that toxicity in this case may arise by programmed cell death.  相似文献   

12.
Sky1p and Ptk2p are protein kinases that regulate ion transport across the plasma membrane of Saccharomyces cerevisiae. We show here that deletion of SKY1 or PTK2 in trk1,2Delta cells increase spermine tolerance, implying Trk1,2p independent activity. Unexpectedly, trk1,2Deltasky1Delta and trk1,2Deltaptk2Delta cells display hypersensitivity to LiCl. These cells also show increased tolerance to low pH and improved growth in low K(+), as demonstrated for deletion of PMP3 in trk1,2Delta cells. We show that Sky1p and Pmp3p act in different pathways. Hypersensitivity to LiCl and improved growth in low K(+) are partly dependent on the Nha1p and Kha1p antiporters and on the Tok1p channel. Finally, Dhh1p, a RNA helicase was demonstrated to improve growth of trk1,2Deltasky1Delta cells in low K(+). Overexpression of Dhh1p improves the ability of trk1,2Delta cells to grow in low K(+) while dhh1Delta cells are sensitive to spermine and salt ions. A model that integrates these results to explain the mechanism of ion transport across the plasma membrane is proposed.  相似文献   

13.
AIMS: The aim was to investigate the antifungal actions of nonyl gallate against Saccharomyces cerevisiae ATCC 7754. METHODS AND RESULTS: The maximum potency of both the growth inhibitory and the fungicidal effect against the yeast strain was found in nonyl gallate among n-alkyl gallates tested. Nonyl gallate induced ROS generation dose-dependently in growing cells. This ester rapidly killed yeast cells even when cell division was restricted by cycloheximide. This ester inhibited glucose-induced medium acidification and promoted the efflux of intracellular potassium ions in a nongrowing condition. Moreover, nonyl gallate induced a leakage of calcein from artificially prepared liposomes to a greater extent than dodecyl gallate did. CONCLUSIONS: These results suggested nonyl gallate injured plasma membrane of S. cerevisiae, resulting in its exhibition of fungicidal effect accompanying with a leakage of intracellular materials from the cells. SIGNIFICANCE AND IMPACT OF THE STUDY: Our study reveals new knowledge on the antifungal actions of nonyl gallate against S. cerevisiae. When nonyl gallate is applied as a food preservative, the level of its addition to foods may be reduced because of its potent antifungal activity compared with weak acids including sorbic acid and benzoic acid.  相似文献   

14.
Nano-electrospray ionization tandem mass spectrometry (nano-ESI-MS/MS) was employed to determine qualitative differences in the lipid molecular species composition of a comprehensive set of organellar membranes, isolated from a single culture of Saccharomyces cerevisiae cells. Remarkable differences in the acyl chain composition of biosynthetically related phospholipid classes were observed. Acyl chain saturation was lowest in phosphatidylcholine (15.4%) and phosphatidylethanolamine (PE; 16.2%), followed by phosphatidylserine (PS; 29.4%), and highest in phosphatidylinositol (53.1%). The lipid molecular species profiles of the various membranes were generally similar, with a deviation from a calculated average profile of approximately +/- 20%. Nevertheless, clear distinctions between the molecular species profiles of different membranes were observed, suggesting that lipid sorting mechanisms are operating at the level of individual molecular species to maintain the specific lipid composition of a given membrane. Most notably, the plasma membrane is enriched in saturated species of PS and PE. The nature of the sorting mechanism that determines the lipid composition of the plasma membrane was investigated further. The accumulation of monounsaturated species of PS at the expense of diunsaturated species in the plasma membrane of wild-type cells was reversed in elo3Delta mutant cells, which synthesize C24 fatty acid-substituted sphingolipids instead of the normal C26 fatty acid-substituted species. This observation suggests that acyl chain-based sorting and/or remodeling mechanisms are operating to maintain the specific lipid molecular species composition of the yeast plasma membrane.  相似文献   

15.
We have examined the voltage dependence of external TEA block of Shaker K(+) channels over a range of internal K(+) concentrations from 2 to 135 mM. We found that the concentration dependence of external TEA block in low internal K(+) solutions could not be described by a single TEA binding affinity. The deviation from a single TEA binding isotherm was increased at more depolarized membrane voltages. The data were well described by a two-component binding scheme representing two, relatively stable populations of conducting channels that differ in their affinity for external TEA. The relative proportion of these two populations was not much affected by membrane voltage but did depend on the internal K(+) concentration. Low internal K(+) promoted an increase in the fraction of channels with a low TEA affinity. The voltage dependence of the apparent high-affinity TEA binding constant depended on the internal K(+) concentration, becoming almost voltage independent in 5 mM. The K(+) sensitivity of these low- and high-affinity TEA states suggests that they may represent one- and two-ion occupancy states of the selectivity filter, consistent with recent crystallographic results from the bacterial KcsA K(+) channel. We therefore analyzed these data in terms of such a model and found a large (almost 14-fold) difference between the intrinsic TEA affinity of the one-ion and two-ion modes. According to this analysis, the single ion in the one-ion mode (at 0 mV) prefers the inner end of the selectivity filter twofold more than the outer end. This distribution does not change with internal K(+). The two ions in the two-ion mode prefer to occupy the inner end of the selectivity filter at low K(+), but high internal K(+) promotes increased occupancy of the outer sites. Our analysis further suggests that the four K(+) sites in the selectivity filter are spaced between 20 and 25% of the membrane electric field.  相似文献   

