首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S Fanning  F O'Gara 《Gene》1988,71(1):57-64
The Rhizobium meliloti (Rm) lacZ gene provides a convenient model to investigate patterns of gene regulation in these agronomically important bacteria. A gene encoding beta-galactosidase (beta Gal) activity was cloned from R. meliloti by complementing a lactose-negative Escherichia coli mutant. A series of Sau3A subclones was generated in pBR322, and the coding region for the beta Gal-coding gene was localized to a 2.4-kb core fragment. In E. coli 'maxicells', these lacZ subclones produced a 79-kDa polypeptide, irrespective of the fragment size demonstrating that the translation initiation signal(s) are located on the 2.4-kb fragment. Transposon Tn5 mutagenesis and BAL 31 deletion analysis showed that the expression of the Rm lacZ gene in E. coli was dependent on the tetracycline-resistance promoter of pBR322. The cloned sequence was required for beta Gal synthesis in Rhizobium since mutants generated by reverse genetics lack this enzyme and were specifically defective in lactose catabolism.  相似文献   

2.
3.
用鸟枪法从3株紫云英根瘤菌107菌株的胞外多糖合成缺陷变种(Exo-)NA-05、NA-07和NA-08中克隆获得含有107菌株exo基因及Tn5的exo::Tn5片段。以pRK415为载体构建107菌株EcoRI酶切后DNA片段的部分基因库,用exo::Tn5做探针原位杂交得到一个阳性克隆。该克隆的外源片段4.2kb能恢复3个变种的多糖表型及结瘤固氮能力。酶切分析和Southern杂交表明,3株变种中Tn5插入位点相近。  相似文献   

4.
In Rhizobium meliloti, Tn5 conferred resistance not only to kanamycin but to streptomycin, as well, in Escherichia coli, however only to kanamycin. Using in vitro recombinant DNA techniques, it was shown that the streptomycin resistance determinant was located downstream from the kanamycin resistance gene in the unique central region of Tn5. Expression of various cloned fragments of Tn5 suggested that both kanamycin and streptomycin resistance genes were transcribed from the same promoter. E. coli mutants allowing the expression of streptomycin resistance from Tn5 were isolated. The differential expression of the streptomycin resistance gene provides a simple selection/counterselection criterion, using only streptomycin in transfer experiments of Tn5 between E. coli and R. meliloti.  相似文献   

5.
Organization of the adenyl cyclase (cya) locus of Rhizobium meliloti   总被引:2,自引:0,他引:2  
  相似文献   

6.
浑球红细菌谷氨酸合酶基因(glt)的克隆和图谱分析   总被引:5,自引:1,他引:4  
利用转座子Tn5随机插入诱变筛选得到12株浑球红细菌(Rhodobacter sphaeroides)氨同化缺陷突变株(Asm~-)。这些突变株胞内均无GOGAT活性,同时它们均无固氮酶活性(Nif~-),并且具有氮代谢多效性缺失表型(Ntr~-)。将含有Azorhizobium sesbaniae ORS571的完整glt基因的质粒pHB10转入突变株中能互补上述表型。通过筛选携带Tn5的R-prime质粒克隆了glt::Tn5片段。Southern杂交证明所克隆glt::Tn5片段与E. coli的gltBD基因有同源性。用此片段与以pLAFR3为载体所构建的R. sphaeroides 601基因文库进行菌落原位杂交筛选到了携带glt基因的cosmid pLT27。pLT27能互补所有12株R.sphaeroides氨同化缺陷突变株。酶切分析表明在该cosmid中插人的染色体DNA片段大小约为26.5kb。以pRK415为载体亚克隆了4.0kb与10.5kh的pLT27的Hindlll酶切片段,分别命名为pLTRK271与pLTRK272。pLTRK272能互补变种GT6、GT10、GT11,pLTRK…  相似文献   

