首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the electrical charge or the size of the amino acid residue at the pore center of a slowly activation component of the delayed rectifier potassium channel: KCNQ1 was studied. K+ currents were measured after transfection of one of four KCNQ1 mutants: substituting Isoleucine with Lysine, Glutamate, Valine or Glycine and then transfected in COS-7 cells. Both the negatively- and positive charged residue I313 K and I313E showed a loss of function when expressed alone and a dominant negative suppression when co-expressed with wild type KCNQ1. When the site was substituted with the smallest neutral amino acid residue: I313G, there was a small reduction of current when transfected alone and a gain of function when co-transfected with the wild type. I313V showed no difference from the wild type. Changes of amino acid residue at the pore center of KCNQ1 may alter the channel function but this depends on the electrical charge or the size of amino acid residue.  相似文献   

2.
Hereditary long QT syndrome (LQTS) is associated with ventricular torsade de pointes tachyarrhythmias and sudden cardiac death. Mutations in a cardiac voltage-gated potassium channel, KCNQ1, induce the most frequent variant of LQTS. We identified a KCNQ1 missense mutation, KCNQ1 S277L, in a patient presenting with recurrent syncope triggered by emotional stress (QTc = 528 ms). This mutation is located in the conserved S5 transmembrane region of the KCNQ1 channel. Using in vitro electrophysiological testing in the Xenopus oocyte expression system, the S277L mutation was found to be non-functional and to suppress wild type currents in dominant-negative fashion in the presence and in the absence of the regulatory ß-subunit, KCNE1. In addition, expression of S277L and wild type KCNQ1 with KCNE1 resulted in a shift of the voltage-dependence of activation by − 8.7 mV compared to wild type IKs, indicating co-assembly of mutant and wild type subunits. The electrophysiological phenotype corresponds well with the severe clinical phenotype of the index patient. However, investigation of family members revealed three patients that exhibit asymptomatic QT interval prolongation (QTc = 493-518 ms). In conclusion, this study emphasizes the value of biophysical testing to provide mechanistic evidence for pathogenicity of ion channel mutations identified in LQTS patients. The inconsistent association of the KCNQ1 S277L mutation with the clinical presentation suggests that additional genetic, epigenetic, or environmental factors play a role in defining the individual clinical LQTS phenotype.  相似文献   

3.
Regulation of the Kv2.1 Potassium Channel by MinK and MiRP1   总被引:1,自引:0,他引:1  
Kv2.1 is a voltage-gated potassium (Kv) channel α-subunit expressed in mammalian heart and brain. MinK-related peptides (MiRPs), encoded by KCNE genes, are single–transmembrane domain ancillary subunits that form complexes with Kv channel α-subunits to modify their function. Mutations in human MinK (KCNE1) and MiRP1 (KCNE2) are associated with inherited and acquired forms of long QT syndrome (LQTS). Here, coimmunoprecipitations from rat heart tissue suggested that both MinK and MiRP1 form native cardiac complexes with Kv2.1. In whole-cell voltage-clamp studies of subunits expressed in CHO cells, rat MinK and MiRP1 reduced Kv2.1 current density three- and twofold, respectively; slowed Kv2.1 activation (at +60 mV) two- and threefold, respectively; and slowed Kv2.1 deactivation less than twofold. Human MinK slowed Kv2.1 activation 25%, while human MiRP1 slowed Kv2.1 activation and deactivation twofold. Inherited mutations in human MinK and MiRP1, previously associated with LQTS, were also evaluated. D76N–MinK and S74L–MinK reduced Kv2.1 current density (threefold and 40%, respectively) and slowed deactivation (60% and 80%, respectively). Compared to wild-type human MiRP1–Kv2.1 complexes, channels formed with M54T– or I57T–MiRP1 showed greatly slowed activation (tenfold and fivefold, respectively). The data broaden the potential roles of MinK and MiRP1 in cardiac physiology and support the possibility that inherited mutations in either subunit could contribute to cardiac arrhythmia by multiple mechanisms. Electronic supplementary material  The online version of this article (doi: ) contains supplementary material, which is available to authorized users. Z. A. McCrossan and T. K. Roepke have contributed equally to this work.  相似文献   