16.
17.
The Schizosaccharomyces pombe plasma membrane Na(+)/H(+) antiporter, SpSod2p, has been shown to belong to the subfamily of yeast Na(+)/H(+) antiporters that only recognize Na(+) and Li(+) as substrates. Nevertheless, most of the studied plasma membrane alkali metal cation/H(+) antiporters from other yeasts have broader substrate specificities, exporting K(+) and Rb(+) as well. Such antiporters probably play two roles in the physiology of cells: the elimination of surplus toxic cations, and the regulation of stable intracellular K(+) content, pH and cell volume. The systematic sequencing of the Sch. pombe genome revealed the presence of an as-yet uncharacterized homolog of the Spsod2 gene (designated Spsod22). Spsod22 and Spsod2 were expressed in Saccharomyces cerevisiae cells lacking their own alkali metal cation efflux systems, and the transport properties of both Sch. pombe antiporters were compared to those of the Sac. cerevisiae Nha1 antiporter expressed under the same conditions. Here we show that SpSod22p has broad substrate specificity upon heterologous expression in Sac. cerevisiae cells and contributes to cell tolerance to high external levels of K(+). Thus, the Sch. pombe genome encodes two plasma membrane alkali metal cation/H(+) antiporters that play different roles in the physiology of the yeast.  相似文献   

18.
Protein O-glycosylation is an essential protein modification in eukaryotic cells. In Saccharomyces cerevisiae, O-mannosylation is initiated in the lumen of the endoplasmic reticulum by O-mannosyltransferase gene products (Pmt1p-7p). A search of the Schizosaccharomyces pombe genome database revealed a total of three O-glycoside mannosyltransferase homologs (ogm1+, ogm2+, and ogm4+), closely related to Saccharomyces cerevisiae PMT1, PMT2, and PMT4. Although individual ogm genes were not found to be essential, ogm1Delta and ogm4Delta mutants exhibited aberrant morphology and failed to agglutinate during mating. The phenotypes of the ogm4Delta mutant were not complemented by overexpression of ogm1+ or ogm2+, suggesting that each of the Ogm proteins does not have overlapping functions. Heterologous expression of a chitinase from S. cerevisiae in the ogm mutants revealed that O-glycosylation of chitinase had decreased in ogm1Delta cells. A GFP-tagged Fus1p from S. cerevisiae was specifically not glycosylated and accumulated in the Golgi in ogm4Delta cells. These results indicate that O-glycosylation initiated by Ogm proteins plays crucial physiological roles and can serve as a sorting determinant for protein transport of membrane glycoproteins in S. pombe.  相似文献   

19.
Flegelova H  Sychrova H 《FEBS letters》2005,579(21):4733-4738
Na(+)/H+exchangers form a broad family of transporters that mediate opposing fluxes of alkali metal cations and protons across cell membranes. They play multiple roles in different organisms (protection from toxic cations, regulation of cell volume or pH). Rat NHE2 exchanger was expressed in a Saccharomyces cerevisiae mutant strain lacking its own exporters of alkali metal cations. Though most of the overexpressed NHE2 remained entrapped in the secretory pathway, part of it reached the plasma membrane and mediated K+ efflux from the yeast. We demonstrate for the first time that a mammalian Na(+)/H+ exchanger transports alkali metal cations in yeast in the opposite direction than in mammalian cells, and that the substrate specificity of the rat NHE2 exchanger is limited only to potassium cations upon expression in yeast cells.  相似文献   

20.
The interaction mechanism between zinc and the intact yeast cells of Saccharomyces cerevisiae was investigated by using the scanning electron microscopy with energy-dispersive X-ray analysis, as well as X-ray absorption fine structure spectroscopy (XAFS). Displacement of H+, K+, Mg2+, and Na+ during zinc uptake confirmed the existence of both covalent interactions and ionic interactions between Zn2+ and the microbe. Ion exchange mechanism played a role in zinc uptake. The local environment of Zn accumulated in the intact yeast cells was determined by XAFS, which suggests that the nearest neighboring atom of the bound zinc ion on the biomass is oxygen atom. The adsorbed zinc ion on the intact cells of S. cerevisiae is a tetrahedron structure, with the Zn-O bond length of 1.97 A, and the coordination number is only 3.2 of Zn-O structure in the first shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号