7.
Tn5-induced mutants of Rhizobium meliloti that require the amino acids isoleucine and valine for growth on minimal medium were studied. In one mutant, 1028, the defect is associated with an inability to induce nodules on alfalfa. The Tn5 mutation in 1028 is located in a chromosomal 5.5-kb EcoRI fragment. Complementation analysis with cloned DNA indicated that 2.0 kb of DNA from the 5.5-kb EcoRI fragment restored the wild-type phenotype in the Ilv- Nod- mutant. This region was further characterized by DNA sequence analysis and was shown to contain a coding sequence homologous to those for Escherichia coli IlvC and Saccharomyces cerevisiae Ilv5. Genes ilvC and ilv5 code for the enzyme acetohydroxy acid isomeroreductase (isomeroreductase), the second enzyme in the parallel pathways for the biosynthesis of isoleucine and valine. Enzymatic assays confirmed that strain 1028 was a mutant defective in isomeroreductase activity. In addition, it was shown that the ilvC genes of Rhizobium meliloti and E. coli are functionally equivalent. We demonstrated that in ilvC mutant 1028 the common nodulation genes nodABC are not activated by the inducer luteolin. E. coli ilvC complemented both defective properties (Ilv- and Nod-) found in mutant 1028. These findings demonstrate that R. meliloti requires an active isomeroreductase enzyme for successful nodulation of alfalfa.  相似文献   

8.
We have previously isolated ineffective (Fix-) mutants of Rhizobium meliloti 104A14 requiring both arginine and uracil, and thus probably defective in carbamoylphosphate synthetase. We describe here the molecular and genetic analysis of the R. meliloti genes coding for carbamoylphosphate synthetase. Plasmids that complement the mutations were isolated from a R. meliloti gene bank. Restriction analysis of these plasmids indicated that complementation involved two unlinked regions of the R. meliloti chromosome, carA and carB. Genetic complementation between the plasmids and mutants demonstrated a single complementation group for carA, but two overlapping complementation groups for carB. The cloned R. meliloti genes hybridize to the corresponding E. coli carA and carB genes which encode the two subunits of carbamoylphosphate synthetase. Transposon Tn5 mutagenesis was used to localize the carA and carB genes on the cloned R. meliloti DNA. The cloned R. meliloti carA and carB genes were unable to complement E. coli carA or carB mutants alone or in combination. We speculate on the mechanism of the unusual pattern of genetic complementation at the R. meliloti carB locus.  相似文献   

9.
The genetic locus glt, encoding glutamate synthase from Rhizobium meliloti 1021, was selected from a pLAFR1 clone bank by complementation of the R. meliloti 41 Glt- mutant AK330. A fragment of cloned DNA complementing this mutant also served to complement the Escherichia coli glt null mutant PA340. Complementation studies using these mutants suggested that glutamate synthase expression requires two complementation groups present at this locus. Genomic Southern analysis using a probe of the R. meliloti 1021 glt region showed a close resemblance between R. meliloti 1021, 41, and 102f34 at glt, whereas R. meliloti 104A14 showed many differences in restriction fragment length polymorphism patterns at this locus. R. meliloti 102f34, but not the other strains, showed an additional region with sequence similarity to glt. Insertion alleles containing transposable kanamycin resistance elements were constructed and used to derive Glt- mutants of R. meliloti 1021 and 102f34. These mutants were unable to assimilate ammonia and were Nod+ Fix+ on alfalfa seedlings. The mutants also showed poor or no growth on nitrogen sources such as glutamate, aspartate, arginine, and histidine, which are utilized by the wild-type parental strains. Strains that remained auxotrophic but grew nearly as well as the wild type on these nitrogen sources were readily isolated from populations of glt insertion mutants, indicating that degradation of these amino acids is negatively regulated in R. meliloti as a result of disruptions of glt.  相似文献   

10.
Transposon Tn5-induced C4-dicarboxylate transport mutants of Rhizobium meliloti 2011 which could be complemented by cosmid pRmSC121 were subdivided into two classes. Class I mutants (RMS37 and RMS938) were defective in symbiotic C4-dicarboxylate transport and in nitrogen fixation. They were mutated in the structural gene dctA, which codes for the C4-dicarboxylate carrier. Class II mutants (RMS11, RMS16, RMS17, RMS24, and RMS31) expressed reduced activity in symbiotic C4-dicarboxylate transport and in nitrogen fixation. These mutants were mutated in regulatory dct genes which do not play an essential role in the symbiotic state. Thin sections of alfalfa nodules induced by the wild type and class I and class II mutants were analyzed by light microscopy. Class mutants induced typical Fix- nodules, showing a large senescent zone, whereas nodules induced by class II mutants only differed in an enhanced content of starch granules compared with wild-type nodules. Class I mutants could be complemented by a 2.1-kilobase SalI-HindIII subfragment of cosmid pRmSC121. DNA sequencing of this fragment resulted in the identification of an open reading frame, which was designated dctA because Tn5 insertion sites of the class I mutants mapped within this coding region. The dctA gene was preceded by a nif consensus promoter and an upstream NifA-binding element. Upstream of the dctA promoter, the 5' end of the R. meliloti dctB gene could be localized. The amino acid sequence of the N-terminal part of the R. meliloti DctB protein shared 49% homology with the corresponding part of the R. leguminosarum DctB protein. The DctA protein consisted of 441 or 453 amino acids due to two possible ATG start codons, with calculated molecular masses of 46.1 and 47.6 kilodaltons, respectively. The hydrophobicity plot suggests that DctA is a membrane protein with several membrane passages. The amino acid sequences of the R. meliloti and the R. leguminosarum DctA proteins were highly conserved (82%).  相似文献   