4.
Heterologous expression of KCNQ2 (Kv7.2) results in the formation of a slowly activating, noninactivating, voltage-gated potassium channel. Using a cell line that stably expresses KCNQ2, we developed a rubidium flux assay to measure the functional activity and pharmacological modulation of this ion channel. Rubidium flux was performed in a 96-well microtiter plate format; rubidium was quantified using an automated atomic absorption spectrometer to enable screening of 1000 data points/day. Cells accumulated rubidium at 37 degrees C in a monoexponential manner with t(1/2)=40min. Treating cells with elevated extracellular potassium caused membrane depolarization and stimulation of rubidium efflux through KCNQ2. The rate of rubidium efflux increased with increasing extracellular potassium: the t(1/2) at 50mM potassium was 5.1 min. Potassium-stimulated efflux was potentiated by the anticonvulsant drug retigabine (EC(50)=0.5 microM). Both potassium-induced and retigabine-facilitated efflux were blocked by TEA (IC(50)s=0.4 and 0.3mM, respectively) and the neurotransmitter release enhancers and putative cognition enhancers linopirdine (IC(50)s=2.3 and 7.1 microM, respectively) and XE991 (IC(50)s=0.3 and 0.9 microM, respectively). Screening a collection of ion channel modulators revealed additional inhibitors including clofilium (IC(50) = 27 microM). These studies extend the pharmacological profile of KCNQ2 and demonstrate the feasibility of using this assay system to rapidly screen for compounds that modulate the function of KCNQ2.  相似文献   

5.
Congenital long QT syndrome is a cardiac disorder characterized by prolongation of QT interval on the surface ECG associated with syncopal attacks and a high risk of sudden death. Mutations in the voltage-gated potassium channel subunit KCNQ1 induce the most common form of long QT syndrome (LQT1). We previously identified a hot spot mutation G314S located within the pore region of the KCNQ1 ion channel in a Chinese family with long QT syndrome. In the present study, we used oocyte expression of the KCNQ1 polypeptide to study the effects of the G314S mutation on channel properties. The results of electrophysiological studies indicate G314S, co-expressed with KCNE1 was unable to assemble to form active channel. G314S, co-expressed with WT KCNQ1 and KCNE1, suppressed Iks currents in a dominant-negative manner, which is consistent with long QT syndrome in the members of the Chinese family carrying G314S KCNQ1 mutation.  相似文献   

6.
MinK subdomains that mediate modulation of and association with KvLQT1   总被引:5,自引:0,他引:5  
KvLQT1 is a voltage-gated potassium channel expressed in cardiac cells that is critical for myocardial repolarization. When expressed alone in heterologous expression systems, KvLQT1 channels exhibit a rapidly activating potassium current that slowly deactivates. MinK, a 129 amino acid protein containing one transmembrane-spanning domain modulates KvLQT1, greatly slowing activation, increasing current amplitude, and removing inactivation. Using deletion and chimeric analysis, we have examined the structural determinants of MinK effects on gating modulation and subunit association. Coexpression of KvLQT1 with a MinK COOH-terminus deletion mutant (MinK DeltaCterm) in Xenopus oocytes resulted in a rapidly activated potassium current closely resembling currents recorded from oocytes expressing KvLQT1 alone, indicating that this region is necessary for modulation. To determine whether MinK DeltaCterm was associated with KvLQT1, a functional tag (G55C) that confers susceptibility to partial block by external cadmium was engineered into the transmembrane domain of MinK DeltaCterm. Currents derived from coexpression of KvLQT1 with MinK DeltaCterm were cadmium sensitive, suggesting that MinK DeltaCterm does associate with KvLQT1, but does not modulate gating. To determine which MinK regions are sufficient for KvLQT1 association and modulation, chimeras were generated between MinK and the Na(+) channel beta1 subunit. Chimeras between MinK and beta1 could only modulate KvLQT1 if they contained both the MinK transmembrane domain and COOH terminus, suggesting that the MinK COOH terminus alone is not sufficient for KvLQT1 modulation, and requires an additional, possibly associative interaction between the MinK transmembrane domain and KvLQT1. To identify the MinK subdomains necessary for gating modulation, deletion mutants were designed and coexpressed with KvLQT1. A MinK construct with amino acid residues 94-129 deleted retained the ability to modulate KvLQT1 gating, identifying the COOH-terminal region critical for gating modulation. Finally, MinK/MiRP1 (MinK related protein-1) chimeras were generated to investigate the difference between these two closely related subunits in their ability to modulate KvLQT1. The results from this analysis indicate that MiRP1 cannot modulate KvLQT1 due to differences within the transmembrane domain. Our results allow us to identify the MinK subdomains that mediate KvLQT1 association and modulation.  相似文献   