11.
Infection of alfalfa by the soil bacterium Rhizobium meliloti proceeds by deformation of root hairs and bacterial invasion of host tissue by way of an infection thread. We studied an 8.7-kilobase (kb) segment of the R. meliloti megaplasmid, which contains genes required for infection. Site-directed Tn5 mutagenesis was used to examine this fragment for nodulation genes. A total of 81 R. meliloti strains with mapped Tn5 insertions in the 8.7-kb fragment were evaluated for nodulation phenotype on alfalfa plants; 39 of the insertions defined a 3.5-kb segment containing nodulation functions. Of these 39 mutants, 37 were completely nodulation deficient (Nod-), and 2 at the extreme nif-distal end were leaky Nod-. Complementation analysis was performed by inoculating plants with strains carrying a genomic Tn5 at one location and a plasmid-borne Tn5 at another location in the 3.5-kb nodulation segment. Mutations near the right border of the fragment behaved as two distinct complementation groups. The segment in which these mutations are located was analyzed by DNA sequencing. Several open reading frames were found in this region, but the one most likely to function is 1,206 bases long, reading from left to right (nif distal to proximal) and spanning both mutation groups. The genetic behavior of this segment may be due either to the gene product having two functional domains or to a recombinational hot spot between the apparent complementation groups.  相似文献   

12.
In work previously reported (J. A. Gutierrez, P. J. Crowley, D. P. Brown, J. D. Hillman, P. Youngman, and A. S. Bleiweis, J. Bacteriol. 178:4166-4175, 1996), a Tn917 transposon-generated mutant of Streptococcus mutans JH1005 unable to synthesize glutamate anaerobically was isolated and the insertion point of the transposon was determined to be in the icd gene encoding isocitrate dehydrogenase (ICDH). The intact icd gene of S. mutans has now been isolated from an S. mutans genomic plasmid library by complementation of an icd mutation in Escherichia coli host strain EB106. Genetic analysis of the complementing plasmid pJG400 revealed an open reading frame (ORF) of 1,182 nucleotides which encoded an enzyme of 393 amino acids with a predicted molecular mass of 43 kDa. The nucleotide sequence contained regions of high (60 to 72%) homology with icd genes from three other bacterial species. Immediately 5' of the icd gene, we discovered an ORF of 1,119 nucleotides in length, designated citZ, encoding a homolog of known citrate synthase genes from other bacteria. This ORF encoded a predicted protein of 372 amino acids with a molecular mass of 43 kDa. Furthermore, plasmid pJG400 was also able to complement a citrate synthase (gltA) mutation of E. coli W620. The enzyme activities of both ICDH, found to be NAD+ dependent, and citrate synthase were measured in cell extracts of wild-type S. mutans and E. coli mutants harboring plasmid pJG400. The region 5' from the citZ gene also revealed a partial ORF encoding 264 carboxy-terminal amino acids of a putative aconitase gene. The genetic and biochemical evidence indicates that S. mutans possesses the enzymes required to convert acetyl coenzyme A and oxalacetate to alpha-ketoglutarate, which is necessary for the synthesis of glutamic acid. Indeed, S. mutans JH1005 was shown to assimilate ammonia as a sole source of nitrogen in minimal medium devoid of organic nitrogen sources.  相似文献   

13.
We have physically and genetically characterized 20 symbiotic and 20 auxotrophic mutants of Rhizobium meliloti, the nitrogen-fixing symbiont of alfalfa (Medicago sativa), isolated by transposon Tn5 mutagenesis. A "suicide plasmid" mutagenesis procedure was used to generate TN-5-induced mutants, and both auxotrophic and symbiotic mutants were found at a frequency of 0.3% among strains containing random TN5 insertions. Two classes of symbiotic mutants were isolated: 4 of the 20 formed no nodules at all (Nod-), and 16 formed nodules which failed to fix nitrogen (Fix-). We used a combination of physical and genetic criteria to determine that in most cases the auxotrophic and symbiotic phenotypes could be correlated with the insertion of a single Tn5 elements. Once the Tn5 element was inserted into the R. meliloti genome, the frequency of its transposition to a new site was approximately 10-8 and the frequency of precise excision was less than 10-9. In approximately 25% of the mutant strains, phage Mu DNA sequences, which originated from the suicide plasmid used to generate the Tn5 transpositions, were also found in the R. meliloti genome contiguous with Tn5. These later strains exhibited anomalous conjugation properties, and therefore we could not correlate the symbiotic phenotype with a Tn5 insertion. In general, we found that both physical and genetic tests were required to fully characterize transposon-induced mutations.  相似文献   

14.
A universal chemical assay used to detect the production of siderophores in a range of Rhizobium strains showed that production is strain specific. Iron nutrition bioassays carried out on Rhizobium meliloti strains to determine cross-utilization of their siderophores showed that R. meliloti 2011, 220-5, and 220-3 could each use the siderophores produced by the other two but not the siderophore produced by R. meliloti DM4 (and vice versa). Mutants of R. meliloti 2011 and 220-5 defective in siderophore production were isolated by Tn5-mob mutagenesis. The Tn5-mob-containing EcoRI fragment of mutant R. meliloti 220-5-1 was cloned into pUC19. By using this fragment as a probe, the presence of a homologous region was observed in R. meliloti 2011 and 220-3 but not in R. meliloti DM4. A complementing cosmid from a gene bank of R. meliloti 2011 was identified by using the same probe. Introduction of this cosmid into R. meliloti 102F34, a strain not producing a siderophore, resulted in the ability of this strain to produce a siderophore and also in the ability to utilize the siderophores produced by R. meliloti 2011, 220-5, and 220-3 but not the siderophore produced by R. meliloti DM4. A comparative analysis of the outer membrane proteins prepared from iron-deficient cultures of R. meliloti 102F34 and 102F34 harboring the cosmid revealed the presence, in the latter, of a low-iron-induced outer membrane protein corresponding to a low-iron-induced protein in R. meliloti 2011, 220-5, and 220-3. This protein is not present in R. meliloti DM4. The results suggest that R. meliloti 2011, 220-5, and 220-3 produce siderophores that are identical or sufficiently similar in structure to be transported by the membrane transport system of each strain while also indicating that utilization of a particular siderophore is correlated with the presence of specific outer membrane proteins.  相似文献   

15.
NADP(+)-dependent isocitrate dehydrogenase (ICD) is an important enzyme of the intermediary metabolism, as it controls the carbon flux within the citric acid cycle and supplies the cell with 2-oxoglutarate and NADPH for biosynthetic purposes. In the amino acid-producing organism Corynebacterium glutamicum, the specific activity of ICD was independent of the growth substrate and of the growth phase at approximately 1 U/mg, indicating that this enzyme is constitutively formed. The ICD gene, icd, was isolated, subcloned on a plasmid, and introduced into C. glutamicum. Compared with the wild type, the recombinant strains showed up to 10-fold-higher specific ICD activities. The nucleotide sequence of a 3,595-bp DNA fragment containing the icd gene was determined. The predicted gene product of icd consists of 739 amino acids (M(r) = 80.091) and showed 58.5% identity with the monomeric ICD isozyme II from Vibrio sp. strain ABE-1 but no similarity to any known ICD of the dimeric type. Inactivation of the chromosomal icd gene led to glutamate auxotrophy and to the absence of any detectable ICD activity, suggesting that only a single ICD is present in C. glutamicum. From an icd-overexpressing C. glutamicum strain, ICD was purified and biochemically characterized. The native ICD was found to be a monomer; to be specific for NADP+; to be weakly inhibited by oxaloacetate, 2-oxoglutarate, and citrate; and to be severely inhibited by oxaloacetate plus glyoxylate. The data indicate that ICD from C. glutamicum is structurally similar to ICDs from bacteria of the genera Vibrio, Rhodomicrobium, and Azotobacter but different from all other known procaryotic and eucaryotic ICDs.  相似文献   