7.
The IKs current is important in the heart’s response to sympathetic stimulation. β-adrenergic stimulation increases the amount of IKs and creates a repolarization reserve that shortens the cardiac action potential duration. We have recently shown that 8-CPT-cAMP, a membrane-permeable cAMP analog, changes the channel kinetics and causes it to open more quickly and more often, as well as to higher subconductance levels, which produces an increase in the IKs current. The mechanism proposed to underlie these kinetic changes is increased activation of the voltage sensors. The present study extends our previous work and shows detailed subconductance analysis of the effects of 8-CPT-cAMP on an enhanced gating mutant (S209F) and on a double pseudo-phosphorylated IKs channel (S27D/S92D). 8-CPT-cAMP still produced kinetic changes in S209F + KCNE1, further enhancing gating, while S27D/S92D + KCNE1 showed no significant response to 8-CPT-cAMP, suggesting that these last two mutations fully recapitulate the effect of channel phosphorylation by cAMP.  相似文献   

8.
Klotho is a transmembrane protein expressed primarily in kidney, parathyroid gland, and choroid plexus. The extracellular domain could be cleaved off and released into the systemic circulation. Klotho is in part effective as β-glucuronidase regulating protein stability in the cell membrane. Klotho is a major determinant of aging and life span. Overexpression of Klotho increases and Klotho deficiency decreases life span. Klotho deficiency may further result in hearing loss and cardiac arrhythmia. The present study explored whether Klotho modifies activity and protein abundance of KCNQ1/KCNE1, a K+ channel required for proper hearing and cardiac repolarization. To this end, cRNA encoding KCNQ1/KCNE1 was injected in Xenopus oocytes with or without additional injection of cRNA encoding Klotho. KCNQ1/KCNE1 expressing oocytes were treated with human recombinant Klotho protein (30 ng/ml) for 24 h. Moreover, oocytes which express both KCNQ1/KCNE1 and Klotho were treated with 10 µM DSAL (D-saccharic acid-1,4-lactone), a β-glucuronidase inhibitor. The KCNQ1/KCNE1 depolarization-induced current (IKs) was determined utilizing dual electrode voltage clamp, while KCNQ1/KCNE1 protein abundance in the cell membrane was visualized utilizing specific antibody binding and quantified by chemiluminescence. KCNQ1/KCNE1 channel activity and KCNQ1/KCNE1 protein abundance were upregulated by coexpression of Klotho. The effect was mimicked by treatment with human recombinant Klotho protein (30 ng/ml) and inhibited by DSAL (10 µM). In conclusion, Klotho upregulates KCNQ1/KCNE1 channel activity by 'mainly' enhancing channel protein abundance in the plasma cell membrane, an effect at least partially mediated through the β-glucuronidase activity of Klotho protein.  相似文献   

9.
Klotho is a transmembrane protein expressed primarily in kidney, parathyroid gland, and choroid plexus. The extracellular domain could be cleaved off and released into the systemic circulation. Klotho is in part effective as β-glucuronidase regulating protein stability in the cell membrane. Klotho is a major determinant of aging and life span. Overexpression of Klotho increases and Klotho deficiency decreases life span. Klotho deficiency may further result in hearing loss and cardiac arrhythmia. The present study explored whether Klotho modifies activity and protein abundance of KCNQ1/KCNE1, a K+ channel required for proper hearing and cardiac repolarization. To this end, cRNA encoding KCNQ1/KCNE1 was injected in Xenopus oocytes with or without additional injection of cRNA encoding Klotho. KCNQ1/KCNE1 expressing oocytes were treated with human recombinant Klotho protein (30 ng/ml) for 24 h. Moreover, oocytes which express both KCNQ1/KCNE1 and Klotho were treated with 10 µM DSAL (D-saccharic acid-1,4-lactone), a β-glucuronidase inhibitor. The KCNQ1/KCNE1 depolarization-induced current (IKs) was determined utilizing dual electrode voltage clamp, while KCNQ1/KCNE1 protein abundance in the cell membrane was visualized utilizing specific antibody binding and quantified by chemiluminescence. KCNQ1/KCNE1 channel activity and KCNQ1/KCNE1 protein abundance were upregulated by coexpression of Klotho. The effect was mimicked by treatment with human recombinant Klotho protein (30 ng/ml) and inhibited by DSAL (10 µM). In conclusion, Klotho upregulates KCNQ1/KCNE1 channel activity by 'mainly' enhancing channel protein abundance in the plasma cell membrane, an effect at least partially mediated through the β-glucuronidase activity of Klotho protein.  相似文献   