16.
Localization of symbiotic mutations in Rhizobium meliloti   总被引:23,自引:18,他引:5       下载免费PDF全文
A total of 5 Nod- and 57 Fix- symbiotic mutants of Rhizobium meliloti strain 41 have been isolated after either nitrosoguanidine or Tn5 transposition mutagenesis. Chromosomal locations of mutations in 1 Nod- and 11 Fix- derivatives were ascertained by transferring the chromosome (mobilized by plasmid R68.45), in eight fragments, into symbiotically effective recipients and testing the recombinants for symbiotic phenotype. Alternatively, the kanamycin resistance marker of Tn5 was mapped. In five mutants the fix alleles were localized on different chromosomal regions, but six other fix mutations and one nod mutation tested did not map onto the chromosome. It was shown that the chromosome-mobilizing ability (Cma+) of R68.45 was not involved in the mobilization of genes located extrachromosomally. Moreover, Cma- derivatives of R68.45 could mobilize regions of the indigenous plasmid pRme41b but not chromosomal genes. Thus, mobilization of a marker by Cma- R68.45 indicates its extrachromosomal location. With a 32P-labeled DNA fragment carrying Tn5 as a hybridization probe, it was shown that in five extrachromosomally located Tn5-induced fix mutants and one nod mutant Tn5 was localized on plasmid pRme41b. This is in agreement with the genetic mapping data.  相似文献   

17.
18.
Rhizobium leguminosarum bv. viciae Exo- mutant strains RBL5523,exo7::Tn5,RBL5523,exo8::Tn5 and RBL5523,exo52::Tn5 are affected in nodulation and in the syntheses of lipopolysaccharide, capsular polysaccharide, and exocellular polysaccharide. These mutants were complemented for nodulation and for the syntheses of these polysaccharides by plasmid pMP2603. The gene in which these mutants are defective is functionally homologous to the exoB gene of Rhizobium meliloti. The repeating unit of the residual amounts of EPS still made by the exoB mutants of R. leguminosarum bv. viciae lacks galactose and the substituents attached to it. The R. leguminosarum bv. viciae and R. meliloti exoB mutants fail to synthesize active UDP-glucose 4'-epimerase.  相似文献   

19.
A mutant of Rhizobium meliloti unable to transport C4 dicarboxylates (dct) was isolated after Tn5 mutagenesis. The mutant, 4F6, could not grow on aspartate or the tricarboxylic acid cycle intermediates succinate, fumarate, or malate. It produced symbiotically ineffective nodules on Medicago sativa in which bacteroids appeared normal, but the symbiotic zone was reduced and the plant cells contained numerous starch granules at their peripheries. Cosmids containing the dct region were obtained by selecting those which restored the ability of 4F6 to grow on succinate. The Tn5 insertion in 4F6 was found to be within a 5.9-kilobase (kb) EcoRI fragment common to the complementing cosmids. Site-specific Tn5-mutagenesis revealed dct genes in a segment of DNA about 4 kb in size extending from within the 5.9-kb EcoRI fragment into an adjacent 2.9-kb EcoRI fragment. The 4F6 mutation was found to be in a complementation group in which mutations yielded a Fix- phenotype, whereas other dct mutations in the region resulted in mutants which produced effective nodules in most, although not all, plant tests (partially Fix-). The dct region was found to be located on a megaplasmid known to carry genes required for exopolysaccharide production.  相似文献   

20.
Five exopolysaccharide-deficient mutants were isolated after rhizobial strain 107 was subjected to transposon Tn5 mutagenesis. The amount of EPS produced by the mutants was dramatically decreased to between 3% and 6% of wild-type level. All mutants carried a singel copy of Tn5. Two mutants (NA3 and NA10) were complemented by the R. meliloti exoA gene and the functionally equivalent exoD gene of Rhizobium sp. strain NGR234. Two other mutants (NA7 and NA8) were complemented by the R. meliloti exoB gene and the functionally equivalent NGR234 exoC gene. The remaining mutant (NA11) was not complemented by any exo genes of R. meliloti or Rhizobium NGR234. All mutants induced normal nitrogen-fixing nodules on Astragalus sinicus, an indeterminate nodulating host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号