10.
The pH-sensitivity of transepithelial K+ transport was studied in vitro in isolated vestibular dark cell epithelium from the gerbil ampulla. The cytosolic pH (pH iwas measured microfluorometrically with the pH-sensitive dye 2,7-bicarboxyethyl-5(6)-carboxyfluorescein (BCECF) and the equivalent short-circuit current (I sc), which is a measure for transepithelial K+ secretion, was calculated from measurements of the transepithelial voltage (V t)and the transepithelial resistance (R t) in a micro-Ussing chamber. All experiments were conducted in virtually HCO 3 -free solutions. Under control conditions, pH iwas 7.01±0.04 (n=18), V twas 9.1±0.5 mV, R t16.7±0.09 cm2, and I sc was 587±30 A/cm2 (n=49). Addition of 20 mm propionate caused a biphasic effect involving an initial acidification of pH i, increase in V tand I sc and decrease in R tand a subsequent alkalinization of pH i, decrease of V tand increase of R t. Removal of propionate caused a transient effect involving an alkalinization of pH i, a decrease of V tand I sc and an increase in R t. pH iin the presence of propionate exceeded pH iunder control conditions. Effects of propionate on V t, R tand I sc were significantly larger when propionate was applied to the basolateral side rather than to the apical side of the epithelium. The pH i-sensitivityof I sc between pH 6.8 and 7.5 was –1089 A/(cm2 · pH-unit) suggesting that K+ secretion ceases at about pH i7.6. Acidification of the extracellular pH (pH o)caused an increase of V tand I sc and a decrease of R tmost likely due to acidification of pH i. Effects were significantly larger when the extracellular acidification was applied to the basolateral side rather than to the apical side of the epithelium. The pH osensitivity of I sc between pH 7.4 and 6.4 was –155 A/(cm2 · pH unit). These results demonstrate that transepithelial K+ transport is sensitive to pH iand pH oand that vestibular dark cells contain propionate uptake mechanism. Further, the data suggest that cytosolic acidification activates and that cytosolic alkalinization inactivates the slowly activating K+ channel (I sK)in the apical membrane. Whether the effect of pH ion the I sK channel is a direct or indirect effect remains to be determined.The authors wish to thank Drs. Daniel C. Marcus, Zhjiun Shen and Hiroshi Sunose for helpful discussions. This work was supported by grants NIH-R29-DC01098 and NIH-R01-DC00212.  相似文献   

11.
Early afterdepolarizations (EADs) induced by suppression of cardiac delayed rectifier I (Kr) and/or I (Ks) channels cause fatal ventricular tachyarrhythmias. In guinea pig ventricular myocytes, partial block of one of the channels with complete block of the other reproducibly induced EADs. Complete block of both I (Kr) and I (Ks) channels depolarized the take-off potential and reduced the amplitude of EADs, which in some cases were not clearly separated from the preceding action potentials. A selective L-type Ca(2+) (I (Ca,L)) channel blocker, nifedipine, effectively suppressed EADs at submicromolar concentrations. As examined with the action potential-clamp method, I (Ca,L) channels mediated inward currents with a spike and dome shape during action potentials. I (Ca,L) currents decayed mainly due to inactivation in phase 2 and deactivation in phase 3 repolarization. When EADs were induced by complete block of I (Kr) channels with partial block of I (Ks) channels, repolarization of the action potential prior to EAD take-off failed to increase I (K1) currents and thus failed to completely deactivate I (Ca,L) channels, which reactivated and mediated inward currents during EADs. When both I (Kr) and I (Ks) channels were completely blocked, I (Ca,L) channels were not deactivated and mediated sustained inward currents until the end of EADs. Under this condition, the recovery and reactivation of I (Ca,L) channels were absent before EADs. Therefore, an essential mechanism underlying EADs caused by suppression of the delayed rectifiers is the failure to completely deactivate I (Ca,L) channels.  相似文献   

12.
The rapid delayed rectifier K(+) current, I(Kr), plays a key role in repolarisation of cardiac ventricular action potentials (APs). In recent years, a novel clinical condition denoted the short QT syndrome (SQTS) has been identified and, very recently, gain in function mutations in the gene encoding the pore-forming sub-unit of the I(Kr) channel have been proposed to underlie SQTS in some patients. Here, computer simulations were used to investigate the effects of the selective loss of voltage-dependent inactivation of I(Kr) upon ventricular APs and on the QT interval of the electrocardiogram. I(Kr) and inactivation-deficient I(Kr) were incorporated into Luo-Rudy ventricular AP models. Inactivation-deficient I(Kr) produced AP shortening that was heterogeneous between endocardial, mid-myocardial, and epicardial ventricular cell models, irrespective of whether heterogeneity between these sub-regions was incorporated of slow delayed rectifier K(+) current (I(Ks)) alone, or of I(Ks) together with that of transient outward K(+) current. The selective loss of rectification of I(Kr) did not augment transmural dispersion of AP repolarisation, as AP shortening was greater in mid-myocardial than in endo- or epicardial cell models. Simulated conduction through a 1 D transmural ventricular strand was altered by incorporation of inactivation-deficient I(Kr) and the reconstructed QT interval was shortened. Collectively, these results substantiate the notion that selective loss of I(Kr) inactivation produces a gain in I(Kr) function that causes QT interval shortening.  相似文献   

13.
Changes in extracellular pH occur during both physiological neuronal activity and pathological conditions such as epilepsy and stroke. Such pH changes are known to exert profound effects on neuronal activity and survival. Heteromeric KCNQ2/3 potassium channels constitute a potential target for modulation by H+ ions as they are expressed widely within the CNS and have been proposed to underlie the M-current, an important determinant of excitability in neuronal cells. Whole-cell and single-channel recordings demonstrated a modulation of heterologously expressed KCNQ2/3 channels by extracellular H+ ions. KCNQ2/3 current was inhibited by H+ ions with an IC50 of 52 nM (pH 7.3) at -60 mV, rising to 2 microM (pH 5.7) at -10 mV. Neuronal M-current exhibited a similar sensitivity. Extracellular H+ ions affected two distinct properties of KCNQ2/3 current: the maximum current attainable upon depolarization (Imax) and the voltage dependence of steady-state activation. Reduction of Imax was antagonized by extracellular K+ ions and affected by mutations within the outer-pore turret, indicating an outer-pore based process. This reduction of Imax was shown to be due primarily to a decrease in the maximum open-probability of single KCNQ2/3 channels. Single-channel open times were shortened by acidosis (pH 5.9), while closed times were increased. Acidosis also recruited a longer-lasting closed state, and caused a switch of single-channel activity from the full-conductance state ( approximately 8 pS) to a subconductance state ( approximately 5 pS). A depolarizing shift in the activation curve of macroscopic KCNQ2/3 currents and single KCNQ2/3 channels was caused by acidosis, while alkalosis caused a hyperpolarizing shift. Activation and deactivation kinetics were slowed by acidosis, indicating specific effects of H+ ions on elements involved in gating. Contrasting modulation of homomeric KCNQ2 and KCNQ3 currents revealed that high sensitivity to H+ ions was conferred by the KCNQ3 subunit.  相似文献   

14.
目的建立心脏特异性表达KCNQ1^V180 L转基因小鼠,为研究KCNQ1基因功能及其突变与心律失常性心脏疾病的关系提供工具动物。方法把KCNQ1^V180 L基因插入α-MHC启动子下游,构建转基因表达载体,显微注射法建立C57BL/6J KCNQ1^V180 L转基因小鼠,PCR鉴定转基因小鼠的基因型,采用Western Blot鉴定KCNQ1^V180 L在心脏组织中的表达,记录转基因小鼠死亡情况,超声分析转基因小鼠心脏结构形态和功能改变,心电分析转基因小鼠心肌电生理变化。结果建立了2个心脏组织特异性表达KCNQ1^V180 L转基因小鼠品系。转基因小鼠离乳前即出现猝死;超声检查显示转基因小鼠左心室内径变短,心室壁变厚,短轴缩短率增加;心电分析显示其心室复极异常。结论 KCNQ1^V180 L转基因小鼠具有临床长QT综合征类似的病理改变,可作为研究KCNQ1基因功能及其突变与心律失常发病机制的疾病动物模型。  相似文献   

15.
The SNARE protein syntaxin 1A (Syn1A) is known to inhibit delayed rectifier K(+) channels of the K(v)1 and K(v)2 families with heterogeneous effects on their gating properties. In this study, we explored whether Syn1A could directly modulate K(v)4.3, a rapidly inactivating K(v) channel with important roles in neuroendocrine cells and cardiac myocytes. Immunoprecipitation studies in HEK293 cells coexpressing Syn1A and K(v)4.3 revealed a direct interaction with increased trafficking to the plasma membrane without a change in channel synthesis. Paradoxically, Syn1A inhibited K(v)4.3 current density. In particular, Syn1A produced a left-shift in steady-state inactivation of K(v)4.3 without affecting either voltage dependence of activation or gating kinetics, a pattern distinct from other K(v) channels. Combined with our previous reports, our results further verify the notion that the mechanisms involved in Syn1A-K(v) interactions vary significantly between K(v) channels, thus providing a wide scope for Syn1A modulation of exocytosis and membrane excitability.  相似文献   

16.
The human Ether-a-go-go Related Gene (hERG) potassium channel plays a central role in regulating cardiac excitability and maintenance of normal cardiac rhythm. Mutations in hERG cause a third of all cases of congenital long QT syndrome, a disorder of cardiac repolarisation characterised by prolongation of the QT interval on the surface electrocardiogram, abnormal T waves, and a risk of sudden cardiac death due to ventricular arrhythmias. Additionally, the hERG channel protein is the molecular target for almost all drugs that cause the acquired form of long QT syndrome. Advances in understanding the structural basis of hERG gating, its traffic to the cell surface, and the molecular architecture involved in drug-block of hERG, are providing the foundation for rational treatment and prevention of hERG associated long QT syndrome. This review summarises the current knowledge of hERG function and dysfunction, and the areas of ongoing research.  相似文献   

17.
A mutation of KCNQ1 gene encoding the alpha subunit of the channel mediating the slow delayed rectifier K+ current in cardiomyocytes may cause severe arrhythmic disorders. We identified KCNQ1(Y461X), a novel mutant gene encoding KCNQ1 subunit whose C-terminal domain is truncated at tyrosine 461 from a man with a mild QT interval prolongation. We made whole-cell voltage-clamp recordings from HEK-293T cells transfected with either of wild-type KCNQ1 [KCNQ1(WT)], KCNQ1(Y461X), or their mixture plus KCNE1 auxiliary subunit gene. The KCNQ1(Y461X)-transfected cells showed no delayed rectifying current. The cells transfected with both KCNQ1(WT) and KCNQ1(Y461X) showed the delayed rectifying current that is thought to be mediated largely by homomeric channel consisting of KCNQ1(WT) subunit because its voltage-dependence of activation, activation rate, and deactivation rate were similar to the current in the KCNQ1(WT)-transfected cells. The immunoblots of HEK-293T cell-derived lysates showed that KCNQ1(Y461X) subunit cannot form channel tetramers by itself or with KCNQ1(WT) subunit. Moreover, immunocytochemical analysis in HEK-293T cells showed that the surface expression level of KCNQ1(Y461X) subunit was very low with or without KCNQ1(WT) subunit. These findings suggest that the massive loss of the C-terminal domain of KCNQ1 subunit impairs the assembly, trafficking, and function of the mutant subunit-containing channels, whereas the mutant subunit does not interfere with the functional expression of the homomeric wild-type channel. Therefore, the homozygous but not heterozygous inheritance of KCNQ1(Y461X) might cause major arrhythmic disorders. This study provides a new insight into the structure–function relation of KCNQ1 channel and treatments of cardiac channelopathies.  相似文献   

18.
The chlorella virus PBCV-1 was the first virus found to encode a functional potassium channel protein (Kcv). Kcv is small (94 aa) and basically consists of the M1-P-M2 (membrane-pore-membrane) module typical of the pore regions of all known potassium channels. Kcv forms functional channels in three heterologous systems. This brief review discusses the gating, permeability and modulation properties of Kcv and compares them to the properties of bacterial and mammalian K+ channels.  相似文献   

19.
The HERG potassium channel might have a non-canonical drug binding site, distinct from the channel's inner cavity, that could be responsible for elements of closed-state pharmacological inhibition of the channel. The macrolide antibiotic erythromycin is a drug that may block unconventionally because of its size. Here we used whole-cell patch-clamp recording at 37 degrees C from heterologously expressed HERG channels in a mammalian cell line to show that erythromycin either produces a rapid open-state-dependent HERG channel inhibition, or components of both open-state-dependent and closed-state-dependent inhibition. Alanine-substitution of HERG's canonical determinants of blockade revealed that Y652 was not important as a molecular determinant of blockade, and that mutation of F656 resulted in only weak attenuation of inhibition. In computer models of the channel, erythromycin could make several direct contacts with F656, but not with Y652, in the open-state model, and erythromycin was unable to fit into a closed-state channel model.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号